Electrical Engineering Technology

EET 107

Introduction to Circuit Analysis

35

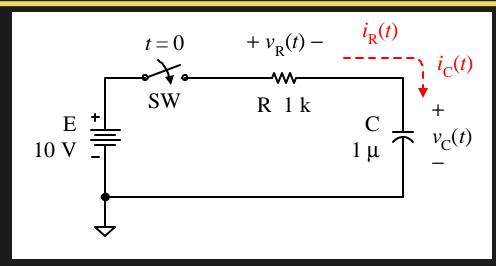
Professor Robert Herrick

Electrical Engineering Technology

Switched RC Transient

- **♦** Inverse Solution
- Multiple RC Thévenin Model

RC Circuit - Sudden DC Change



$$t = 0^{-}$$

t = 0

 $0 < t < 5\tau$

 $t=5\tau$

 $t \rightarrow \infty$

Just before switching

INITIAL - sudden dc change

TRANSIENT

Capacitor 99% charged

STEADY STATE – final dc

Purdue University ©

EET 107 - 35

Introduction to Circuit Analysis

RC Transient DC Circuit

$$E \stackrel{t=0}{=} \stackrel{+V_{R}}{\stackrel{}{=}} \stackrel{+}{\stackrel{}{=}} \stackrel{W}{\stackrel{}{=}} \stackrel{+}{\stackrel{}{=}} \stackrel{V_{C}}{\stackrel{}{=}} \stackrel{+}{\stackrel{}{=}} \stackrel{V_{C}}{\stackrel{}{=}} \stackrel{+}{\stackrel{}{=}} \stackrel{V_{C}}{\stackrel{}{=}} \stackrel{+}{\stackrel{}{=}} \stackrel{Init}{\stackrel{}{=}} = initial (t = 0)$$

$$ss = steady state (t = \infty)$$

init = initial (t = 0)
ss = steady state (t =
$$\infty$$
)

$$v_{\rm C}(t)$$
 $i_{\rm C}(t)$ $v_{\rm R}(t)$ $i_{\rm R}(t)$

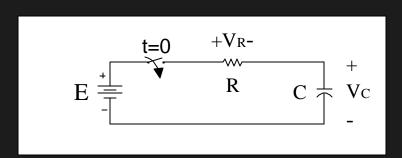
$$v_{x}(t) = V_{SS} + (V_{init} - V_{SS}) e^{-t/\tau}$$

$$i_{x}(t) = Iss + (Iinit - Iss) e^{-t/\tau}$$

RC Transient DC Circuit

Analyze circuit and find:

- T
- Initial value
- Steady state value



Then substitute:

$$v_{x}(t) = V_{SS} + (V_{init} - V_{SS}) e^{-t/\tau}$$

RC Circuit – uncharged capacitor

$$v_{\rm C}(t) = V_{\rm SS} + (V_{\rm init} - V_{\rm SS}) e^{-t/t}$$

Example:
$$t = RC = 10ms$$

uncharged $Vinit = 0V$
 $Vss = 10V$

$$v_{\rm C}(t) = 10{\rm V} + (0{\rm V} - 10{\rm V}) {\rm e}^{-t/10{\rm ms}}$$

$$v_{\rm C}(t) = 10{\rm V} - 10{\rm V} {\rm e}^{-t/10{\rm ms}}$$

RC Circuit – charged capacitor

$$v_{\rm C}(t) = V_{\rm SS} + (V_{\rm init} - V_{\rm SS}) e^{-t/t}$$

Example:
$$t = RC = 10ms$$

charged $Vinit = 3V$
 $Vss = 10V$

$$v_{\rm C}(t) = 10{\rm V} + (3{\rm V} - 10{\rm V}) {\rm e}^{-t/10{\rm ms}}$$

$$v_{\rm C}(t) = 10{\rm V} - 7{\rm V} \,{\rm e}^{-t/10{\rm ms}}$$

- Establish capacitor voltage before switch thrown
- 2. Evaluate time constant after switch thrown
- 3. *Initial* model of *capacitor* and evaluate circuit
- 4. **Steady state** model of **capacitor** and evaluate circuit
- 5. Apply universal RC equations
- 6. Sketch resulting equations

Capacitor Models – Know These

CAPACITOR - stores *VOLTAGE*

INITIALLY - <u>Un</u>charged cap

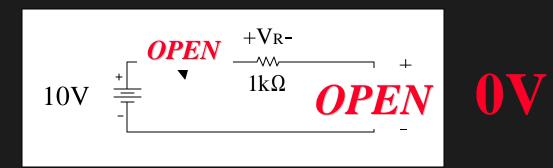
$$0$$
V \longrightarrow SHORT

INITIALLY - <u>charged</u> cap

Eo inital voltage

STEADY STATE - fully charged cap

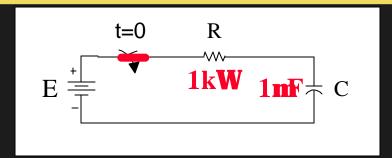
1. Example - before switch closed



$$t=0$$

- switch open for a long time is assumed
- steady state capacitor $\rightarrow OPEN$
- $V_{\rm C} = 0 \rm V$

2. Example - time constant



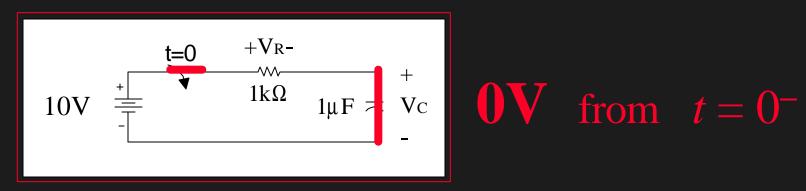
Switch closed

RC Time Constant when switch closed

- $\tau = RC = 1k\Omega \times 1\mu F = 1ms$ Cap 63% charged after switch closed
- $5\tau = 5 \times 1 \text{ms} = 5 \text{ms}$

Cap 99.3% charged after switch closed

3. Example - initial circuit



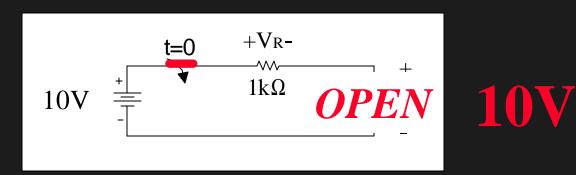
OV from
$$t = 0^-$$

$$t = 0$$

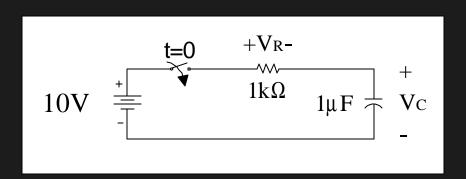
 \bullet $V_{\rm C} = 0 \rm V$

- uncharged cap model
- Capacitor acts like a *SHORT*
- $V_{\rm R} = 10 \text{V}$ and $I_{\rm R} = I_{\rm C} = 10 \text{mA}$
- Purdue University ©

4. Example - steady state circuit



- capacitor acts like an open: model as OPEN
- $V_C = 10V$ capacitor fully charged
- \bullet $V_{R} = 0V$
- $\bullet I_C = I_R = 0 \text{mA}$



Capacitor Voltage

t = 1ms Vinit = 0V Vss = 10V

Complete capacitor voltage expression

$$v_C(t) = Vss + (Vinit - Vss) e^{-t/\tau}$$

$$v_C(t) = 10V + (0V - 10V) e^{-t/1ms}$$

$$v_{\rm C}(t) = 10{\rm V} - 10{\rm V} {\rm e}^{-t/1{\rm ms}}$$

$$v_C(t) = 10V - 10V e^{-t/1ms}$$

Alternate form by factoring out 10V

$$v_{\rm C}(t) = 10 \text{V} (1 - e^{-t/1 \text{ms}})$$

Evaluating capacitor voltage - t in units of ms

$$v_C(t) = 10V - 10V e^{-t/1ms}$$

$$v_{\rm C}(0) = 10V - 10V e^{-0/1ms} = 0V$$

$$v_{\rm C}(1{\rm ms}) = 10{\rm V} - 10{\rm V} \,{\rm e}^{-1{\rm ms}/1{\rm ms}} = 6.32{\rm V}$$

$$v_{\rm C}(2{\rm ms}) = 10{\rm V} - 10{\rm V} \,{\rm e}^{-2{\rm ms}/1{\rm ms}} = 8.65{\rm V}$$

• • •

$$v_{\rm C}$$
 (5ms) = 10V - 10V e^{-5ms/1ms} = 9.93V

Evaluating capacitor voltage - t in units of t

$$v_{\rm C}(t) = 10 {\rm V} - 10 {\rm V} \, {\rm e}^{-t/\tau}$$
 $v_{\rm C}(0) = 10 {\rm V} - 10 {\rm V} \, {\rm e}^{-0/\tau} = \underline{0} {\rm V}$
 $v_{\rm C}(1\tau) = 10 {\rm V} - 10 {\rm V} \, {\rm e}^{-1\tau/\tau} = \underline{6.32 {\rm V}}$
 $v_{\rm C}(2\tau) = 10 {\rm V} - 10 {\rm V} \, {\rm e}^{-2\tau/\tau} = \underline{8.65 {\rm V}}$
 $v_{\rm C}(5\tau) = 10 {\rm V} - 10 {\rm V} \, {\rm e}^{-5\tau/\tau} = \underline{9.93 {\rm V}}$

6. Example - capacitor voltage sketch

$$v_{\rm C}(t) = 10 \text{V} - 10 \text{V} \, \text{e}^{-t/\text{t}}$$

t = 1ms Vinit = 0V Vss = 10V

t	$v_{\rm C}(t)$
0	0.0V

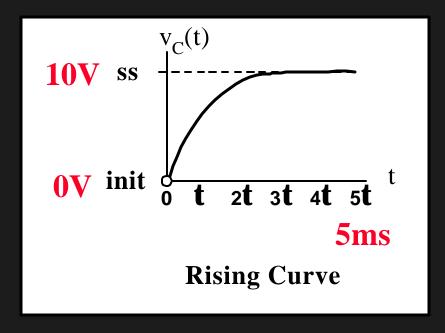
 1τ 1ms 6.3V

 2τ 2ms 8.7V

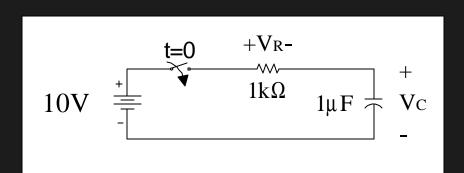
 3τ 3ms 9.5V

 4τ 4ms 9.8V

5τ 5ms 9.9V



5. Example - capacitor current equation



Capacitor current

t = 1ms

Iinit = 10mA

Iss = 0mA

Complete cap current expression

$$i_C(t) = Iss + (Iinit - Iss) e^{-t/\tau}$$

$$i_{\rm C}(t) = 0{\rm mA} + (10{\rm mA} - 0{\rm mA}) e^{-t/1{\rm ms}}$$

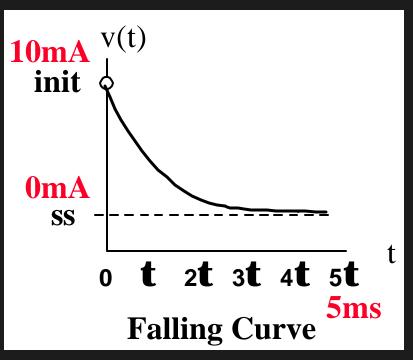
$$i_C(t) = 10 \text{mA e}^{-t/1 \text{ms}}$$

6. Example - capacitor current sketch

$$i_{\rm C}(t) = 10 {\rm mA e}^{-t/t}$$

t = 1ms *I*init = 10mA
Iss = 0mA

<u>t</u>		$\underline{i_{\mathrm{C}}\left(t\right)}$
0		10.0mA
1τ	1ms	3.7mA
2τ	2ms	1.3mA
3τ	3ms	0.5mA
4τ	4ms	0.2mA
5τ	5ms	0.1mA

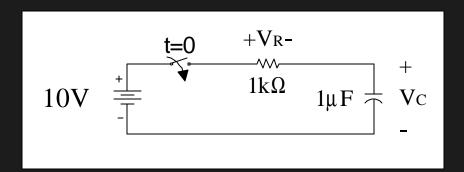


Purdue University ©

EET 107 - 35

Introduction to Circuit Analysis

5. Example - resistor current equation



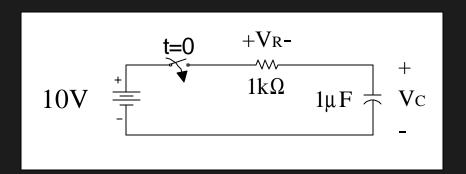
Resistor current

Note: quick solution, <u>same</u> as the capacitor current

$$i_{\rm R}(t) = i_{\rm C}(t) = 10 {\rm mA e}^{-t/1 {\rm ms}}$$

Same sketch

5. Example - resistor voltage equation



Resistor voltage

t = 1ms

Vinit = 10V

Vss = 0V

Quick solution: Ohm's Law

$$i_{\rm R}(t) = 10 \text{mA e}^{-t/1 \text{ms}}$$

 $v_{\rm R}(t) = 1 \text{k}\Omega \times 10 \text{mA e}^{-t/1 \text{ms}}$

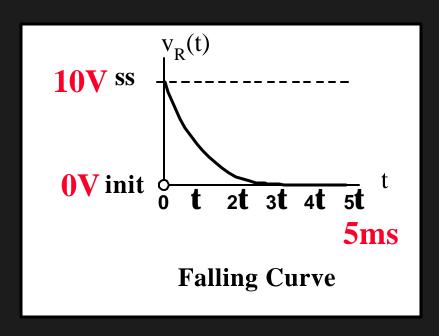
$$v_{\rm R}(t) = 10 {\rm V e}^{-t/1 {\rm ms}}$$

6. Example - resistor voltage sketch

$$v_{\rm R}(t) = 10 {\rm V e}^{-t/t}$$

t = 1ms Vinit = 10V Vss = 0V

<u>t</u>		$V_{\rm R}(t)$
0		10.0V
1τ	1ms	3.7V
2τ	2ms	1.3V
3τ	3ms	0.5V
4τ	4ms	0.2V
5τ	5ms	0 1V



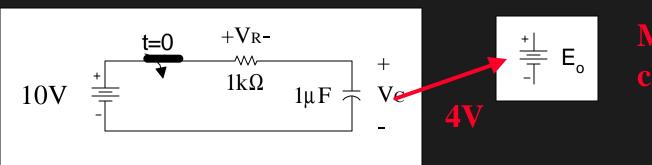
Resistor Sketches

Resistor voltage and current sketch must have the **same** shape.

$$v(t) = R i(t)$$

Related by a constant!

What if Charged Cap - initial circuit



Model if charged cap

t = 0 Intial Circuit

- What if cap was previously charged to 4V
- Initial model of cap would be a 4V supply
- $V_{\rm R} = 10V 4V = 6V$
- $I_{\rm R} = I_{\rm C} = 6\text{V}/1\text{k}\Omega = 6\text{mA}$

Electrical Engineering Technology

- Switched RC Transient
- **Inverse Solution**
 - Multiple RC Thévenin Model

$$v_{\rm C}(t) = V_{\rm SS} + (V_{\rm init} - V_{\rm SS}) e^{-t/t}$$

Example
$$t = 10m$$

$$Vinit = -4V$$

$$Vss = 10V$$

$$v_{\rm C}(t) = 10{\rm V} + (-4{\rm V} - 10{\rm V}) e^{-t/10{\rm ms}}$$

$$v_{\rm C}(t) = 10{\rm V} - 14{\rm V} {\rm e}^{-t/10{\rm ms}}$$

Evaluate
$$v(t)$$
 at $t = 18 \mu s$

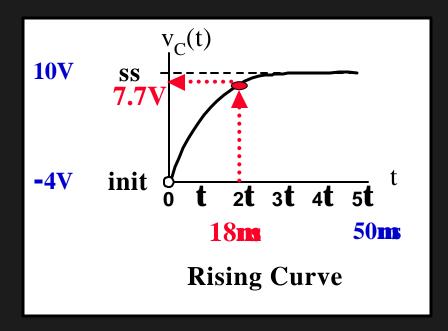
Plug in a *time* and find a *voltage*.

$$v_{\rm C}(18m) = 10V - 14V e^{-18m/10\mu s}$$

$$v_{\rm C}(18m) = 7.686V$$

RC Circuit - capacitor voltage sketch

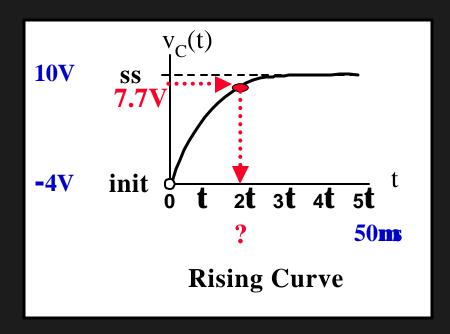
At
$$t = 18$$
ms, $V_C = 7.686$ V



$$t = 10 \text{ns}$$

RC Circuit - capacitor voltage sketch

Given a voltage, find the corresponding time.



$$t = 10ms$$

How much time "t" does it take to charge to a particular voltage?

For example, how much time "t" is needed to charge the capacitor to 3V?

$$v_{\rm C}(t) = \underline{3V}$$
$$t = ?$$

$$3V = 10V - 14V e^{-t/10\mu s}$$

$$-7V = -14V e^{-t/10\mu s}$$

$$0.5 = e^{-t/10\mu s}$$

Ln
$$(0.5)$$
 = Ln $(e^{-t/10\mu s})$ exponent pops out

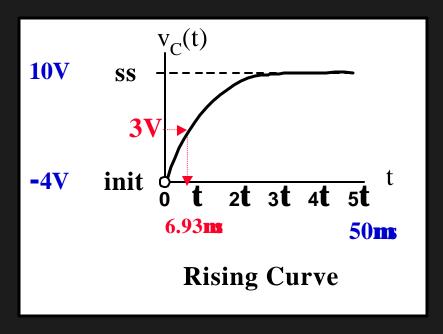
$$-0.693 = -t / 10 \mu s$$

$$t = 0.693 \times 10 \mu s = 6.93 m$$

RC Circuit - capacitor voltage sketch

How much time is required to charge the capacitor to 3V?

$$t = 6.93$$
ms

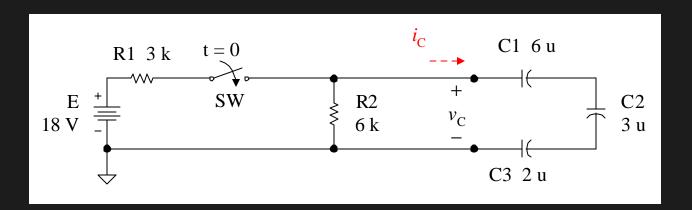


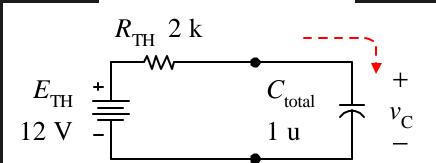
t = 10ms

Electrical Engineering Technology

- Switched RC Transient
- **♦** Inverse Solution

Multiple RC – simplify to Thévenin

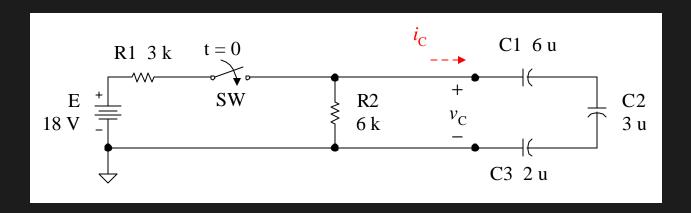




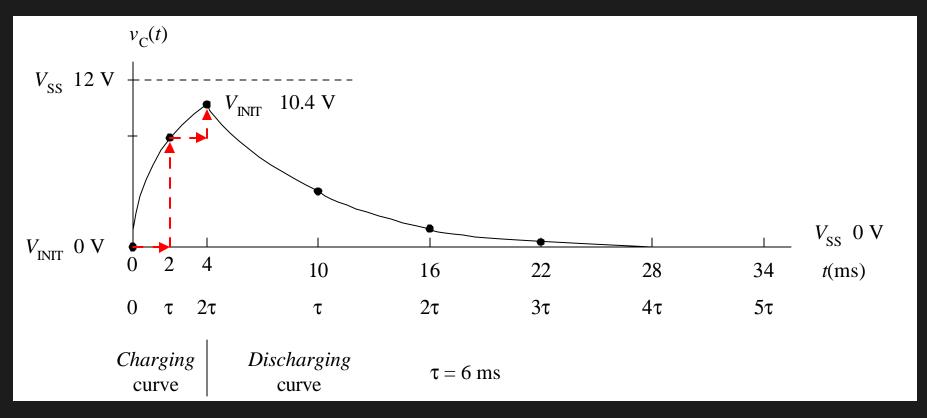
Purdue University ©

EET 107 - 35

Introduction to Circuit Analysis



- Uncharged capacitors before switch closed
- Close switch for 4 ms then reopened
- Draw $v_{\rm C}(t)$ and $i_{\rm C}(t)$



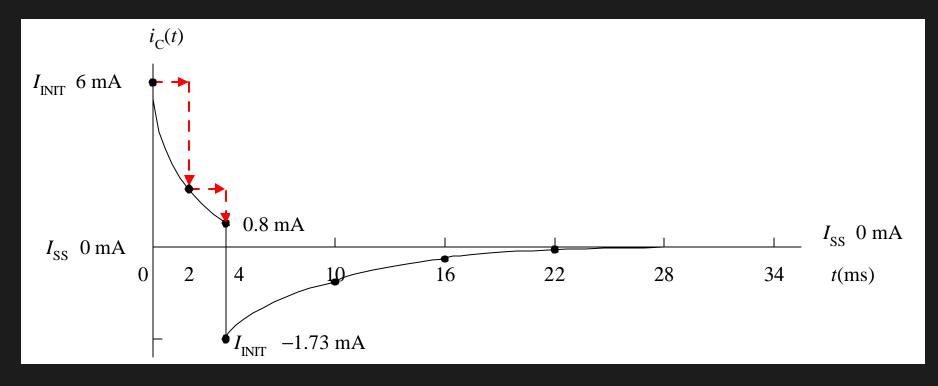
t = 2 ms

t = 6 ms

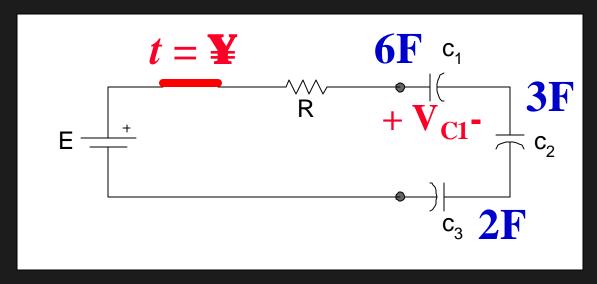
Purdue University ©

EET 107 - 35

Introduction to Circuit Analysis



t = 2 ms t = 6 ms



Larger C

Smaller $X_{\mathbf{C}}$

Less voltage drop

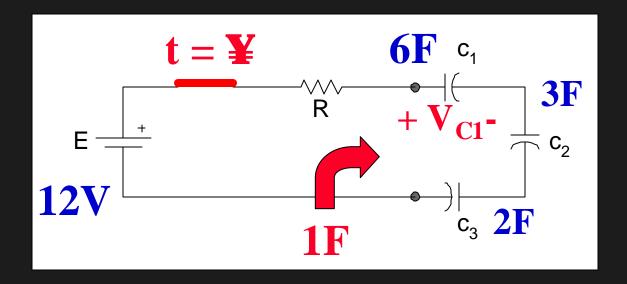
6F drops <u>least</u> voltage

Purdue University ©

EET 107 - 35

Introduction to Circuit Analysis

Capacitance - VDR in Steady State



 $R \rightarrow 1/C$

VDR steady state

$$V_{C1} = \frac{C_T}{C_1}E = \frac{1F}{6F} \cdot 12V = 2V$$

Electrical Engineering Technology

- Switched RC Transient
- **♦** Inverse Solution
- Multiple RC Thévenin Model