
Basic Electricity and
Magnetism 3910

Current Flow in Ohmic Resistors

The general problem

Most materials are characterized by a bulk parameter called resistivity, sym-
bolized by ρ. The resistivity can be thought of as a relationship between fields.
If ~J is the current density at some point in the material and ~E is the electric
field vector at that point, for many materials the two are related by “Ohm’s
Law,”

~J = ~E/ρ . (1)

The resistivity ρ is an intrinsic property of materials that indicates how easily
current can be pushed through the material by an electric field. In common
engineering units, ρ is measured in ohm·m or ohm·cm.

Ohm’s law is not a fundamental law, like any of Maxwell’s laws, but rather
is a description of the behavior of certain materials called “ohmic materials.” It
is analogous to the way in which Hooke’s law for springs gives an approximate
description of the way in which certain materials (elastic materials) respond to
applied stresses. The theoretical picture underlying Eq. (1) is based on the idea
that current flow in ohmic materials is a diffusive motion of electrons driven
by electric fields inside the materials. There are nonohmic materials in which
Eq. (1) does not apply because ~J has a very nonlinear dependence on ~E. In

air, for instance, the current flow is negligible until ~E builds up to a strength
of ∼ 108 volts/m. When this happens a spark jumps through the air, and ~J is
momentarily large. There are other materials (“anisotropic materials”), such as

graphite, in which |~J| is proportional to |~E| but in which ~J is not generally in

the same direction as ~E, due to direction dependent properties of the material.
Figure 1 shows a rectilinear solid made of a uniform ohmic material. Let us

suppose that the two ends of this solid have plates, called electrodes, that can
be approximated as perfectly conducting. A resistive material with electrodes
connected to it is called a resistor. The ends of the resistor must be electrical
equipotentials since they are perfectly conducting electrodes. If a voltage dif-
ference ∆V is applied to the two electrodes, say be means of the attached wires
shown, the electrical field ~E will then be uniform inside the solid and hence the
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Figure 1: Uniform current flow in a constant cross section resistor.

current density ~J will be uniform. The total current flow I through the resistor
will be the magnitude of ~J multiplied by the area of the ends. Thus we have

I = J × Area = E × Area/ρ .

But the voltage difference ∆V will simply be E times the length of the resistor
so that E = ∆V/length. The resulting relationship of current and voltage
difference is usually written as

I = ∆V/R , (2)

where R, the “resistance” of the resistor is

R = ρ × length/Area. (3)

Note that Eq. (2) which, like Eq. (1) is also called Ohm’s law, states that for
a given resistor the current through the resistor is proportional to the voltage
across it.

In circuits, elements that are used for the specific purpose of adding resis-
tance are often cylindrical (carbon resistors). In circuit diagrams, resistors are
usually pictured as sawtoothed circuit elements, like the resistors with resistance
R1 and R2 shown in Fig. 2. The two basic connections are also shown in that
figure. For a series connection the total equivalent resistance is R1 + R1 and is
greater than the resistance of either resistor; for a parallel connection the total
resistance is R1R2/(R1+R1) and is smaller than the resistance of either resistor.
We assume that you know the rules for finding the resistance of combinations of
resistors, and that you know that these rules are based on two simple ideas: (i)
In a series combinations, the total voltage drop is the sum of the voltage drop
across each resistor, and the same current flows through both resistors. (ii) In
a parallel combination, the voltage drop across both resistors is the same, and
the total current is the sum of the individual currents through each resistor.

The idea of a resistor circuit element is based on an assumption. It is as-
sumed that the resistor is surrounded by material (air, say) that effectively has
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Figure 2: Series and parallel combinations of resistor circuit elements.

Figure 3: A resistor with a constant cross sectional area.

an infinite resistance, so that current flows, from electrode to electrode, only
through the resistor. For Eq. (2) to be correct, i.e. , for it to give the correct
value for the proportionality constant in Ohm’s law, something else is needed:
The current flow must be uniform. It should be intuitively clear that this will be
the case if the resistor has constant cross section and has perfectly conducting
electrodes parallel to a cross section. The resistor need not be rectilinear, but
may look, e.g. , like the object in Fig. 3.

What happens if the cross section is not constant? Figure 4 shows such a re-
sistor, a truncated cone made of an ohmic material. We assume that the flat end
faces of the cone are perfectly conducting electrodes. In many elementary text-
books students are told that the problem can be solved by imagining the cone
to be sliced into infinitesimal disks with flat faces. The infinitesimal resistance
for such a disk is given by Eq. (3). The contributions from each infinitesimal
disk are then added (integrated) to get the total resistance.

This turns out to be incorrect; it gives too low a value for the resistance.
The flow of current through the cone is not the same as current flow through
the disks. Consider the disk faces. In the slice-and-add model, current flows
perpendicular to the disk faces. This would correspond to current flowing par-
allel to the axis of the cone. But it is impossible for current to flow parallel to
the axis everywhere inside the cone.
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Figure 4: A resistor with a varying cross sectional area.
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Figure 5: Incorrect (left) and correct (right) current flows in a resistor with the
shape of a truncated cone.

If the current everywhere were flowing parallel to the axis, as shown on the
left hand side of Fig. 5, the current would be flowing into the resistor through
the curved side of the cone! It is clear that ~J must be parallel to the side
of the resistor. Since the ~E is in the same direction as ~J, it follows that ~E
must also be parallel to the side of the resistor. Of course, there is another
requirement that these fields must satisfy. Since the flat faces of the truncated
cone, the electrodes, are equipotentials, the ~E field, and hence the ~J field, must
be perpendicular to the electrodes. The right hand side of Fig. 5 shows the
correct pattern of ~J and/or ~E. Notice that the two conditions are incompatible
at the edge of the electrodes, where the sides meet the electrodes at an obtuse
anlge. As a result the fields must be zero at the edge.

We have the two surface requirements for the fields, but we need to know
what additional physics determines the fields inside. This turns out to follow
from the fact that the divergence of ~J gives the rate at which charge density is
decreasing. If we are working with a steady state problem, charge density cannot
change, and hence the divergence of ~J must vanish, or equivalently (since ~J and
~E are related by a consant),

~∇ · ~E = 0 . (4)

Since we can relate ~E to the electrostatic potential by ~E = −~∇Φ, and therefore
Eq. (4) is equivalent to

∇2Φ = 0 . (5)
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Figure 6: A true 3D problem in computiting resistance.

One more piece of information must be given to the mathematics: The difference
in the electrostatic potential Φ from one electrode to the other is the voltage
applied across the resistor.

This completes the mathematical description of the problem. We summarize
it here:

1. The Laplace equation ∇2Φ = 0 must be solved for the electrostatic po-
tential Φ.

2. The values of Φ at the electrodes must correspond to the voltages applied
to the electrodes.

3. The direction of ~∇Φ at the sides must be parallel to the sides.

It appears that we have left out the requirement that the direction of ~∇Φ

at the electrodes must be perpendicular to the electrodes. But this is built
into requirement 2 above; if the electrodes are equipotentials, i.e. , surfaces of
constant Φ, then ~∇Φ is automatically perpendicular to the electrodes.

It is intuitively obvious that for the constant cross section resistors of Figs. 1
and 3 the solution to the problem is that corresponding to ~∇Φ being a con-
stant vector (constant magnitude, constant direction) inside the resistor. For
resistors without constant cross section, like the truncated cone in Fig. 4, our
mathematical problem for Φ must in general be solved with numerical meth-
ods on a computer. Fortunately, computational methods of solution are highly
developed. Equations like Laplace’s equation are of great importance in many
technological applications, and much effort has gone into the development of nu-
merical methods and convenient interfaces. The package “QuickField” can solve
problems such as that of the truncated cone. The cone problem, however, has
the simplifying feature that it has an axis of symmetry. Though the cone itself is
3 dimensional, the problem of analyzing fields inside it is 2D (two dimensional).
In cylindrical coordinates {r, ϕ, z}, for example, the potential Φ would depend
only on r and z; finding it would be a 2D problem. Such 2D problems, in the
early 21st century, can be solved with reasonable accuracy even on medium size
PCs. By contrast, a truly 3D, like that in Fig. 6 requires a powerful workstation
for a solution with reasonable accuracy.
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Figure 7: A “flat” resistor.

Two dimensional resistors

We will concentrate here on a class of 2D resistors here, a class we will call
“flat” resistors. Figure 7 shows an example. These resistors have parallel faces
that we (somewhat arbitrarily) shall call the top and bottom, and the thickness
of the resistors, between the top and bottom faces, is constant. (In Fig. 7 the
top and bottom faces are parallel to the xy plane.) The “sides” of the resistors
are perpendicular to the top and bottom, but may have any relationship to
other sides. Two of the sides have perfect conducting electrodes attached.

One of the reasons for our interest in flat resistors is that they present us with
2D problems. The current flow has no z component, in our figure. It follows that
Φ will be a function only of x and y. A second reason we are interested, is that
such resistors are easy to fabricate. By depositing ohmic materials as a layer,
we can make flat resistors with shapes of our choice, and get an opportunity to
compare measurement and computation. There is a very important third reason:
Flat resistors are very common in technological applications, this is especially
true if the thickness of these resistors is small. Such thin layer resistors can
be used, for instance, as a model for the conducting traces on a printed circuit
board. Although such traces are made of a material of low resistivity (generally
copper) the traces are very thin, and hence their resistance is not negligible.

Usually when we deal with flat resistors, the thickness is fixed, and we char-
acterize the resistance not with the bulk resistivity ρ, but with ρ divided by
the thickness. We will call this quantity the “surface resistivity” ρsurf of the
material. Since ρ has units of ohms×length, ρsurf has units of ohms.

The use of ρsurf allows us to focus attention on the shape of the top (or
identical bottom) of a thin layer resistor. For a rectangular shape, like that in
Fig. 8, the resistance is simply

R = ρsurfL/W . (6)
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Figure 8: A rectangular 2D resistor.

This is, in fact, just a special case of Eq. (3). For a square we have that R = ρsurf .
The unit of surface resistivity is, in fact, sometimes called not “ohms” but
“ohms per square” to help distinguish this intrinsic property of surfaces from
the resistance, measured in ohms, of a particular 2D resistor.

For shapes other than rectangular, closed-form solutions in general do not
exist. The mathematical problem of solving is precisely that of the three steps
given following Eq. (5). But, as explained above, the problems are now 2D. The
electric field does not vary from top to bottom.

Problems

θ

electrodes

W
1

W
2

LProblem 1 A 2D resistor has a shape bounded by two circular
arcs, of arc length W1 and W1. The radial distance between
the two arcs is L. The electrode edges are the circular arcs. It
should be clear that the exact resistance between the two elec-
trodes is of the form R = ρsurfL/f(W1, W2), where f(W1, W2)
is some function of W1 and W2. Find f(W1, W2) and show ex-
plicitly that f → W1 in the limit that the fractional difference
between W1 and W2 is small.

L

a
b

electrodes

Problem 2 The trapezoidal 2D resistor shown in the figure has
surface resistivity ρsurf and dimensions shown. The resistor is
symmetric; it looks the same if flipped about a horizontal axis.
The resistance cannot be found with an elementary method.
One way of getting an approximation is to slice the trapezoid
into differential slices (analogous to the slicing of the cone in
Fig. 4). Calculate the resistance of the slices added in series
and give the result as a function of ρsurf , L, a, and b. Is this
approximation an overestimate or an underestimate of the true
resistance?
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(a)

(b)

Problem 3 In Problem 1 an exact solution was found
for a circular 2D resistor. A resistor of this type can be
inscribed inside the trapezoidal resistor of Problem 2, as
shown in part (a) of the figure. A resistor of this type
can can also be used to surround the trapezoidal resistor
of Problem 2, as shown in part (b) of the figure. Use the
resistance of these circular resistors as approximations
to the resistance of the trapezoidal resistor. Explain how
this gives an upper bound and a lower bound on the resis-
tance. In the particular case 2a = b = L compare these
approximations with the “slice and add” approximation
of Problem 2.
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Computing 2D Resistance

As previously explained, the problem of computing resistance is approached
by specifying the voltage on the two electrodes and then solving the following
mathematical problem:

1. The Laplace equation ∇2Φ = 0 must be solved for the electrostatic po-
tential Φ.

2. The values of Φ at the electrodes must correspond to the voltages applied
to the electrodes.

3. The direction of ~∇Φ at the sides must be parallel to the sides.

Once the potential Φ is found, the electric field ~E = − ~∇Φ is straightforward to
calculate, and the current density ~J = ~E/ρ follows immediately.

J
surf

n

normal component
      of J

surf

Figure 9: Finding the current in a 2D flow.

In the case of 2D current flow it is useful to introduce a surface density
of current ~Jsurf , defined to be the current density multiplied by the (uniform)
thickness of the layer through which the current passes. Since the units of
current density are current per unit area (amps/m2, or amps/cm2), the units of
~Jsurf are current per unit length (amps/m, or amps/cm). The surface current
density is related to the electric field by

~Jsurf = ~E/ρ × thickness = ~E/ρsurf . (7)

The total current flowing through the resistor is the current passing any surface
through the resistor. For a 2D resistor this can be thought of as the surface
current through any curve across the resistor. The dashed line in Fig. 9 is
such a curve. The unit vector ~n that is normal to the curve is shown in the
detailed close up. The component of ~Jsurf parallel to the curve does not carry
current across the curve. Only the normal component ~Jsurf · ~n does, and this
component therefore tells us what the current, per unit curve length is at that
point on the curve. To get the total current passing through the curve we add all
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the contributions from each element, of length d` of the curve, the summation
of these contributions is the integral

I =

∫
~Jsurf · ~n d` . (8)

The integral extends over that portion of the curve that is inside the resistor.
(Since ~Jsurf = 0 outside the resistor, the integral can just as well be taken to
extend over the entire curve.)

finite difference finite element

Figure 10: Computational schemes

There are two basic classes of schemes for numerically computing a solution
to Laplaces equation (and other partial differential equations). In the “finite
difference” approach, a grid of points is defined in the region to be solved, as
pictured on the left in Fig. 10. Rather than try to compute the function Φ(x, y),
we try to find an approximation to the values of Φ only on these grid points. The
differential equation is replaced by an approximation involving the difference of
Φ values on nearby points, and the differences ∆x, and ∆y, separating the
grid points. These finite (rather than infinitesimal) differences give the finite
difference method its name. The method leads to a very large set of linear
equations for the large set of unknowns.

In the finite difference method the region to be solved is divided into a large
number of small polygons. In the illustration on the right side of Fig. 10 the
interior of the resistor is divided into triangles. A simple form of the solution
inside each polygon is assumed, often just a linear form a + bx + cy, with
undertermined coefficients in each polygon. The coefficients are then adjusted
to satisfy approximations to the boundary conditions of the problem, to have
the functions continuous and smooth at the edges of the polygons, and to give
the best (in some sense) approximation to a solution of the original problem.
The equations for finding the coefficients turn out to be linear, but they are a
very large set of equations, since there are many unknown coefficients.

Finite difference methods are much easier to program for a specific problem.
Finite element methods usually use packaged software. The big advantage of
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finite element methods is the ease of building in boundary conditions. In both
finite difference and finite element methods there is a need to solve a very large
set of linear equations, typically much too large for a straightforward method.
Much of the recent progress in solving partial differential equations has involved
improvements in handling this set of equations. There are, however, other
methods besides finite difference and finite element that can be very powerful in
the right applications. You may come across the names “multigrid methods” and
“spectral methods” in connection with numerical solutions of partial differential
equations that arise in technological applications.

In this course we will be using the software package QuickField to solve a
range of 2D problems involving the solution of partial differential equations.
QuickField uses a finite element method and building a mesh of polygons will
be an obvious step in your solution. One of the options in using QuickField

to solve a problem is that of specifying the density of mesh polygons, rather
than having QuickField do it automatically. As you probably would guess, a
larger number of polygons results in a greater accuracy of solution, but a longer
time for solution. QuickField not only solves the problem for you but provides
a GUI with a wide range of tools for analyzing the solution. In setting up a 2D
current flow problem you’ll need to specify the voltage on the electrodes and to
specify that there is no current flowing across the sides of the 2D resistor. In
analyzing the solution you’ll use the contour menu to construct a curve through
the current flow like that in Fig. 9. The integral values option will then tell
you the current flowing across your contour. From the voltage difference you
have specified, and the current flowing you can immediately infer the resistance
of your 2D resistor model. One interesting feature of current flow problems in
QuickField is the option to choose anisotropic resistance, i.e. , different surface
resistivity in different directions. This feature will be exploited in the problems
below.

The PHYCS 3910 notes “A Quick Guide to QuickField” give you more details
on the procedures to follow in using QuickField.

Problems x y = 2  3

x -y = 12 2

x -y = 92 2

x y = -2  3

elec-
trodes

Problem 1 A 2D resistor has a surface resistivity ρsurf =100ohms. It
has electrodes, as shown at the hyperbolas x2 − y2 = 1 and x2 − y2 =
1, where all length units are cm. The sides of the resistor are the
hyperbolas xy = ±2

√
3. (i) Give a rough estimate of the resistance

between the electrodes. (ii) Suppose the left electrode is at +100volt

and the right electrode is at +900volts. Find an expression for ~E
at any x, y position inside the 2D resistor. (Hint: Φ = k(x2 − y2)
solves Laplace’s equation.) (iii) Sketch (reasonably accurately) the
equipoltentials in the resistor, and the lines of current flow. (A line of

current flow is a curve to which ~Jsurf is tangent.) (iv) Find ~Jsurf at
every point along the line x = 3. (v) Find the total current through
the line x = 3 and infer the exact resistance of the 2D resistor.
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Problem 2 The problem of a trapezoidal resistor of length L and sides of length
a and b was introduced in Problem 2 of the previous section. For dimensions
2a = b = L, and surface resistivity ρsurf =100ohms find the resistance as
accurately as possible using QuickField. Compare your answer to the estimates
derived in Problems 2 and 3 of the previous sections. Is your QuickField answer
between the upper and lower bounds you found?

Problem 3 A 2D resistor has electrodes attached to opposing faces of
a square of a thin resistive layer. If the electrodes were the same length
as the edges the resistance would be R = ρsurf , but the electrodes in
this problem cover only the middle half of the opposing edges. The
resistance can be written as R = kρsurf , where k is some number.
(i) Will k be larger or smaller than unity? (ii) Sketch the current flow
in the resistor. (iii) Make a rough estimate of the resistance. (iv) Using
QuickField compute the resistance.

Problem 4 Figure 4 illustrates the “slice-and-add” method of (incorrectly)
finding the resistance of a truncated cone. (i) Apply this method to the problem
of a cone for which the length L (i.e. , the distance between electrodes) is the
same as the radius of the larger electrode, and twice the radius of the smaller
electrode. Express the answer in terms of ρ and L. (ii)Use the axially symmetric
capability of QuickField to compute the resistance of the same truncated cone,
and compare your answer with that of part (i).

Laboratory/Modelling Problem You will be given a glass slide containing
a trapezoidal 2D resistor, and a rectangular resistor. (i) Find the surface resis-
tivity ρsurf by making measurements on the rectangular resistor. (ii) Measure
the resistance of the trapezoidal resistor. (iii) Make measurements of the dimen-
sions of your trapezoidal resistor. (iv) Using the dimensions you have measured
find the resistance of the trapezoidal resistor by modeling it with QuickField.
Write a comparison of your measured value and your modeled value, including
estimates such as those of the previous problem. (v) For the same QuickField

model display the intensity of the current density. Print out a picture of the
display and add it to your report. (v) Put a thin coat of temperature sensitive
LCD paint over your trapezoidal resistor. When it has dried, adjust a current
through it so that you get as wide a range of colors as possible. Using the dig-
ital camera take a picture of the temperature profile and print out the result.
Add the printout to your report and give a discussion of the comparison of the
current density picture and the temperature profile.
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