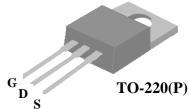

Pb Free Plating Product

N-CHANNEL ENHANCEMENT MODE
POWER MOSFET

- **▼** Simple Drive Requirement
- **▼** Low Gate Charge
- **▼** Fast Switching
- **▼** RoHS Compliant


${\sf BV_{DSS}}$ 30V ${\sf R_{DS(ON)}}$ 25m Ω

Description

The Advanced Power MOSFETs from APEC provide the designer with the best combination of fast switching, ruggedized device design, low on-resistance and cost-effectiveness.

The TO-263 package is universally preferred for all commercial-industrial surface mount applications and suited for low voltage applications such as DC/DC converters. The through-hole version (AP40T03GP) are available for low-profile applications.

Absolute Maximum Ratings

Symbol	Parameter	Rating	Units
V_{DS}	Drain-Source Voltage	30	V
V_{GS}	Gate-Source Voltage	±25	V
I _D @T _A =25°C	Continuous Drain Current, V _{GS} @ 10V	28	Α
I _D @T _A =100°C	Continuous Drain Current, V _{GS} @ 10V	24	А
I _{DM}	Pulsed Drain Current ¹	95	А
$P_D@T_A=25^{\circ}C$	Total Power Dissipation	31.25	W
	Linear Derating Factor	0.25	W/°C
T _{STG}	Storage Temperature Range	-55 to 150	$^{\circ}\mathbb{C}$
T_J	Operating Junction Temperature Range	-55 to 150	$^{\circ}\!\mathbb{C}$

Thermal Data

Symbol	Parameter		Value	Units	
Rthj-c	Thermal Resistance Junction-case	Max.	4.0	°C/W	
Rthj-a	Thermal Resistance Junction-ambient	Max.	62	°C/W	

AP40T03GS/P

Electrical Characteristics@T_j=25°C(unless otherwise specified)

		·	·			
Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
BV _{DSS}	Drain-Source Breakdown Voltage	V _{GS} =0V, I _D =250uA	30	-	-	V
$\Delta BV_{DSS}/ \Delta T_{j}$	Breakdown Voltage Temperature Coefficient	Reference to 25°C, I _D =1mA	-	0.032	-	V/°C
R _{DS(ON)}	Static Drain-Source On-Resistance	V _{GS} =10V, I _D =18A	-	-	25	$m\Omega$
		V _{GS} =4.5V, I _D =14A	-	-	45	$m\Omega$
$V_{GS(th)}$	Gate Threshold Voltage	$V_{DS}=V_{GS}$, $I_{D}=250uA$	1	-	3	V
g _{fs}	Forward Transconductance	V _{DS} =10V, I _D =18A	-	15	-	S
I _{DSS}	Drain-Source Leakage Current (T _j =25°C)	V_{DS} =30V, V_{GS} =0V	-	-	1	uA
	Drain-Source Leakage Current (T _j =150°C)	V_{DS} =24V , V_{GS} =0V	-	-	25	uA
I_{GSS}	Gate-Source Leakage	V _{GS} = ±25V	-	-	±100	nA
Q_g	Total Gate Charge ²	I _D =18A	-	8.8	-	nC
Q_{gs}	Gate-Source Charge	V _{DS} =20V	-	2.5	-	nC
Q_{gd}	Gate-Drain ("Miller") Charge	V _{GS} =4.5V	-	5.8	-	nC
t _{d(on)}	Turn-on Delay Time ²	V _{DS} =15V	-	6	-	ns
t _r	Rise Time	I _D =18A	-	62	-	ns
$t_{d(off)}$	Turn-off Delay Time	$R_G=3.3\Omega, V_{GS}=10V$	-	16	-	ns
t _f	Fall Time	$R_D=0.83\Omega$	-	4.4	-	ns
C _{iss}	Input Capacitance	V _{GS} =0V	-	655	-	pF
C _{oss}	Output Capacitance	V _{DS} =25V		145	-	pF
C _{rss}	Reverse Transfer Capacitance	f=1.0MHz	-	95	-	pF

Source-Drain Diode

Symbol	Parameter	Test Conditions	Min.	Тур.	Max.	Units
I _S	Continuous Source Current (Body Diode)	$V_D = V_G = 0V$, $V_S = 1.3V$	ı	ı	28	Α
I _{SM}	Pulsed Source Current (Body Diode) ¹				95	Α
V_{SD}	Forward On Voltage ²	$T_j=25^{\circ}C$, $I_S=28A$, $V_{GS}=0V$	•	•	1.3	V

Notes:

- 1. Pulse width limited by safe operating area.
- 2.Pulse width \leq 300us , duty cycle \leq 2%.

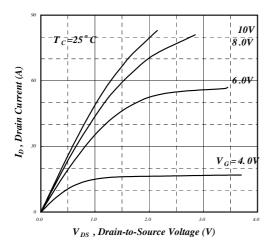
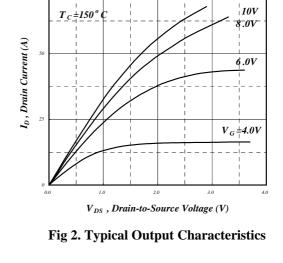



Fig 1. Typical Output Characteristics

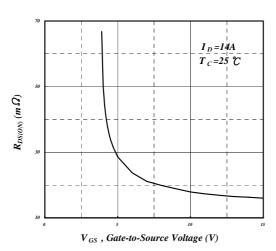


Fig 3. On-Resistance v.s. Gate Voltage

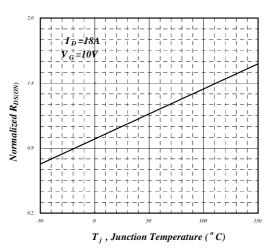


Fig 4. Normalized On-Resistance v.s. Junction Temperature

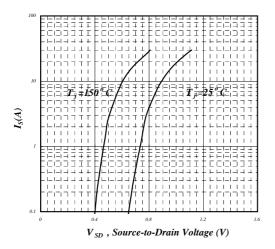


Fig 5. Forward Characteristic of Reverse Diode

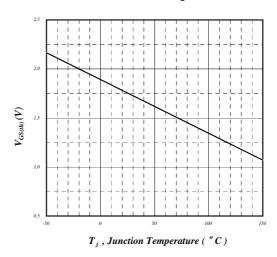


Fig 6. Gate Threshold Voltage v.s.
Junction Temperature

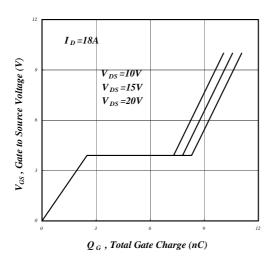


Fig 7. Gate Charge Characteristics

Fig 9. Maximum Safe Operating Area

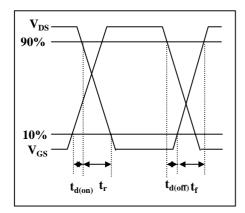


Fig 11. Switching Time Waveform

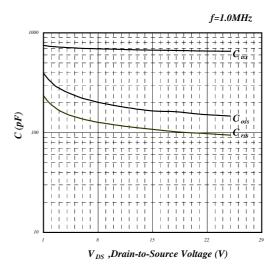


Fig 8. Typical Capacitance Characteristics

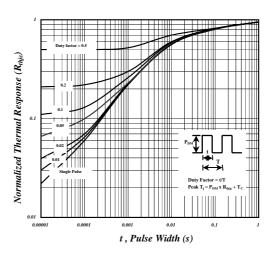


Fig 10. Effective Transient Thermal Impedance

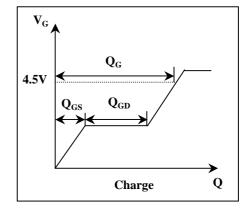
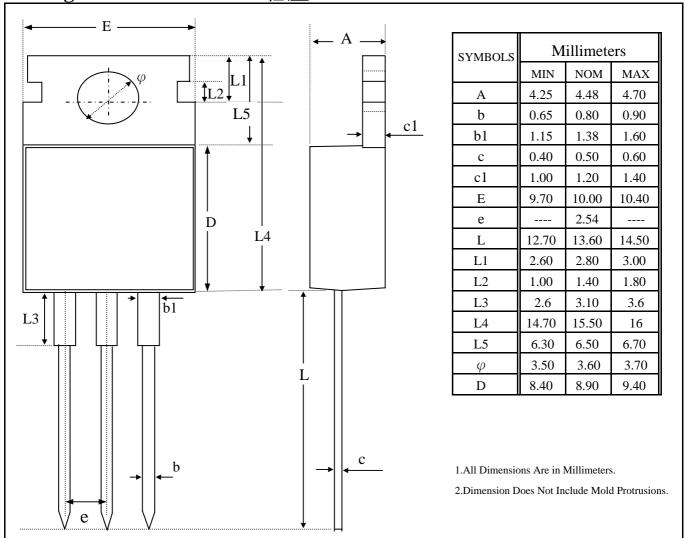
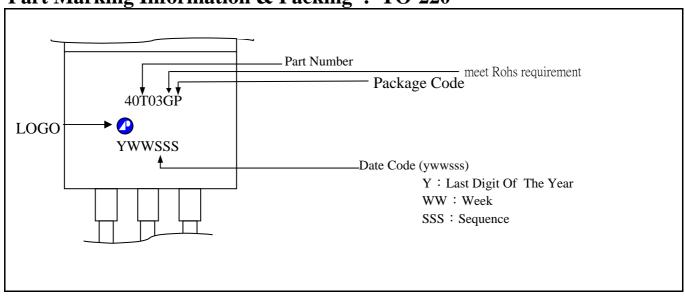


Fig 12. Gate Charge Waveform



富鼎先進電子股份有限公司


ADVANCED POWER ELECTRONICS CORP.

產品尺寸圖(無鉛)

Package Outline: TO-220 低壓

Part Marking Information & Packing: TO-220

文件編號:QWQAD-7701

版 別:13 頁 碼:43