Current Transducer LTSR 6-NP

For the electronic measurement of currents : DC, AC, pulsed, mixed, with a galvanic isolation between the primary circuit (high power) and the secondary circuit (electronic circuit).

,	ectrical data		
PN	Primary nominal r.m.s. current	6	A
Р	Primary current, measuring range	0 ± 19.2 ¹⁾	At
PDC	Overload capability	250	A
и _{оит}	Analog output voltage @ I _P	2.5 ±(0.625	• I_P/I_{PN}) ۷
	$I_{\rm p} = 0$	2.5 ²⁾	V
I _{ref}	Voltage reference (internal reference), refout mode	2.5 ³⁾	V
_	Voltage reference (external reference), refin mode	1.9 2.7 ⁴⁾	V
l _s	Number of secondary turns (±0.1 %)	2000	
L	Load resistance	≥2	kΩ
L	Max. capacitive loading	500	pF
ІМ	Internal measuring resistance (±0.5%)	208.33	Ω
CR _™	Thermal drift of $\mathbf{R}_{\mathbf{M}}$	< 50	ppm/K
с	Supply voltage (± 5 %)	5	V
	Current consumption @ $V_c = 5 V$ Typ	28+I _s 5+(V _{out}	
d	R.m.s. voltage for AC isolation test, 50/60 Hz, 1 mn	3	k۷
d e	R.m.s. voltage for partial discharge extinction @ 10 pC		k۷
Y _w	Impulse withstand voltage 1.2/50 µs	>8	k۷
Ac	curacy - Dynamic performance data		
ζ.	Accuracy @ I_{PN} , $T_{A} = 25^{\circ}C$	±0.2	%
	Accuracy with $\mathbf{R}_{IM} @ \mathbf{I}_{PN}$, $\mathbf{T}_{A} = 25^{\circ}C$	±0.7	%
Ľ	Linearity error	< 0.1	%
		Max	
CV	Thermal drift of $V_{OUT}/V_{REF} @ I_P = 0$		
	- 40°C + 85°C	150	
		150	ppm/K
C E _G	Thermal drift of the gain - 40°C + 85°C	50 ⁶⁾	ppm/K ppm/K
0	Thermal drift of the gain -40° C + 85°C Residual voltage @ $I_{p} = 0$,after an overload of 3 x I_{pN}		
0	0	50 ⁶⁾	ppm/K
0	Residual voltage $(\mathbf{\hat{P}}_{P} = 0, after an overload of 3 \times \mathbf{I}_{PN})$	50 ⁶⁾ ±0.5	ppm/K m√
ом	Residual voltage $@I_P = 0$, after an overload of $3 \times I_{PN}$ $5 \times I_{PN}$	50 ⁶⁾ ±0.5 ±2.0	ppm/K m√ m√
ом	Residual voltage $@I_p = 0$,after an overload of $3 \times I_{PN}$ $5 \times I_{PN}$ $10 \times I_{PN}$	50 ⁶⁾ ±0.5 ±2.0 ±2.0	ppm/K m∨ m∨ m∨
ом ССV _{REF}	Residual voltage $\mathbf{\hat{Q}}_{P} = 0$,after an overload of $3 \times \mathbf{I}_{PN}$ $5 \times \mathbf{I}_{PN}$ $10 \times \mathbf{I}_{PN}$ Thermal drift of internal $\mathbf{V}_{REF} \otimes \mathbf{I}_{P} = 0 - 10^{\circ}$ C + 85°C	50^{6} ± 0.5 ± 2.0 ± 2.0 50	ppm/K m∨ m∨ m∨ ppm/K
ом Т СV _{REF}	Residual voltage ($\mathbf{P}_{p} = 0$,after an overload of $3 \times \mathbf{I}_{pN}$ $5 \times \mathbf{I}_{pN}$ $10 \times \mathbf{I}_{pN}$ Thermal drift of internal \mathbf{V}_{REF} ($\mathbf{P}_{P} = 0 - 10^{\circ}$ C + 85°C $- 40^{\circ}$ C 10°C	50 ⁶⁾ ±0.5 ±2.0 ±2.0 50 100	ppm/K m∨ m∨ ppm/K ppm/K
7 _{ом} ГСV _{REF}	Residual voltage (a) $\mathbf{I}_{p} = 0$,after an overload of $3 \times \mathbf{I}_{pN}$ $5 \times \mathbf{I}_{pN}$ $10 \times \mathbf{I}_{pN}$ Thermal drift of internal \mathbf{V}_{REF} (a) $\mathbf{I}_{p} = 0 - 10^{\circ}$ C + 85°C $- 40^{\circ}$ C 10°C Reaction time (a) 10 % of \mathbf{I}_{pN}	50 ⁶⁾ ±0.5 ±2.0 ±2.0 50 100 <100	ppm/K mV mV ppm/K ppm/K ns
ом СV _{REF}	Residual voltage (a) $I_p = 0$, after an overload of $3 \times I_{PN}$ $5 \times I_{PN}$ $10 \times I_{PN}$ Thermal drift of internal V_{REF} (a) $I_p = 0 - 10^{\circ}C + 85^{\circ}C$ $-40^{\circ}C 10^{\circ}C$ Reaction time (a) 10% of I_{PN} Response time (a) 90% of I_{PN}	50 ⁶⁾ ±0.5 ±2.0 ±2.0 50 100 <100 <400 >15 DC100	ppm/K m∨ m∨ ppm/K ppm/K ns
ом СV _{REF}	Residual voltage $\mathbf{W}_{P} = 0$,after an overload of $3 \times \mathbf{I}_{PN}$ $5 \times \mathbf{I}_{PN}$ $10 \times \mathbf{I}_{PN}$ Thermal drift of internal $\mathbf{V}_{REF} \otimes \mathbf{I}_{P} = 0 - 10^{\circ}$ C + 85°C $- 40^{\circ}$ C 10°C Reaction time @ 10 % of \mathbf{I}_{PN} Response time @ 90 % of \mathbf{I}_{PN} di/dt accurately followed	50 ⁶⁾ ±0.5 ±2.0 ±2.0 50 100 <100 <400 >15	ppm/K mV mV ppm/K ppm/K ns ns A/µs
CV _{REF}	Residual voltage $\mathbf{\hat{e}}_{P} = 0$,after an overload of $3 \times \mathbf{I}_{PN}$ $5 \times \mathbf{I}_{PN}$ $10 \times \mathbf{I}_{PN}$ Thermal drift of internal $\mathbf{V}_{REF} \otimes \mathbf{I}_{P} = 0 - 10^{\circ}$ C + 85°C -40° C 10°C Reaction time @ 10 % of \mathbf{I}_{PN} Response time @ 90 % of \mathbf{I}_{PN} di/dt accurately followed Frequency bandwidth (0 0.5 dB)	50 ⁶⁾ ±0.5 ±2.0 ±2.0 50 100 <100 <400 >15 DC100	ppm/K mV mV ppm/K ppm/K ns ns A/µs kHz
rcv _{ref} fi/dt	Residual voltage $\mathbf{\hat{e}}_{P} = 0$,after an overload of $3 \times \mathbf{I}_{PN}$ $5 \times \mathbf{I}_{PN}$ $10 \times \mathbf{I}_{PN}$ Thermal drift of internal $\mathbf{V}_{REF} \otimes \mathbf{I}_{P} = 0 - 10^{\circ}$ C + 85°C $- 40^{\circ}$ C 10°C Reaction time $\otimes 10 \%$ of \mathbf{I}_{PN} Response time $\otimes 90 \%$ of \mathbf{I}_{PN} di/dt accurately followed Frequency bandwidth (0 0.5 dB) (- 0.5 1 dB)	50 ⁶⁾ ±0.5 ±2.0 ±2.0 50 100 <100 <400 >15 DC100	ppm/K mV mV ppm/K ppm/K ns ns A/µs kHz
CV _{REF} a li/dt <u>Ge</u>	Residual voltage $\mathbf{\hat{e}}_{P} = 0$, after an overload of $3 \times \mathbf{I}_{PN}$ $5 \times \mathbf{I}_{PN}$ $10 \times \mathbf{I}_{PN}$ Thermal drift of internal $\mathbf{V}_{REF} \otimes \mathbf{I}_{P} = 0 - 10^{\circ}$ C + 85°C $- 40^{\circ}$ C + 85°C $- 40^{\circ}$ C 10°C Reaction time $\otimes 10 \%$ of \mathbf{I}_{PN} Response time $\otimes 90 \%$ of \mathbf{I}_{PN} di/dt accurately followed Frequency bandwidth (0 0.5 dB) (- 0.5 1 dB)	50 ⁶⁾ ±0.5 ±2.0 ±2.0 50 100 <100 <400 >15 DC100 DC200	ppm/K mV mV ppm/K ppm/K ns A/µs kHz kHz
CV _{REF} a li/dt Ge	Residual voltage $\mathbf{\hat{e}}_{P} = 0$, after an overload of $3 \times \mathbf{I}_{PN}$ $5 \times \mathbf{I}_{PN}$ $10 \times \mathbf{I}_{PN}$ Thermal drift of internal $\mathbf{V}_{REF} \otimes \mathbf{I}_{P} = 0 - 10^{\circ}$ C + 85°C $- 40^{\circ}$ C 10°C Reaction time $\otimes 10 \%$ of \mathbf{I}_{PN} Response time $\otimes 90 \%$ of \mathbf{I}_{PN} di/dt accurately followed Frequency bandwidth (0 0.5 dB) (-0.5 1 dB) eneral data Ambient operating temperature	50 ⁶⁾ ±0.5 ±2.0 ±2.0 50 100 <100 <400 >15 DC100 DC200	ppm/K mV mV ppm/K ppm/K ns A/µs kHz kHz
r ji/dt	Residual voltage $\mathbf{@} \mathbf{I}_{p} = 0$, after an overload of $3 \times \mathbf{I}_{pN}$ $5 \times \mathbf{I}_{pN}$ $10 \times \mathbf{I}_{pN}$ Thermal drift of internal $\mathbf{V}_{REF} \mathbf{@} \mathbf{I}_{p} = 0 - 10^{\circ} \text{C} + 85^{\circ} \text{C}$ $-40^{\circ} \text{C} 10^{\circ} \text{C}$ Reaction time $\mathbf{@} 10 \%$ of \mathbf{I}_{PN} Response time $\mathbf{@} 90 \%$ of \mathbf{I}_{PN} di/dt accurately followed Frequency bandwidth $(0 0.5 \text{ dB})$ (-0.5 1 dB) eneral data Ambient operating temperature Ambient storage temperature	50 ⁶⁾ ±0.5 ±2.0 ±2.0 50 100 <100 <400 >15 DC 100 DC 200 - 40 + 85 - 40 + 100	ppm/K mV mV ppm/K ppm/K ns A/µs kHz kHz kHz c C °C
rcv _{REF} fra si/dt Ge r _A	Residual voltage $\mathbf{@} \mathbf{I}_{p} = 0$, after an overload of $3 \times \mathbf{I}_{pN}$ $5 \times \mathbf{I}_{pN}$ $10 \times \mathbf{I}_{pN}$ Thermal drift of internal $\mathbf{V}_{REF} \mathbf{@} \mathbf{I}_{p} = 0 - 10^{\circ} \text{C} + 85^{\circ} \text{C}$ $-40^{\circ} \text{C} 10^{\circ} \text{C}$ Reaction time $\mathbf{@} 10 \%$ of \mathbf{I}_{pN} Response time $\mathbf{@} 90 \%$ of \mathbf{I}_{pN} di/dt accurately followed Frequency bandwidth $(0 0.5 \text{ dB})$ (-0.5 1 dB) eneral data Ambient operating temperature Ambient storage temperature Insulating material group	50 ⁶⁾ ±0.5 ±2.0 ±2.0 50 100 <100 <400 >15 DC100 DC200 -40+85 -40+100 III a	ppm/K m V m V ppm/K ppm/K ns A/µs kHz kHz cC °C

 $I_{PN} = 6 A$

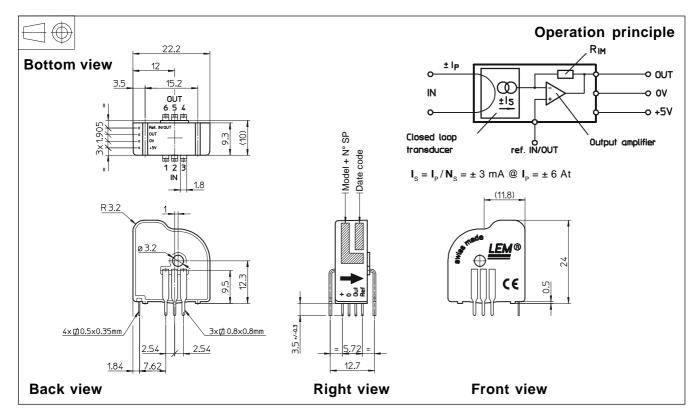
Features

- Closed loop (compensated) multirange current transducer using the Hall effect
- Unipolar voltage supply
- Insulated plastic case recognized according to UL 94-V0
- Compact design for PCB mounting
- Incorporated measuring resistance
- Extended measuring range
- Access to the internal voltage reference
- Possibility to feed the transducer reference from external supply.

Advantages

- Excellent accuracy
- Very good linearity
- Very low temperature drift
- Optimized response time
- Wide frequency bandwidth
- No insertion losses
- High immunity to external interference
- Current overload capability.

Applications


- AC variable speed drives and servo motor drives
- Static converters for DC motor drives
- Battery supplied applications
- Uninterruptible Power Supplies (UPS)
- Switched Mode Power Supplies(SMPS)
- Power supplies for welding applications.

Copyrightprotected.

040518/4

Notes : see overleaf.

Dimensions LTSR 6-NP (in mm. 1 mm = 0.0394 inch)

Notes

- ¹⁾ Only in refout mode or with external REF less than 2.525 V and greater than 2.475 V. For external REF out of these limits see leaflet.
- ²⁾ V_{OUT} is linked to V_{REF} , by conception the difference between these two nodes for $I_p = 0$ is maximum ± 25 mV, 2.475 V < V_{OUT} < 2.525 V.
- ³⁾ In Refout mode at $\mathbf{T}_{A} = 25^{\circ}$ C, 2.475 V< \mathbf{V}_{REF} < 2.525 V. The minimal impedance loading the ref pin should be > 220 k Ω .
 - Internal impedance = 600 Ω .
- For most applications you need to buffer this output to feed it into an ADC for example.
- $^{\rm 4)}$ To overdrive the REF (1.9 V .. 2.7 V) max. \pm 1 mA is needed.
- ⁵⁾ Please see the operation principle on the other side.
- $^{6)}$ Only due to TCR $_{IM}$.
- ⁷⁾ Specification according to IEC 1000-4-8 not adhered to in DC, error according to two axes 1.5% instead of 1%.

Mechanical characteristics

- General tolerance
- Fastening & connection of primary Recommended PCB hole
- Fastening & connection of secondary Recommended PCB hole
- Additional primary through-hole

Remarks

+ $\bm{V}_{_{OUT}}$ is positive when $\bm{I}_{_{P}}$ flows from terminals 1, 2, 3 to terminals 6, 5, 4

± 0.2 mm

1.3 mm

0.8 mm

Ø 3.2 mm

6 pins 0.8 x 0.8 mm

4 pins 0.5 x 0.35 mm

• For the EMC, the acceptance criteria are available on request.

LEM reserves the right to carry out modifications on its transducers, in order to improve them, without previous notice.