Using Your
AdaptoS12C
Microcontroller Module

www.technologicalarts.com

Revison Ob

DISCLAIMER

While we have made every effort to avoid errors in the preparation of this manual, we cannot be
held responsible for any misinformation or omissions that may have occurred. Furthermore, as
manufacturer of this product, Technological Arts’ sole liability and the buyer’s exclusive remedy
shall be refund of the amount paid or repair or replacement of the product, at the manufacturer’s
option. The manufacturer disclaims all other warranties, expressed or implied, including but not
limited to implied warranties of merchantability and fitness for a particular purpose, with respect
to the product and accompanying written material, hardware, and firmware. In no event shall the
manufacturer or its suppliers be held liable for any damages whatsoever (including, without
limitation, damages for loss of business profits, business interruption, loss of business
information, or any other loss) arising out of the use of, or inability to use, the product, even if the
manufacturer has been advised of the possibility of such damages. The product is not designed,
intended, nor authorized for use in applications in which the failure of the product could bring
about a scenario in which personal injury or death may occur. If used in any such unintended or
unauthorized application, the manufacturer and its suppliers shall be held harmless against

all claims, even if any such claim alleges that the manufacturer was negligent regarding the
design or implementation of the product.

Product features, availability, and prices may change without notice.

All trademarks used in this document are the property of their respective holders.

A

ESD WARNING

This product, like all microcontroller products, uses semiconductors that can be damaged by
electrostatic discharge (ESD). When handling, care must be taken so that the devices are
not damaged. Damage due to inappropriate handling is not covered by the warranty.

The following precautions must be taken:

e Do not open the protective conductive packaging until you have read the following, and are
at an approved anti-static work station.

e Use a conductive wrist strap attached to a good earth ground.

e If working on a prototyping board, use a soldering iron or station that is marked as ESD-
safe. Always disconnect the microcontroller from the prototyping board when it is being
worked on.

¢ Always discharge yourself by touching a grounded bare metal surface or approved anti-
static mat before picking up an ESD-sensitive electronic component.

e Use an approved anti-static mat to cover your work surface.

{ 1 INTRODUCTION]

1.1 WELCOME!

With Adapt9S12C, you are now ready to explore the power and versatility of
Freescale’s advanced 16-bit microcontroller family! Whether you're new to Freescale
microcontrollers or you've used some of the earlier ones (such as 68HC05, 68HC11, or
68HC12), you’'ll be impressed with the well thought-out design and implementation of the
HCS12 family. Adapt9S12C gives you the opportunity to explore the 9512C family’s
potential at a very affordable price! Add to that the proven advantages of it's popular DIP
format, and you’ll see why you picked a real winner!

1.2 SUPPORT

To help you get the most out of this product, and to make the experience as
enjoyable and productive as possible, we've put together a comprehensive website, loaded
with resources, support, and applications information. If you experience any difficulties, or
need help with your application, the World Wide Web is arguably the most valuable re-
source available to you. There you'll find the latest information, software, and trouble-
shooting help, as well as discussion groups where you can network with people around the
globe to get the answers you need. So if you still need help, or have questions after
reading this manual and perusing the contents of the included CD, visit our Support Forum:
www.technologicalarts.net and tap into the collective! Also, be sure to join Freescale’s
16-bit Microcontroller discussion group, at http://forums.freescale.com/freescale/
board?board.id=16BITCOMM

1.3 PRODUCT CONFIGURATION

Adapt9S12C includes all the essential support circuitry that 90% of applications use

(e.g. crystal, voltage regulator, reset switch, RS232 interface), without tying up port pins
with costly interface circuits that most users won't need (e.g. clock/calendar chip, serial
EEPROM). It is form-factor compatible with our original 68HC11 product, the immensely-
popular Adaptll, and comes with the legendary “SB"” connector option (a Technological
Arts innovation), enabling it to be plugged directly into a solderless breadboard-- just like
a big chip. In fact, it is offered with more than a dozen connector options, making a vast
range of configurations possible when coupled with the complete selection of prototyping
cards, backplanes, and application cards that are available from Technological Arts. From
MCU evaluation, training, product development, hobby or school projects, and semi-custom
solutions all the way to being embedded right into a commercial product or system,
Adapt9S12C is a very cost-effective product. The board is currently offered in two ver-
sions, which differ only in memory sizes:

e Adapt9S12C32 has 32K Flash (program memory) and 2K RAM (data memory)

e Adapt9S12C128 has 128K Flash (program memory) and 4K RAM (data memory)

1.4 ADAPT9S12C VS. TRADITIONAL EVALUATION BOARDS

Most available evaluation and development systems tend to be too expensive and
bulky for embedding into a real application, so they lie on a shelf gathering dust once
you've reached a certain point in the learning curve. Or maybe you think up some clever
way to hack it apart and make it fit inside your robot or product prototype. Even then, the
prototyping area provided is often limited, and does not lend itself to re-usability. And
what if you burn out a chip the night before the contest or product demo? What a mess to
repair or re-design!

Adapt9S12C solves all of these problems and more! Since it brings out practically

1

Standard Connector Options (use NC for “no connector”)

(2] 0 [2] 0 (2]} 0 (2]} (2] 0 0 0
o o o o o o o o o o o
3 3 3 3 3 3 3 3 3 3 3
el © h-} o T o © b=} o R} he]
o o o o o o o o o o o
3 3 3 3 3 3 3 3 3 3 3
o o o o o o o [} o [} o
3 3 3 3 3 3 3 3 3 3 3
S] S] S]] S 3]]
@, @ @ ©, @, 14 1% 14 14 ©, 14
o Q. Q. Q. Q. Q. Q. Q. Q. Q. Q.
o [o () [o () [} o () o
/ z . 2 - 4
nn | | | |
»0.30 «

all I/0 lines and control signals to a standard 50-pin interface connector (H1) and 10-pin
auxilliary connector (H2), it is modular and re-usable. Interface cards can be unplugged
and upgraded, or the whole system can be re-configured at the last minute. What's more,
the program memory can be erased and re-programmed in seconds, right in place. The
multitude of connector options enables you to use the module in whatever way best suits
your application-- board-stacking, end-to-end (planar), backplane, ribbon cables, etc. A
full range of accessories including backplanes, prototyping cards, and application-specific
cards is available, and more accessories are being developed all the time. Make a point to
visit our website from time to time, just to see what's new.

When used with the RA1 connector option, a prototyping card, experimentor card, demo
card, or motor driver card can be plugged directly onto the I/O connector, forming a planar
arrangement. Advantages of this configuration are easy access to all I/O pins for probing
and measurement, and easy prototyping of your interface circuits. What’s more, the
detachable nature of the cards means that you can easily replace them with other cards.
You can build up a collection of different application circuits, and use them all with the
same microcontroller board. This is especially advantageous in an educational environ-
ment, where the student can progress from simple to more complex applications through-
out a semester, or from one course to the next-- perhaps even incorporating the board into
a final project. In fact, where budgets are tight, different students can share the same
microcontroller module, and plug in their own interface cards when it’s their turn to use it.

1.5 USING ADAPT9S12C WITH SOLDERLESS BREADBOARDS

When used with the SB connector option (or optional adapter, #ADHDR50-F), the
module will easily plug vertically into any standard solderless breadboard. The
resulting footprint is equivalent to a 50-pin narrow DIP, and has a similar
pin-numbering sequence (ie. wraps around the end, from pin 25 to 26). Plug
the adapter into your breadboard, wire up your circuits, as required, and then
plug the module into the adapter. If you want to access signals on H2 as well, \
you'll need a 10-pin ribbon cable and a breadboard adapter (#ADIDC10-M) to
bring those signals down to the breadboard. Note that pin-numbering of the 10-pin
connector is like a typical ribbon cable connector, with odd-numbered pins on one row and
even-numbered pins on the other.

Another popular breadboarding approach is a planar configuration utilizing a card
mounted with a solderless “experimentor” board that plugs into H1. This card
(#AD12EXPH1-FRA1) features a 50-pin dual-row receptacle (“"F”-style connector) next to
the breadboard section, giving you easy access to all of the I/0O signals. To build your
circuit, it's just a matter of plugging lengths of ordinary #22 hookup wire between the
signals on the receptacle and the places you need them on the breadboard.

1.6 RESIDENT DEBUG/MONITOR

Residing in a 2K pro- iz -0
tected block of on-chip flash Fie_telp
memory is Freescale’s versatile CGNNECTED

Serial Monitor program. When
used with uBugl12 (a free
Windows application created by
Technological Arts), you can
display and edit memory and Display Area
registers, erase and program
flash, set breakpoints, and do
instruction tracing. Flip a switch
on the board to Run mode, and
your program runs automatically
from Flash, following reset or
powerup. See Chapter 2 and
Appendix A for details on Moritor Active [Unknow Error |COM 2C01£T?M_Area 4
uBugl?2 and the resident moni-

tor.

1.7 COMMUNICATIONS

An RS-232C serial interface port connector (9-pin D-sub) is included, enabling
communication with a PC com port, or any other device which has an RS-232 serial port,
via a standard 9-pin serial port extension cable. The RS-232 channel is implemented via
the SCI of the MCU, and when the board is reset in Load mode, the resident Serial Monitor
uses this port to communicate with an appropriate program running on your PC (e.g.
UBug12, CodeWarrior, or NoICE12). In Run mode, the RS-232 port is available for your
application.

The module includes physical layer support for Controller Area Network (CAN), with
CANHI, GROUND, and CANLO signals brought out to J3. A mating 3-pin Molex connector is
available from Technological Arts (#HPCT3). A 120-Ohm terminating resistor is included on
the board, and can be activated by shorting link W4.

In passing, it should be mentioned that the MCU also supports Serial Peripheral Inter-
face (SPI). Since this is a logic-level protocol, meant for local communications among
peripheral chips, no transceivers are required nor are they provided. Commonly used SPI
chips and modules include: serial memory (e.g. EEPROM, Flash), temperature controllers,
clock/calendar chips, DACs, MP3 decoders, etc.

See the 9512C datasheets for details on all of these subsystems.

1.9 JUMPER OPTIONS

The user has a choice of selecting PJ6 and PJ7 or PSO and PS1 to be brought out to the
I/O connector (H1). The selection is implemented via jumper block JB2. By bringing out
PSO and PS1, the SCI can be accessed at the logic level, and is useful for such applications
as GPS and serial LCD interfacing.

MCU Mode Select jumper block JB3 provides access to the microcontroller’'s MODA and
MODB pins, for implementing single-chip mode, narrow expanded mode, and wide ex-
panded mode. The default setting is Single-chip Mode (MODA=MODB=0). Refer to the
9S12C data sheet for details on implementing other modes.

{2 GETTING STARTED)

Be sure to read and follow the Safe Handling Procedures outlined inside the manual’s front cover
Perform a visual check of the hardware for any damage during transit

Connect the RS232 port to a com port of a personal computer, using the cable supplied

Locate and install the Windows application called uBug12, included on the CD (also on our website)

Launch uBug12

Activate the serial port connection by entering CON x (where x is the comport you are using; usually 1 or 2)
Set switch SW2 to the LOAD position

Connect the supplied power source to J1

uBug12 will display a short message, followed by its command prompt

The Module is now ready to accept your commands (see Appendix B for a full list of uBug12 commands)

® & & 6 6 6 O o 0o

To download one of the supplied example programs into flash and execute it, follow these steps:
Type fbulk <enter> at the uBug12 prompt to erase any existing program

Type fload <enter>

From the displayed file browser, select one of the example program’s output files (.s19 or .s28 file)
After loading has finished, move SW2 to the RUN postion, and press the Reset button (SW1)

The program will run

If you wish to debug the program, move SW2 back to the LOAD position and press Reset

The uBug12 prompt will appear

Use uBug12 commands to debug your code

* & & 6 6 O o o

21 POWER OPTIONS

A DC power supply is included with most bundle configurations. It is the recom-
mended power source when you're starting out. If for some reason it’s not convenient (eg.
you don’t want an extension cord trailing around behind your robot :>), there are a couple
of alternatives:

Option 1: connect a DC voltage of 6 Volts or more (maximum: 24 VDC) via the
external power connector, J1. Your DC supply does not need to be regulated, but it should
be capable of supplying at least 100 mA (more if you will be using a BDM pod, or you're
driving other circuits as well). If your supply will also be driving motors, make sure to
isolate it before feeding it into the module (to protect it from electrical noise generated by
the motor coils). You can do this by putting inductors (10uH, nominal) in series with both
the + and - leads. Preferably, use the red & black power wire provided (order code:
PCJ1-8). Red is positive, and black is negative (ground). CAUTION! Make sure you have
the polarity correct!

Option 2: supply regulated 5VDC (or 3V if using 3V mode) via the appropriate pins
on the module. See module pinout diagram in Appendix C for the Vcc and GROUND pins to
use. CAUTION! Leave J1 unconnected. Double-check your connections before applying
power! If you are applying 3V, be sure to read the notes on 3-Volt operation in chapter 3.

2.2 DEMO PROGRAMS

We've included a few demo programs on the CD-ROM (also available from the
product webpage) to give you a starting point. There are some examples in C and some in
assembler. The source code is included, so you're free to modify them all you want! Visit
our Support Library and the product webpage (once there, click on the Resources tab) for
more examples, application notes, and links to third-party sites.

4

23 USING THE DEBUG/MONITOR

uBugl2 is a Windows-based graphical user interface (GUI) for Freescale’s HCS12 Serial
Monitor program. It aims to emulate the most common debug/monitor commands, and to
provide an easy-to-use interface. The following paragraphs will help you get started with
uBugl2.

Install uBug12 from the included CD simply by unzipping it onto your C: drive. Launch
the application, and then apply power to the module. A sign-on message will appear in the
uBug12 window. A full list of uBug12 commands is provided in Appendix A.

The first step after you have launched uBugl2 is to activate the connection to the
target device (ie. The MCU module) which is running the Serial Monitor Program. This is
done via the CON command, which takes one parameter: the number of the comport to
which the device is connected.

eg. CON 2

In this example, uBug12 will open a connection to the target hardware attached to
com2. Then you can choose any of the uBugl12 commands.

One of the most useful commands is FLOAD. This command lets you load an S-record
file into the target device flash. If you are loading a file containing linear S2 records, just
type FLOAD, if you are using a banked S2, such as those generated by ImageCraft’'s ICC12,
Metrowerks Codewarrior, and other tools, use FLOAD ;B. Once you have typed the FLOAD
command followed by the ENTER key, a dialog box will appear and you will be able to
browse to the file you want to load. If you have omitted the ;B parameter, only files with
an S2 extension will be displayed for loading. Before loading another file, though, make
sure to erase flash, using the FBULK command.

One nice feature you’ll discover is command line history. Use the UP and DOWN arrows
on your keyboard to recall previously typed commands. You can then edit them, as
needed, before hitting <ENTER>.

24 NEW TO FREESCALE MICROCONTROLLERS?

If you've come from an 8051, PIC, or other background (or have never used micro-
controllers before), you should get up to speed on Freescale MCUs by reading Understand-
ing Small Microcontrollers, found on the CD-ROM. Written by Freescale’s Jim Sibigtroth,
principal design engineer of the HC12 family, this excellent book uses an earlier MCU
(68HCO5) to introduce you to the basic concepts and design philosophy upon which the
9S12 was built. You should also make sure to have a copy of the MC68HC11 Reference
Manual, since it contains detailed descriptions and examples for many of the hardware
subsystems.

25 MIGRATING FROM 68HC11

If you are already experienced with the 68HC11 family of microcontrollers, writing
programs for the HCS12 family will not present a big challenge (don’t throw away your
HC11 Reference Manual-- the trusty “pink book”). In fact, you can use your existing
68HC11 assembly code and re-assemble it to run on the CPU12 core, but there are a few
things to keep in mind.

Assembler syntax. You may need to edit your source file to conform to the syntax
and directives of the HC12 assembler you’'ll be using. There are several assemblers
available (e.g. AS12, MiniIDE, IASM12, MCUez), and each has its own syntax to be aware
of.

Register Block. Instead of $1000, the register block default location is $0000

5

through $03FF, and there are a few hundred

registers! You'll need to locate the relevant l HCS12 CPU

registers for the subsystems you plan to use, and

make sure they are properly configured. Sl 32 KB Flash
RAM location. Following reset, the mem- SPI

ory map configuration has the register block 2 KB Flash

overlapping RAM, starting at $0000, with regis- . .

ters taking priority, so the first 1K bytes of RAM 10-key Wakeup 3 -

are not usable. In order to free up all of the IRQ Ports §

RAM. the monitor program re-maps RAM to start E

at $3800 through $3FFF (via the RAMinit regis- DBG12 Timer

ter). This means you'll need to initialize the 16-bit. &-ch

Stack Pointer to $4000 (on the HCS12, the stack ‘ 1xCAN PWM

pointer points to the address following the top of 20A/B 8-hit, 6-ch / 16-hit, 3-ch

the stack). —

High-speed Bus. The default bus speed is
half the crystal frequency of 8 MHz, so it is 4 MHz. If you enable the PLL, it will be even
higher (up to 24 MHz). This will mean changing some initialization values for control
registers and revising delay constants if you are using any software timing loops in your old
68HC11 code.

I/O Ports. The digital I/O ports on the HCS12 are more flexible than ever. Besides
selecting the direction of each port pin via a Data Direction Register, there are registers
controlling output drive level (standard and reduced), internal pullup and pulldown resis-
tors, and output logic polarity (ie. true or inverted logic).

COP Watchdog. On most flavours of HC11, this could be enabled via a bit in the
non-volatile CONFIG register. On the HC12, it is dynamic, and automatically enabled
following reset. Therefore you have to choose whether you're going to service it, or disable
it.

Write-Once Registers. On the HCS12, there is no 64-cycle startup window in which
you have to write all the protected registers. Instead, the HC12 implements a WriteOnce
rule on sensitive registers. What this means is that, following reset, you have one chance
to write them, then they become “Read Only”. The advantage of this is that you have
more control of when you alter these register values. To take advantage of this safeguard,
you should initialize all the registers that are crucial, even if the default values are what
you want. That way, if your code runs amok, or there are any glitches which try to change
register values, they will be protected.

There are many more differences, and you should make sure to read through the
Freescale App Note (AN1284) that details the new instructions and addressing modes of the
68HC12, explaining differences from the 68HC11.

2.6 MIGRATING FROM THE 68HC912

You gain a lot more speed, memory, and flexibility, but you have a lot more regis-
ters to think about, and many of their addresses have changed. Gone are the Vfp genera-
tor and flash voltage switch, since the new flash technology uses 5V, and has built-in
self-timed algorithms for program and erase functions. But your s-records must contain an
even number of bytes, and begin on an even address boundary if you're going to “burn”
them into flash. Some assemblers will generate this format for you but others, such as the
included AS12, don't. In the latter case, you’ll need to use the utility called SRECCVT.

(3 HARDWARE DESIGN FEATURES 9

3.1 3-VOLT OPERATION

One of the nice features of the 9512C is that it can operate on 3 to 5 V, while maintain-
ing full bus speed capability. To support 3 Volt operation, the module incorporates an
adjustable regulator whose output voltage is set by a resistive voltage divider. The circuit
has been designed such that simply inserting a shorting jumper causes the regulator’s
output to shift from 5V to 3.3V. When operated at 3V, there are a few precautions that
should be noted, however.

The logic pins are not 5V-tolerant, so you will need to take the necessary steps to
prevent damage to the I/0 pins of the MCU. Also, the maximum VRH voltage is limited to
3.3V, so any external voltage or precision voltage reference you supply should be scaled
accordingly. One last point is that some BDM pods will not work with 3 Volt targets, so you
should check the specs of the BDM pod you intend to use. A good choice is our
MicroBDM12LX (#UBDM12LX), which works at both 3V and 5V.

3.2 RESET

Unlike previous HC11 and HC12 designs, the 9512C MCU has an on-chip low-voltage
inhibit (LVI) reset circuit, so it is not necessary to provide such a circuit externally. A
momentary tact switch is provided for manual reset, and the LVI circuit will provide a clean
reset signal upon power-up.

3.3 ABOUT THE VOLTAGE REGULATOR

Adapt9S12C includes an LM1086CT-ADJ voltage regulator. Housed in a TO-220
package, it is capable of handling a whopping 1.5 Amps at room temperature! Other nice
features are: reasonably low quiescent current (5mA, typical), and low dropout voltage
(1v @ 1A)-- it will work with an input voltage down to about 6 Volts, making it quite
well-suited to battery operation. It is also designed to withstand reverse polarity. One
drawback, however, is that it can become unstable and start to oscillate at low tempera-
tures, especially if the input voltage source is connected via long wires. If low-temperature
operation is anticipated, the on-board 10uF tantalum capacitor can be replaced with a
higher value (47uF or 100uF). To compensate for long lead-in wires, add capacitance of
100uF at, or close to, connector J1. Refer to the manufacturer’s data sheet for more.

Heatsinking. Because the regulator is mounted on the underside of the circuit board,
with the package body parallel to the plane of the board, it can be safely attached to a
heatsink. Many clip-on heatsinks are available for use with TO-220 packages. Another
option is to mount the board on a sheet of aluminum, using standoffs and insulated hard-
ware. If the appropriate length is chosen for the standoffs, the tab of the regulator will lie
flush with the aluminum sheet, and can be coated with silicone grease and bolted (or
riveted) to the plate (tightening a nut and bolt will require a little ingenuity). CAUTION!
Unlike some other voltage regulators, the metal tab is not Ground-- it is con-
nected to Vout so, in most cases, you will need a heatsink insulation kit.

34 PLL

While the supplied crystal is only 8MHz, the MCU is capable of running at a much higher
speed. The phase-locked loop feature of the MCU allows you to boost the bus speed by an
integer multiple of the crystal frequency, so by enabling the PLL, you can actually run the
MCU at 24Mhz.

3.5 ADDITIONAL INPUT/OUTPUT PINS

An additional I/O connector is located on the upper edge of the module, providing
access to an another 8-pin I/O port (PORTH). The extra two pins on the connector bring
out Ground and Vcc for convenience. This means a standard 10-pin ribbon cable may be
used to interface them to your circuit. We make a 10-pin solderless breadboard adapter
(#ADIDC10-M) which can be used with a 10-conductor ribbon cable (#RC10FF6) to bring
the extra pins down to your solderless breadboard.

{4 WRITING SOFTWARE 9

4.1 IMPACT OF THE SERIAL MONTIOR

When you are working without a BDM pod, the Serial Monitor program is the only
method available to load and erase flash. It is in a protected block of flash, so there’s no
way to accidentally erase it. There are two modes, controlled by switch SW2: Run and
Load. The monitor mode is determined immediately following reset by checking the
position of switch SW2. When working with the monitor program in place, there are a few
points to be noted:

1) while the user vectors are implemented by the monitor at 0xF780 to OxF7FF, you
don’t really have to worry about it, because the monitor program will automatically adjust
them when your s-record is loaded.

2) the monitor relocates RAM to the address range 0x3800 to 0x4000 from the default
location after MCU reset of 0x0000 to Ox07FF.

3) the monitor program enables the phase-locked loop (PLL), so the target is running at
24Mhz (when in LOAD mode) and not at the startup speed of 4Mhz.

4) the user code must clear the CCR I-Bit, either via a CLI in assembler or via the
INTR_ON() in ICC12.

5) SCIO cannot be used by the user program when in LOAD mode, since it is dedicated
to the monitor program.

6) COP cannot be disabled in Load mode.

4.2 WRITING A SIMPLE C PROGRAM IN ICC12

Before starting, you'll need to set up your compiler settings, as follows:
Program Memory = 0x4000.0x7FFF:0xC000.0xFFFF

Data Memory = 0x3800

Stack Pointer = Ox3FCO

Note that the Data Memory and Stack Pinter addresses shown are valid only for a
device with a resident monitor, since the monitor remaps the RAM following reset. If you
are writing software for a completely blank chip, and loading it in via a BDM pod, you’'ll
need to change these values to work with the default RAM address range (see the MCU
datasheet).

//this programflashes LED D1 on PPO twice a second
#include <hcs12c¢32.h>

#define DUMMY_ENTRY (void (*)(void))OxFFFF
#pragma nonpaged_function _startextern void _start(void);/* entry point in crt12.s */

void main(){
8

INTR_ONQ); //needed for the SerialMonitor
DDRP = 0x01; //Enable LED port

RTICTL = Ox7F; //Set RTI divider for 4Hz time base
CRGFLG |= 0x80; //Clear the RTI Flag
CRGINT |= 0x80; //Enable the RTI
Y#pragma interrupt_handler rti_handler
void rti_handler(){
CRGFLG |= 0x80; // Clear the RTI Flag
PTP ~= 0x01; //Toggle LED
INTR_ON(); //Enable Interrupts

#pragma abs_address:0xFFFO

void (*interrupt_vectors[])(void) =

{
rti_handler, /*Real Time Interrupt*/
DUMMY_ENTRY, /*IRQ*/
DUMMY_ENTRY, /*XIRQ*/
DUMMY_ENTRY, /*SWI*/
DUMMY_ENTRY, /*Unimplemented Intruction Trap*/
DUMMY_ENTRY, /*COP failure reset*/
DUMMY_ENTRY, /*Clock monitor fail reset*/
_start, /*Reset*/

3

#pragma interrupt_handler rti_handlervoid rti_handler(){
CRGFLG |= 0x80; // Clear the RTI Flag
PTP ~= 0x01; //Toggle LED
INTR_ON(); //Enable Interrupts

#pragma abs_address:0xFFFO

void (*interrupt_vectors[])(void) =

{
rti_handler, /*Real Time Interrupt*/
DUMMY_ENTRY, /*IRQ*/
DUMMY_ENTRY, /*XIRQ*/
DUMMY_ENTRY, /*SWI*/
DUMMY_ENTRY, /*Unimplement Intruction Trap*/
DUMMY_ENTRY, /*COP failure reset*/
DUMMY_ENTRY, /*Clock monitor fail reset*/
_start, /*Reset*/

+

4.3 OTHER ISSUES WITH ICC12

Because the register addresses have changed from what they were in HC12, meaning
the header file is different for the C32, some library files in ICC12 will need to be re-
compiled, using the new header file, if you want to use them. Of course, if you're not
using library functions, or you are using functions that don’t involve registers, then there

9

won't be a problem with the existing versions. The modified functions are included on the
CD-ROM to get you started.

To use the SCI, make sure to include C32_iochar.c and C32_serial.c. Also, you'll
need the complete vector file for the C32, which is called C32_vectors.c. Unzip
C32_C.zip and place hcs12c32.h in c:\icc\include\ (or in your equivalent path). Make
sure to place €32_Vectors.c in the same folder as your project, and add it to you project
via the “add file menu item”.

4.4 “HELLO WORLD” PROGRAM

First of all create a new project from the Project menu.
Then create a new file and save it as HelloWorld.c Add it to the Project by right
clicking in the Project Panel and using Add Files to add it to the Files section.

Next type in the following code:

#define _SCI
#include <hcs12c32.h>

#pragma nonpaged_function _start
extern void _start(void); /* entry point in crtl2.s */

extern int _textmode;

int putchar(char c)
{
if (_textmode && ¢ == "\n’)
putchar(‘\r");
while ((SCOSR1 & TDRE) == 0)

SCODRL = c;

return c;
b
void main(){
INTR_ONQ); //need for the SerialMonitor
DDRP = 0x01; //Enable LED

SCIOBD = 26; //9600 Baud
SCIOCR2 = 0x0C; /* enable transmitter and receiver */

puts(“Hello, World!");
b
#pragma abs_address:0xFFFE

void (*interrupt_vectors[])(void) =

{
+s

_start, /*Reset*/

Since puts calls putchar, we define it before invoking it in main. Main has an implicit

10

_Start entry point, which is called after the setup by CRT12.0, which is a module that the
ICC12 linker links in as the starting point of the program. Besides initializing the stack and
other system features it initializes memory, initialized variables and constants before
transferring control to the Main.

Compile and link the program, fixing any syntax errors that may have cropped up.
Ensure that the Project Options | Device Configuration drop down box points to the
9S512C32 Flash Mode. This sets the link address to start the code section at 0x4000 and
the stack at top of RAM (0x4000).

return c;
b
void main(){
INTR_ON(); //need for the SerialMonitor
DDRP = 0x01; //Enable LED

SCIOBD = 26; //9600 Baud
SCIOCR2 = 0x0C; /* enable transmitter and receiver */

puts(“Hello, World!”);

by

#pragma abs_address:OxFFFE

void (*interrupt_vectors[])(void) =
{

_start, /*Reset*/

+

Since puts calls putchar, we define it before invoking it in main. Main has an implicit
_Start entry point, which is called after the setup by CRT12.0, which is a module that the
ICC12 linker links in as the starting point of the program. Besides initializing the stack and
other system features it initializes memory, initialized variables and constants before
transferring control to the Main.

Compile and link the program, fixing any syntax errors that may have cropped up.
Ensure that the Project Options | Device Configuration drop down box points to the
9S512C32 Flash Mode. This sets the link address to start the code section at 0x4000 and
the stack at top of RAM (0x4000).

4.5 USING A BDM POD

If you have a BDM pod, you can erase the resident monitor program completely. This
will free up all the MCU resources for your program (most importantly, the SCIs). Without
the monitor in place, the RAM will be at the default location following reset, so make sure
to use the correct compiler/linker settings. Also, the PLL won’t be enabled, so the bus
speed will be 4 MHz.

4.6 AUTOMATING S-RECORD CONVERSION IN ICC12

You may have to convert the s-record file to get it into the proper format for your BDM
pod to load correctly. ICC12 has a nice feature at Project->Options->Compiler-
>ExecuteCommandAfterBuild where you can add the SRECCVT command mentioned
earlier.

11

(5 GOING FURTHER 3

If you'd like to get started interfacing common electronic devices such as LEDs, switch-
es, relays, etc., you may consider purchasing the optional Demo Card (Adapt9S12DemoH1,
shown). It includes a light sensor, thermistor, bargraph LED, DIP switch, potentiometer,
audio transducer, and a couple of logic MOSFETSs, and has support for an optional character
LCD.

Several other Application Cards are available, including

¢ a Display/Keypad/Keyboard Interface (DKKI) which supports character LCDs, PS/2
keyboard, and/or matrix keypads. Communication with the LCD is accomplished via the
SPI, using a serial shift register, reducing the number of port pins required.

¢ a Voice Record/Playback Module (AD11DXVRPM) which incorporates the Winbond
ISD2560 60-second solid state record/playback chip, and supports MCU control

e a Servo/Sensor Interface Module (AD9S12SSIM) which supports standard robotics
applications (hobby servo control, IR distance-measuring sensors, sonar distance-measur-
ing sensors, audio microphone, audio transducer, etc.)

¢ a 3-axis Bi-polar Stepper Motor Controller board (AD12DXXYZSM), which can be
utilized to implement CNC applications

Check the subcategory called Application Cards on our website to browse the currently
available selection.

12

APPENDIX A - SERIAL MONITOR
INTRODUCTION

This appendix describes the Freescale 2 Kbyte monitor program for the HC9S12 series
MCU. This program supports 23 primitive debug commands to allow FLASH / EEPROM
programming and debug through an RS232 serial interface to a personal computer. These
include commands to reset the target MCU, read or modify memory (including FLASH
/EEPROM memory), read or modify CPU registers, go, halt, or trace single instructions. In
order to allow a user to specify the address of each interrupt service routine, this monitor
redirects interrupt vectors to an unprotected portion of FLASH just below the protected
monitor program. This monitor is intended to be device unspecific, this single application
with very slight modification should execute on any HC9S12 derivative. A user on a tight
budget can evaluate the MCU by writing programs, programming them into the MCU, then
debug using only a serial I/0O cable and free software (uBug12) for their personal computer.

This monitor does not use any RAM other than the stack itself. The COP watchdog is
utilized for a cold reset function; user code should not disable the COP (ie. by writing 0x00
to COPCTL). This development environment assumes you reset to the monitor when you
are going to perform debug operations. If your code takes control directly from reset, and
then an SCIO interrupt or a SWI attempts to enter the monitor, the monitor may not
function because SCIO, the phase locked loop (PLL), and memory initialization registers
may not be initialized as they would be for a cold reset into the monitor. There is no error
handling for the PLL. If the frequency source is missing or broken, the monitor will not
function. The monitor sets the operating speed of the MCU to 24 MHz. Maodification of the
MCU speed by the user with out considerations for the monitor program will render the
monitor nonfunctional. If the PLL loses lock during operation, the monitor will fail.

BLOCK PROTECTION

In order to prevent accidental changes to the monitor program itself, the 2 Kbyte block
of FLASH memory where it resides ($F800-$FFFF), is block protected. Additionally all write
commands are restricted from modifying the monitor memory space. The only way to
change the contents of this protected block is to use a BDM-based development. In the
lowest cost applications where the monitor is used with an SCI serial interface to the
RS232 serial port on a personal computer, there is no way to accidentally erase or modify
the monitor software.

COP CONFIGURATION

The monitor as written creates hard reset function by using the COP watchdog timer. It
does so by enabling the COP and waiting for a COP timeout reset to occur. If the user
application uses the COP two issues must be considered.

oIf the COP is disabled in the user application, the monitor will be unable to perform a
hard reset and will soft reset to the start of the monitor instead.

*The monitor does not service the COP timer. If the user application implements COP
timer servicing, upon re-entry into the monitor a hard reset is likely to occur.

MEMORY CONFIGURATION

1) Register space is $0000-$03FF.

2) Flash memory is any address greater than $4000. All paged addresses are assumed
to be Flash memory.

3) RAM ends at $3FFF and builds down to the limit of the device’s available RAM.

4) External devices attached to the multiplexed external bus interface are not support-
ed.

13

SERIAL PORT USAGE

In order for this monitor to function the SCIO serial interface is used. It is assumed that
the monitor has exclusive use of this interface. User application code should not implement
communications on this serial channel. This monitor accommodates RS232 serial communi-
cations through SCIO at 115.2 kbaud. For applications requiring the use of SCIO, you
should purchase a BDM pod which allows for more advanced debugging.

VECTOR REDIRECTION AND INTERRUPT USE

Access to the user vectors is accomplished via a jump table located within the monitor
memory space. This table points all interrupt sources to a duplicate vector table located
just below the monitor. ($F780-$F7FE). The monitor will automatically redirect vector
programming operations to these user vectors. The user’s code should therefore continue
to implement the normal (non-monitor) vector locations ($FF80-$FFFE). If execution of an
interrupt with an un-programmed vector is attempted, behavior is undefined. For this
reason, the user is strongly encouraged to implement a software trace for all vectors, as is
good programming practice. The monitor depends on interrupts being available for monitor
re-entry after GO or TRACE commands. Therefore, it is important that the user application
executes with interrupts enabled.

14

APPENDIX B - UBUG12 COMMAND LIST

RD
RM
CCR <Data8>
D <Datal6>
PC <Datal6>
PP <Data8>
SP <Datal6>
<Datal6>
<Datal6>

BF <StartAdd> <EndAdd> <Data8>
BFW
MD <StartAdd> [<EndAdd>]

MDW <StartAdd> [<EndAdd>]
MM <Address> <Data8>

MMW <Address> <Datal6>

FBULK

FLOAD [;BI1[;M]

GO [<StartAddress>]
HALT
RESET

CON <Comport>
DISCON

EXIT

HELP

OP <Opacity%>

<RegisterName> <Data8/16>

MEMORY MODIFY

DEVICE INFO

GO/HALT

- Register Display
- Register Modify

- Set CCR register

- Set D register

- Set PC register

- Set PP register

- Set SP register

- Set X register

- Set Y register

- Block fill

<StartAdd> <EndAdd> <Datal6> - Block fill word

- Memory display

- Memory display word
- Memory modify byte

- Memory modify word

- Flash bulk erase
- Flash load

- Get device name

- Start execution
- Halt execution
- Reset target

- Connect to target

- Disconnect from target
- Terminate GUI

- Display help

- Set main GUI opacity

15

Adapt9S12C Module
Features and Pin Configuration

Dimensions in inches

RS232 Port Powerin Voltage regulator mounting holes 0.126
(5to24VDC) (rear-mounted) Auxilliary 110 dia. typical
\ connector H2 (2 places)

5VI3.3V select
Out=5V
/ CAN Interface

Vref Source Select
(when optional U3 used)

RS232 Interface

00O0O
o0QO0O0

BDM Interface

1.7

3
?ﬁQ‘,I e, Ad_aptgsegm (Jc)if)?ﬁ TECHﬁgt/O?SICALAR'?Sw @ P'e°i5i0’? Vref chip
MCU Mode Select /[boogooo 0000000000000 O0O0OO0|5 (optional)
5©0000000000000000000000000/2
} / 28 | }
User LED Monitor Mode Select:
RUN = run user program PortS/PortJ Mapping
BOOT = run monitor program 50-pin 1/0
80-pin 9812C MCU connector H1
H1 Pin Assignments H2 Pin Assignments
P": . PM2/ME§AME Pl?o# GROUNDNAME [NE: NAME NS NAME
1 PPO/KWPO/PWO 2 PP7/KWP7
2 PM4/MOSI 49 GROUND 3 PP1/KWP1/PW1 4 PP6/KWP6/ROMCTL
3 PM5/sCK 48 PSO or PJ6 (set by JB2) 5 PP2/KWP2/PW2 6 PP5/KWP5/PW5
4 PM3/SS* 47 Vcc 7 PP3/KWP3/PW3 8 PP4/KWP4/PW4
5 PSl1orPJ7(setbyJB2) | 46 PE1 (RQY 9 Vcc 10 GND
6 PT7/10C7 45 PEO (XIRQY)
7 PT6/10C6 44 RESET*
8 PT5/10C5 43 PE7 [XECLKS*)
9 PT4/I0C4/PW4 42 PAO/ADDRS/DATAS
10 PT3/I0C3/PW3 41 PA1/ADDR9/DATA9
11 PT2/10C2/PW2 40 PA2/ADDR10/DATA10 rnm’m
12 PT1/IOC1/PWI 39 PA3/ADDR11/DATAI1
13 PTO/IOCO/PWO 38 PA4/ADDR12/DATA12
14 PB7/ADDR7/DATA7 37 PA5/ADDR13/DATA13
15 PB6/ADDR6/DATAG 36 PAG6/ADDR14/DATA14
16 PB5/ADDR5/DATAS 35 PA7/ADDR15/DATA15
17 PB4/ADDR4/DATA4 34 PE2 (R/WY)
18 PB3/ADDR3/DATA3 33 PE4 [ECLK) >
19 PB2/ADDR2/DATA2 32 PE3 (LSTRBY
20 PB1/ADDR1/DATA1 31 Vana
21 PBO/ADDRO/DATAO 30 VRH Order Codes:
22 PADOO0/ANOO 29 PAD04/ANO4 AD9S12C32M-0
23 PADO1/ANO1 28 PADO5/ANO5 AD9S12C128M-0
24 PAD02/AN02 27 PADO6/ANO6 (specify H1 connector option code)
25 PAD03/ANO3 26 PADO7/ANO7

Standard Connector Options (use “NC” for no connector)

s
O.WOTﬁ 0425

030t g10m

www.technologicalarts.com

AN

E\

=
=

|

W23k —* 033 -~

> 033 O’SZLT

—» 033
033 k-

le
»032 «

OO GG

» sales@technologicalarts.com « phone: +1 (416) 963-8996 - fax: +1 (416) 963-9179

