
JuneBug – BoostC - C18 Tutorials : Cooperative Multitasking (1st Draft, 4rd Edit)

Table of Contents
An introduction to cooperative
multitasking on the PIC18F1320
using the BoostC or C18 compiler.. . .1
Introduction.......................................3

What you must know....................3
What you will need........................3
Definitons......................................4

Sequential Execution........................5
Cooperative Multitasking...................5
NAOS Tasks......................................6

Finite State Machines...................6
It's All About Timing...........................7
Multitasking = Tasks + Timing...........8

kTimer's Math................................8
A Second Task..................................9
Writting Complex Tasks...................10

Delaying States...........................10
IO Blocked States10

Tuning the Code..............................11
Apendix A: Source Code.................12

DJ_coop2.c12
multiCompiler.h...........................16

Apendix B: Hardware......................18

Page 1 (DRAFT) Copyright 2008 by Daniel Johnson, BCHS (DRAFT)

 Cooperative MultitaskingCooperative Multitasking
 Daniel Johnson 2008 Daniel Johnson 2008©©

 An introduction to cooperative multitasking on An introduction to cooperative multitasking on
 the PIC18F1320 using the BoostC or C18 compilers. the PIC18F1320 using the BoostC or C18 compilers.

JuneBug – BoostC - C18 Tutorials : Cooperative Multitasking (1st Draft, 4rd Edit)

I

Page 2 (DRAFT) Copyright 2008 by Daniel Johnson, BCHS (DRAFT)

JuneBug – BoostC - C18 Tutorials : Cooperative Multitasking (1st Draft, 4rd Edit)

ntroduction
A single core/CPU computer is sequential. It is only capable of
doing one thing at a time. To do several tasks at the same
time multitasking is used.

On a PC users are free to install and run any number of
programs preemptive multitasking is a better choice. A PC
can not ensure that programs will be well behaved. If one
program or driver has problems the entire system can fail.
In the situation where all code is well behaved cooperative
multitasking can out preform preemptive multitasking. The
cooperative system switches faster and less frequently. A uC
running firmware is that sort of system.
This tutorial explores cooperative multitasking with NAOS.
“Not An OS”. It requires no software other then your C
compiler. NAOS is bare bones bag of techniques and code
snippets designed to illustrates Cooperative Multitasking
principals.
Complete code for this tutorial can be found in the appendix or
at http://www.rocklore.com/3v0. The zip archive contains
MPLAB project files for BoostC and C18. The single source is

written to work with both compilers.
The code snippets provided within the main body of the
tutorial are for illustration purposes and may not compile.

What you must know
To understand this tutorial you need to be familiar with: static
variables and switch statements. Timer0 is used, but it is not
necessary to fully understand how to set it up. may add more

What you will need
A Junebug PIC Laboratory from BlueroomElectronics

or
one of (Microchip ICD2 , PICkit2®) and a breadboard with a
PIC18F1320 processor.

Everyone will need a small speaker and a 47uF capacitor.

Page 3 (DRAFT) Copyright 2008 by Daniel Johnson, BCHS (DRAFT)

NOTICE: You may not modify or sell this document. The
Author retains the copyright. This document may be freely
reproduced and distributed while it remains unaltered.

http://www.blueroomelectronics.com/

JuneBug – BoostC - C18 Tutorials : Cooperative Multitasking (1st Draft, 4rd Edit)
More definitions here if needed

Page 4 (DRAFT) Copyright 2008 by Daniel Johnson, BCHS (DRAFT)

Definitons
Task
There is not set standard that tells us what a task is. Each
OS or programer determines what a task is and what set of
tasks to use. Tasks range from simple to complex. Tasks
may be as simple as blinking an LED or an entire program.

Sequen t ia l Execu t ion
aaaa

Parae l le l Execu t ion
aaaa

Mu l t i task ing
The ability to execute several tasks at the same time, or
give the appearance of doing so.

Coopera t i ve Mul t i task ing
Cooperative multitasking is a method that allows a single
CPU to share its time between two or more tasks. Each
task voluntarily passes control to the next.

P reempt i ve (Time S l i ce) Mu l t i task ing
The ability to execute several tasks at the same time, or
give the appearance of doing so.

F in i te S ta te Mach ine
aaaa

JuneBug – BoostC - C18 Tutorials : Cooperative Multitasking (1st Draft, 4rd Edit)

Sequential Execution
Code 2 is a typical sequential program.
It flashed the LED, then it beeps,
flashed the LED, then it beeps, etc.
We will use this code as the starting
point as we explore cooperative
multitasking.

Cooperative Multitasking
We named the two tasks taskBlink() and taskBeep(). Each
task is like a separate program. They do not take input
parameters or return a value.
The main loop checks for
tasks which are ready to run
and calls them. This allows
tasks to run while others are
delaying or waiting.

Page 5 (DRAFT) Copyright 2008 by Daniel Johnson, BCHS (DRAFT)

// NAOS

// Cooperative Multitasking

void taskBlink(void)

{ ... }

void taskBeep(void)

{ ... }

Void main()

{

 // main loop

 while(1)

 {

 if(BLINK_READY_TO_RUN)

 taskBlink();

 if(BEEP_READY_TO_RUN)

 taskBeep();

 }

}

Code 2:

// Sequential

// with subroutines

void blink(void)

{

 ledBitOn();

 delay_10th(5);

 ledBitOff();

 delay_10th(5);

}

void beep(void);

Void main()

{

 // main loop

 while(1)

 {

 blink();

 beep();

 }

}

Code 1:

JuneBug – BoostC - C18 Tutorials : Cooperative Multitasking (1st Draft, 4rd Edit)

NAOS Tasks
The definitions box provided a definition for task. In short it
said a task can be whatever you need it to be. One can not
be more specific without knowing the multitasking
environment. Now that we have established NAOS as our
environment we can provide additional details.

Finite State Machines
To convert a function to a task we need to view it as a Finite
State Machine or FSM.
A FSM consists of states connected by arrows, or edges, to
indicate how we move between them.

Illustration 1 shows the FSM for Code1 function blink() which
has been repeated in Code 3.

A task may not contain delay code.
When converting a function to a task
each delay statement indicates the
end of a state.
Every delay in the code result in a
edge between two states. The 1st

state contains the code prior to the
delay, the 2nd state contains the code
between the two delays.
Three states describe the workings of
Code 3 blink().The two obvious
states are ON (LED illuminated), and
OFF (LED not illuminated). For
clarity we add the START state.
START has an edge (arrow) to ON, which has an edge to
OFF, which has an edge to ON. It is easy to see why the LED
blinks.
The START state is preformed during program startup. The
first time blink() is called it will enter the ON state.

Page 6 (DRAFT) Copyright 2008 by Daniel Johnson, BCHS (DRAFT)

Illustration 1:

// Sequential

// with subroutines

void blink(void)

{

 ledBitOn(); // ON

 delay_10th(5);

 ledBitOff(); //OFF

 delay_10th(5);

}

Code 3:

JuneBug – BoostC - C18 Tutorials : Cooperative Multitasking (1st Draft, 4rd Edit)
In Code 4 we have rewritten
function blink() to work with
NAOS. It has been renamed
taskBlink() to remind us that
it is a task. We have defined
STATE to mean case for
clarity.
 “if(BLINK_READY_TO_RUN)”
in Code 4 calls taskBlink()
Each time taskBlink() is
called the state corresponding
to the value of seq is executed.
The called state must set the
value of seq, which determines
which state will be entered
next time taskBlink() is called.
taskBlink() must be called
twice to make the LED blink
once.

It's All About Timing
Did you know that chef's use kitchen timers to multitask? After
setting the timer the chef is free to work on another task.
When the timer expires the chef
resumes the task for which the
timer was set.
Code 5 creates and manages
three timers for us. To avoid
confusion with the PICs internal
timers we will call our timers
kTimers, as kitchen timer or
“kount down timer”.
The function interrupt()
runs each time the free running
PIC hardware timer TMR0 rolls
over to zero. The speed at
which TMR0 increments is
governed by the system clock
frequency and the TMR0
prescaler setting.
When interrupt() executes
each kTimer with a value
greater the zero is decreased
by 1. We will discuss
TASK_BLOCKED in another
section.

Page 7 (DRAFT) Copyright 2008 by Daniel Johnson, BCHS (DRAFT)

#define uInt unsigned int
#define byte unsigned int

#define TASK_BLOCKED \
 0xFFFF
#define KMAX 3
#define BLINK 0

uInt kTimer[KMAX];
byte waitForTimer;

// allocate KMAX kTimers
uInt kTimer[KMAX];

// Update kTimers
void interrupt(void)
{
 byte k;
 // clear the IF
 intcon_.TMR0IF = 0;
 for (k=0;k<KMAX;k++)
 {
 // hold at 0
 if((kTimer[k]) &&
 (kTimer[k]!=
 TASK_BLOCKED))
 {
 kTimer[k]--;
 }
 }
 waitForTimer = FALSE;
}
Code 5:

#define STATE case

void taskBlink(void)

{

 static byte seq=0;

 switch (seq)

 {

 STATE 0: // LED_ON

 ledBitOn();

 seq=1;

 break;

 STATE 1: // LED_OFF

 ledBitOff();

 seq=0;

 }

 // missing timer code

 return;

}

Void main()

{

 while(1) // main loop

 {

 if(BLINK_READY_TO_RUN)

 taskBlink();

 if(BEEP_READY_TO_RUN)

 taskBeep();

 while(waitForTimer);

 waitForTimer = TRUE;

 }

}

Code 4:

JuneBug – BoostC - C18 Tutorials : Cooperative Multitasking (1st Draft, 4rd Edit)
Multitasking = Tasks + Timing

In Code 6 we upgrade

taskBlink() to work with
kTimers. We replace

if(BLINK_READY_TO_RUN)

with functional code.
If (!kTimer[BLINK])

In task taskBlink() we set
kTimer[BLINK]=2000

A count of 2000 is equivalent to a
½ second delay. The LED blinks
once per second. See the box
kTimer's Math for details.
We do not use delays in tasks.
But there is one at the end of
main loop. To ensure that timing
is uniform we wait here for the
kTimers to change.
We now have everything need to
run a single task in a multitasking
way. In the next section we will
add a 2nd task.

Page 8 (DRAFT) Copyright 2008 by Daniel Johnson, BCHS (DRAFT)

void taskBlink(void)

{

 static byte seq=0;

 switch (seq)

 {

 state 0:

 ledBitOn();

 seq=1;

 break;

 state 1:

 ledBitOff();

 seq=0;

 }

 kTimer[BLINK]=2000;

 return;

}

Void main()

{

 while(1) // main loop

 {

 if (!kTimer[BLINK])

 taskBlink();

 while(waitForTimer);

 waitForTimer = TRUE;

 }

}

Code 6:

kTimer's Math
Junebug's internal clock is set to 8,000,000.
The input to TMR0 is ¼ clock speed or 2,000,000.
With a prescaler of 2 TMR0 increments 1,000,000 times
a second.
In the 8 bit mode TMR0 overflows 1,000,000/256 or
3,906 times per second.
Each time TMR0 rolls over kTimer[BLINK] decrements.
Each time we visit taskBlink() kTimer[BLINK] is set
to 2000. We do not return to taskBlink() until
kTimer[BLINK] has counted down to 0. Starting from
2000 it takes 0.512 seconds. 2000*(1/3906)
We call the taskBlink() twice per blink which results
in a period of 1 .024 seconds.
If you need a period closer to 1 second you could
reduce initial value of kTImer[Blink]. We know that
each half cycle is .012 seconds too long. TMR0
interrupts evey 3,906 times per second. The inverse of
that is 0.000256 to 3 significant digits. The number of
kTimer counts needed to reduce the time by 0.512
seconds is (.012/.000256) or 47 in round numbers.
2000 less 47 is 1953.
Delays up to 16 seconds are possible.

JuneBug – BoostC - C18 Tutorials : Cooperative Multitasking (1st Draft, 4rd Edit)

A Second Task
We can make a tone by
rapidly pulsing an output bit
connected to a speaker
through a 47uF capacitor.
Two kTimers are required.
Timer kTimer[BEEP] is used
to set the time when the task
will next run.
Timer kTimer[DUR] is the
duration of each tone.
We initialize kTimer[DUR]
each time we generate a
tone. This requires the
additional state INIT.

Illustration 2 and the
accompanying text explain
how tastBeep works.

State INIT sets kTimer[DUR] to 500 and seq to 1.
State ON makes the speaker bit high, kTimer[BEEP] to 10
and seq to 2.
State OFF makes the speaker bit low.
If kTimer[TONE] has not expired kTimer[BEEP]is set to 10 and
seq is set to 1.
If kTimer[TONE] has expired kTimer[BEEP] is set to 1000
which provides a period of silence. Seq is set to 0 which will
cause INIT to start a new tone the next time it is called.

Page 9 (DRAFT) Copyright 2008 by Daniel Johnson, BCHS (DRAFT)

void taskBeep(void)
{
 static byte seq=0;
 switch (seq)
 {
 STATE 0: // state INIT
 kTimer[DUR]=500;
 seq=1;
 break;
 STATE 1: // state ON
 SPEAKER_BIT_ON;
 kTimer[BEEP]=10;
 seq=2;
 break;
 STATE 2: // state OFF
 SPEAKER_BIT_OFF;
 if(kTimer[DUR])
 {
 // another pulse
 kTimer[BEEP]=10;
 seq=1;
 }
 else
 {
 // generate a rest
 kTimer[BEEP]=1000;
 seq=0;
 }
 }
}

Code 7:

Illustration 4:

JuneBug – BoostC - C18 Tutorials : Cooperative Multitasking (1st Draft, 4rd Edit)

Writting Complex Tasks
The simple tasks we have looked at so far resulted in 3 or 4
states. That might lead one to think that a longer more
complex task would result in many more states. This is not
necessarily the case.

Delaying States
Anytime a tasks needs to delay it must set the associated
kTimer and return. This code section is one state.

IO Blocked States
When a task needs input to continue it sets the associated
kTimer to TASK_BLOCKED (0xFFFF) and returns. The timer
code does not decrement a timer with a value of
TASK_BLOCKED. The task is unblocked by an ISR which sets
the associated kTimer to 0. The either the ISR or the
following state can perform the input operation. The setting
Task Variables
Earlier we said each task was like a main() function. An
exception to this is local variables. Local variables declared in
main() persist for the entire life of the program. We never exit
main and the variables never go out of scope.
Task are called repeatedly. Each time a task exits the local
variables go out of scope and become undefined.
To retain value between calls local variables are declared as

static. The seq variable declared to each task is an example.

Page 10 (DRAFT) Copyright 2008 by Daniel Johnson, BCHS (DRAFT)

JuneBug – BoostC - C18 Tutorials : Cooperative Multitasking (1st Draft, 4rd Edit)

Tuning the Code
With cooperative multitasking it is up to you the author to
ensure that your tasks play well together.
The code presented in this tutorials requies just over 1 kTimer
tick to make it through the main loop once.

 xx

Macros
Macros can make the code easier to read but harder
to debug.

TASK

Page 11 (DRAFT) Copyright 2008 by Daniel Johnson, BCHS (DRAFT)

//x=timer y=taskName()

#define TASK(x,y) if(!kTimer[x]) y

while(1) // main loop

{

 // task list

 TASK(BLINK,taskBlink());

 TASK(BEEP,taskBeep());

 // sync

 while(waitForTimer);

 waitForTimer = TRUE;

}

JuneBug – BoostC - C18 Tutorials : Cooperative Multitasking (1st Draft, 4rd Edit)

Apendix A: Source Code

DJ_coop2.c
------------- start file DJ_coop2.c ---------------------------

/*

 * Junebug Demo

 * Purpose: Demonstrate cooporative multitasking

 * 1 Junebug LED + AC coupled speaker on RB1

 *

 * File: DJ_coop2.c

 * Software: BoostC or Microchip C18 compilers

 * Hardware: Junebug

 * or other debugger + breadboarded circuit

 *

 * by Daniel Johnson

 * July 2008

 */

#include "multiCompiler.h" // BoostC & C18

//

// defines & macros

//

#define TRUE !0

#define FALSE 0

#define byte unsigned char

#define uInt unsigned int

#define state case

#define KMAX 3

#define BLINK 0

#define BEEP 1

#define DUR 2

#define TASK_BLOCKED 0xFFFF

#define LED_BIT_HI porta_=0b00000001

#define LED_BIT_LO porta_=0b00000000

#define SPEAKER_BIT_HI portb_=0b00000010

#define SPEAKER_BIT_LO portb_=0b00000000

// allocate KMAX kTimers

uInt kTimer[KMAX];

byte waitForTimer;

Page 12 (DRAFT) Copyright 2008 by Daniel Johnson, BCHS (DRAFT)

JuneBug – BoostC - C18 Tutorials : Cooperative Multitasking (1st Draft, 4rd Edit)
// Update kTimers

void interrupt(void)

{

 byte k;

 // clear the IF

 intcon_.TMR0IF = 0;

 for (k=0;k<KMAX;k++)

 {

 // hold at 0

 if((kTimer[k]) && // stop at zero

 (kTimer[k]!=TASK_BLOCKED))

 {

 kTimer[k]--;

 }

 }

 waitForTimer = FALSE;

}

void taskBlink(void)

{

 static byte seq=0;

 switch (seq)

 {

 state 0:

 LED_BIT_HI;

 seq=1;

 break;

 state 1:

 LED_BIT_LO;

 seq=0;

 }

 // set when to run again

 kTimer[BLINK]=1953;

 return;

}

Page 13 (DRAFT) Copyright 2008 by Daniel Johnson, BCHS (DRAFT)

JuneBug – BoostC - C18 Tutorials : Cooperative Multitasking (1st Draft, 4rd Edit)
void taskBeep(void)

{

 static byte seq=0;

 switch (seq)

 {

 state 0: // state INIT

 kTimer[DUR]=750;

 seq=1;

 break;

 state 1: // state ON

 SPEAKER_BIT_HI;

 kTimer[BEEP]=2; // 1000 Hz

 seq=2;

 break;

 state 2: // state OFF

 SPEAKER_BIT_LO;;

 if(kTimer[DUR]) // another pulse

 {

 kTimer[BEEP]=2;

 seq=1;

 }

 else // generate a rest

 {

 kTimer[BEEP]=750;

 seq=0;

 }

 }

}

void main (void)

{

 byte i;

 // setup

 {

 // speed up the clock to 8MHz, 18F1320

 osccon_.IRCF0=1;

 osccon_.IRCF1=1;

 osccon_.IRCF2=1;

 // configure ports

 adcon1_ = 0xFF; // all digital

 trisb_ = 0xFD; // speaker on RB1

 lata_ = 0;

 trisa_ = 0xBE; // RA0 and RA6 ouputs 0b1011 1110;

 // configure Timer0

 t0con_ = 0xD0;

 intcon_.TMR0IF = 0; // clear the IF

 intcon_.TMR0IE = 1; // enable TMR0 overflow interrupt

 t0con__.TMR0ON = 1; // turn on TMR0

 intcon_.GIE = 1; // enable global interrupts

 // zero out the counters

 for (i=0; i<KMAX;i++)

 {

 kTimer[i] = 0;

 }

 }

Page 14 (DRAFT) Copyright 2008 by Daniel Johnson, BCHS (DRAFT)

JuneBug – BoostC - C18 Tutorials : Cooperative Multitasking (1st Draft, 4rd Edit)
 while(1) // main loop

 {

 if (!kTimer[BLINK])

 {

 taskBlink();

 }

 if (!kTimer[BEEP])

 {

 taskBeep();

 }

 while(waitForTimer);

 waitForTimer = TRUE;

 }

}

------------- end file DJ_coop2.c ---------------------------

Page 15 (DRAFT) Copyright 2008 by Daniel Johnson, BCHS (DRAFT)

JuneBug – BoostC - C18 Tutorials : Cooperative Multitasking (1st Draft, 4rd Edit)

multiCompiler.h
------------- end file multiCompiler.h ---------------------------

/*

 * Junebug Demo

 * Purpose: Demonstrate cooporative multitasking

 *

 * File: multiCompiler.h

 * Software: BoostC or Microchip C18 compilers

 * Hardware: Junebug (or other debugger + breadboarded circuit)

 *

 * These defiles allow the use of more then one compiler.

 * Register names ending with a single _ are byte referances.

 * Register names ending with a dual __ are bit referances.

 *

 * by Daniel Johnson

 * July 2008

 */

#ifdef _BOOSTC

 #define FOUND_COMPILER

 #define lata_ lata

 #define trisa_ trisa

 #define porta_ porta

 #define latb_ latb

 #define trisb_ trisb

 #define portb_ portb

 #define intcon_ intcon

 #define intcon2_ intcon2

 #define osccon_ osccon

 #define t0con_ t0con

 #define t0con__ t0con

 #define adcon1_ adcon1

 #include <system.h>

 #pragma CLOCK_FREQ 8000000

 #pragma DATA _CONFIG1H, _INTIO2_OSC_1H

 #pragma DATA _CONFIG2H, _WDT_OFF_2H

 #pragma DATA _CONFIG3H, _MCLRE_ON_3H

 #pragma DATA _CONFIG4L, _LVP_OFF_4L

#endif

Page 16 (DRAFT) Copyright 2008 by Daniel Johnson, BCHS (DRAFT)

JuneBug – BoostC - C18 Tutorials : Cooperative Multitasking (1st Draft, 4rd Edit)
// MCC18

#ifdef __18CXX

 #define FOUND_COMPILER

 #define lata_ LATA

 #define trisa_ TRISA

 #define porta_ PORTA

 #define latb_ LATB

 #define trisb_ TRISB

 #define portb_ PORTB

 #define intcon_ INTCONbits

 #define intcon2_ INTCON2bits

 #define osccon_ OSCCONbits

 #define t0con__ T0CONbits

 #define t0con_ T0CON

 #define adcon1_ ADCON1

 #pragma config OSC = INTIO2, WDT = OFF, LVP = OFF

 #include <p18f1320.h>

 // code to make C18 interrupt look like BoostC's

 void interrupt(void);

 #pragma code low_vector=0x18

 void low_interrupt (void)

 {

 _asm GOTO interrupt _endasm

 }

 #pragma code

 #pragma interruptlow interrupt

#endif // __18CXX

// in unknown compiler generate error

#ifndef FOUND_COMPILER

 error: unknown compiler

#endif

------------- end file multiCompiler.h ---------------------------

Page 17 (DRAFT) Copyright 2008 by Daniel Johnson, BCHS (DRAFT)

JuneBug – BoostC - C18 Tutorials : Cooperative Multitasking (1st Draft, 4rd Edit)

Apendix B: Hardware
To be added.
Schematic for speaker and LED.
Image of connecting speaker to junebug.

Edit History
2ndEdit: 7/15/2008 Walk Through With Krumlink
3rdEdit: 7/16/2008 Wording and spelling DJ
4d Edit: 7/17/2008 Added section on decomposing tasks DJ

Page 18 (DRAFT) Copyright 2008 by Daniel Johnson, BCHS (DRAFT)

	
	 An introduction to cooperative multitasking on
 the PIC18F1320 using the BoostC or C18 compilers.
	NOTICE: You may not modify or sell this document. The Author retains the copyright. This document may be freely reproduced and distributed while it remains unaltered.
	Definitons
	kTimer's Math

	I
	ntroduction
	What you must know
	What you will need

	Sequential Execution
	Cooperative Multitasking
	NAOS Tasks
	Finite State Machines

	It's All About Timing
	Multitasking = Tasks + Timing
	A Second Task
	Writting Complex Tasks
	Delaying States
	IO Blocked States

	Tuning the Code
	Macros

	Apendix A: Source Code
	DJ_coop2.c
	multiCompiler.h

	Apendix B: Hardware

