
Using Your�
Adapt9S12C�

Microcontroller Module�

Revison 0b�

www.technologicalarts.com�

DISCLAIMER�

While we have made every effort to avoid errors in the preparation of this manual, we cannot be�
held responsible for any misinformation or omissions that may have occurred. Furthermore, as�
manufacturer of this product,�Technological Arts�’ sole liability and the buyer’s exclusive remedy�
shall be refund of the amount paid or repair or replacement of the product, at the manufacturer’s�
option. The manufacturer disclaims all other warranties, expressed or implied, including but not�
limited to implied warranties of merchantability and fitness for a particular purpose, with respect�
to the product and accompanying written material, hardware, and firmware. In no event shall the�
manufacturer or its suppliers be held liable for any damages whatsoever (including, without�
limitation, damages for loss of business profits, business interruption, loss of business�
information, or any other loss) arising out of the use of, or inability to use, the product, even if the�
manufacturer has been advised of the possibility of such damages. The product is not designed,�
intended, nor authorized for use in applications in which the failure of the product could bring�
about a scenario in which personal injury or death may occur. If used in any such unintended or�
unauthorized application, the manufacturer and its suppliers shall be held harmless against�
all claims, even if any such claim alleges that the manufacturer was negligent regarding the�
design or implementation of the product.�

Product features, availability, and prices may change without notice.�

All trademarks used in this document are the property of their respective holders.�

E S D W A R N I N G�

This product, like all microcontroller products, uses semiconductors that can be damaged by�
electrostatic discharge (ESD). When handling, care must be taken so that the devices are�
not damaged. Damage due to inappropriate handling is not covered by the warranty.�

The following precautions must be taken:�
• Do not open the protective conductive packaging until you have read the following, and are�
at an approved anti-static work station.�
• Use a conductive wrist strap attached to a good earth ground.�
• If working on a prototyping board, use a soldering iron or station that is marked as ESD-�
safe. Always disconnect the microcontroller from the prototyping board when it is being�
worked on.�
• Always discharge yourself by touching a grounded bare metal surface or approved anti-�
static mat before picking up an ESD-sensitive electronic component.�
• Use an approved anti-static mat to cover your work surface.�

 1 INTRODUCTION�

1.1 WELCOME!�
 With�Adapt9S12C�, you are now ready to explore the power and versatility of�

Freescale’s advanced 16-bit microcontroller family! Whether you’re new to Freescale�
microcontrollers or you’ve used some of the earlier ones (such as 68HC05, 68HC11, or�
68HC12), you’ll be impressed with the well thought-out design and implementation of the�
HCS12 family.�Adapt9S12C� gives you the opportunity to explore the 9S12C family’s�
potential at a very affordable price! Add to that the proven advantages of it’s popular DIP�
format, and you’ll see why you picked a real winner!�

1.2 SUPPORT�
 To help you get the most out of this product, and to make the experience as�

enjoyable and productive as possible, we’ve put together a comprehensive website, loaded�
with resources, support, and applications information. If you experience any difficulties, or�
need help with your application, the World Wide Web is arguably the most valuable re-�
source available to you. There you’ll find the latest information, software, and trouble-�
shooting help, as well as discussion groups where you can network with people around the�
globe to get the answers you need. So if you still need help, or have questions after�
reading this manual and perusing the contents of the included CD, visit our Support Forum:�
www.technologicalarts.net� and tap into the collective! Also, be sure to join Freescale’s�
16-bit Microcontroller� discussion group, at http://forums.freescale.com/freescale/�
board?board.id=16BITCOMM�

1.3 PRODUCT CONFIGURATION�
Adapt9S12C� includes all the essential support circuitry that 90% of applications use�

(e.g. crystal, voltage regulator, reset switch, RS232 interface), without tying up port pins�
with costly interface circuits that most users won’t need (e.g. clock/calendar chip, serial�
EEPROM). It is form-factor compatible with our original 68HC11 product, the immensely-�
popular Adapt11, and comes with the legendary “SB” connector option (a Technological�
Arts innovation), enabling it to be plugged directly into a solderless breadboard-- just like�
a big chip. In fact, it is offered with more than a dozen connector options, making a vast�
range of configurations possible when coupled with the complete selection of prototyping�
cards, backplanes, and application cards that are available from Technological Arts. From�
MCU evaluation, training, product development, hobby or school projects, and semi-custom�
solutions all the way to being embedded right into a commercial product or system,�
Adapt9S12C is a very cost-effective product. The board is currently offered in two ver-�
sions, which differ only in memory sizes:�

• Adapt9S12C32 has 32K Flash (program memory) and 2K RAM (data memory)�
• Adapt9S12C128 has 128K Flash (program memory) and 4K RAM (data memory)�

1.4 ADAPT9S12C VS. TRADITIONAL EVALUATION BOARDS�
 Most available evaluation and development systems tend to be too expensive and�

bulky for embedding into a real application, so they lie on a shelf gathering dust once�
you’ve reached a certain point in the learning curve. Or maybe you think up some clever�
way to hack it apart and make it fit inside your robot or product prototype. Even then, the�
prototyping area provided is often limited, and does not lend itself to re-usability. And�
what if you burn out a chip the night before the contest or product demo? What a mess to�
repair or re-design!�

Adapt9S12C� solves all of these problems and more! Since it brings out practically�

1�

all I/O lines and control signals to a standard 50-pin interface connector (H1) and 10-pin�
auxilliary connector (H2), it is modular and re-usable. Interface cards can be unplugged�
and upgraded, or the whole system can be re-configured at the last minute. What’s more,�
the program memory can be erased and re-programmed in seconds, right in place. The�
multitude of connector options enables you to use the module in whatever way best suits�
your application-- board-stacking, end-to-end (planar), backplane, ribbon cables, etc. A�
full range of accessories including backplanes, prototyping cards, and application-specific�
cards is available, and more accessories are being developed all the time. Make a point to�
visit our website from time to time, just to see what’s new.�

When used with the RA1 connector option, a prototyping card, experimentor card, demo�
card, or motor driver card can be plugged directly onto the I/O connector, forming a planar�
arrangement. Advantages of this configuration are easy access to all I/O pins for probing�
and measurement, and easy prototyping of your interface circuits. What’s more, the�
detachable nature of the cards means that you can easily replace them with other cards.�
You can build up a collection of different application circuits, and use them all with the�
same microcontroller board. This is especially advantageous in an educational environ-�
ment, where the student can progress from simple to more complex applications through-�
out a semester, or from one course to the next-- perhaps even incorporating the board into�
a final project. In fact, where budgets are tight, different students can share the same�
microcontroller module, and plug in their own interface cards when it’s their turn to use it.�

1.5 USING ADAPT9S12C WITH SOLDERLESS BREADBOARDS�
 When used with the SB connector option (or optional adapter, #ADHDR50-F), the�

module will easily plug vertically into any standard solderless breadboard. The�
resulting footprint is equivalent to a 50-pin narrow DIP, and has a similar�
pin-numbering sequence (ie. wraps around the end, from pin 25 to 26). Plug�
the adapter into your breadboard, wire up your circuits, as required, and then�
plug the module into the adapter. If you want to access signals on H2 as well,�
you’ll need a 10-pin ribbon cable and a breadboard adapter (#ADIDC10-M) to�
bring those signals down to the breadboard. Note that pin-numbering of the 10-pin�
connector is like a typical ribbon cable connector, with odd-numbered pins on one row and�
even-numbered pins on the other.�

 Another popular breadboarding approach is a planar configuration utilizing a card�
mounted with a solderless “experimentor” board that plugs into H1. This card�
(#AD12EXPH1-FRA1) features a 50-pin dual-row receptacle (“F”-style connector) next to�
the breadboard section, giving you easy access to all of the I/O signals. To build your�
circuit, it’s just a matter of plugging lengths of ordinary #22 hookup wire between the�
signals on the receptacle and the places you need them on the breadboard.�

2�

Standard Connector Options (use NC for “no connector”)�

SB� RA� RA1� FRA1� FRA� M� M1� F1� F�

0.30�

FM� FM1�

com
p
onent sid

e�

com
p
onent sid

e�

com
p
onent sid

e�

com
p
onent sid

e�

com
p
onent sid

e�

com
p
onent sid

e�

com
p
onent sid

e�

com
p
onent sid

e�

com
p
onent sid

e�

com
p
onent sid

e�

com
p
onent sid

e�

1.6 RESIDENT DEBUG/MONITOR�
 Residing in a 2K pro-�

tected block of on-chip flash�
memory is Freescale’s versatile�
Serial Monitor program. When�
used with uBug12 (a free�
Windows application created by�
Technological Arts), you can�
display and edit memory and�
registers, erase and program�
flash, set breakpoints, and do�
instruction tracing. Flip a switch�
on the board to Run mode, and�
your program runs automatically�
from Flash, following reset or�
powerup. See Chapter 2 and�
Appendix A for details on�
uBug12 and the resident moni-�
tor.�

1.7 COMMUNICATIONS�
 An RS-232C serial interface port connector (9-pin D-sub) is included, enabling�

communication with a PC com port, or any other device which has an RS-232 serial port,�
via a standard 9-pin serial port extension cable. The RS-232 channel is implemented via�
the SCI of the MCU, and when the board is reset in Load mode, the resident Serial Monitor�
uses this port to communicate with an appropriate program running on your PC (e.g.�
UBug12, CodeWarrior, or NoICE12). In Run mode, the RS-232 port is available for your�
application.�

 The module includes physical layer support for Controller Area Network (CAN), with�
CANHI, GROUND, and CANLO signals brought out to J3. A mating 3-pin Molex connector is�
available from Technological Arts (#HPCT3). A 120-Ohm terminating resistor is included on�
the board, and can be activated by shorting link W4.�

In passing, it should be mentioned that the MCU also supports Serial Peripheral Inter-�
face (SPI). Since this is a logic-level protocol, meant for local communications among�
peripheral chips, no transceivers are required nor are they provided. Commonly used SPI�
chips and modules include: serial memory (e.g. EEPROM, Flash), temperature controllers,�
clock/calendar chips, DACs, MP3 decoders, etc.�

See the 9S12C datasheets for details on all of these subsystems.�

1.9 JUMPER OPTIONS�

The user has a choice of selecting PJ6 and PJ7 or PS0 and PS1 to be brought out to the�
I/O connector (H1). The selection is implemented via jumper block JB2. By bringing out�
PS0 and PS1, the SCI can be accessed at the logic level, and is useful for such applications�
as GPS and serial LCD interfacing.�

MCU Mode Select jumper block JB3 provides access to the microcontroller’s MODA and�
MODB pins, for implementing single-chip mode, narrow expanded mode, and wide ex-�
panded mode. The default setting is Single-chip Mode (MODA=MODB=0). Refer to the�
9S12C data sheet for details on implementing other modes.�

3�

 2 GETTING STARTED�

¨� Be sure to read and follow the Safe Handling Procedures outlined inside the manual’s front cover�
¨� Perform a visual check of the hardware for any damage during transit�
¨� Connect the RS232 port to a com port of a personal computer, using the cable supplied�
¨� Locate and install the Windows application called uBug12, included on the CD (also on our website)�
¨� Launch uBug12�
¨� Activate the serial port connection by entering CON x (where x is the comport you are using; usually 1 or 2)�
¨� Set switch SW2 to the LOAD position�
¨� Connect the supplied power source to J1�
¨� uBug12 will display a short message, followed by its command prompt�
¨� The Module is now ready to accept your commands (see Appendix B for a full list of uBug12 commands)�

To download one of the supplied example programs into flash and execute it, follow these steps:�
¨� Type�fbulk� <enter> at the uBug12 prompt to erase any existing program�
¨� Type�fload� <enter>�
¨� From the displayed file browser, select one of the example program’s output files (.s19 or .s28 file)�
¨� After loading has finished, move SW2 to the RUN postion, and press the Reset button (SW1)�
¨� The program will run�
¨� If you wish to debug the program, move SW2 back to the LOAD position and press Reset�
¨� The uBug12 prompt will appear�
¨�Use uBug12 commands to debug your code�

2.1 POWER OPTIONS�
 A DC power supply is included with most bundle configurations. It is the recom-�

mended power source when you’re starting out. If for some reason it’s not convenient (eg.�
you don’t want an extension cord trailing around behind your robot :>), there are a couple�
of alternatives:�

Option 1:� connect a DC voltage of 6 Volts or more (maximum: 24 VDC) via the�
external power connector, J1. Your DC supply does not need to be regulated, but it should�
be capable of supplying at least 100 mA (more if you will be using a BDM pod, or you’re�
driving other circuits as well). If your supply will also be driving motors, make sure to�
isolate it before feeding it into the module (to protect it from electrical noise generated by�
the motor coils). You can do this by putting inductors (10uH, nominal) in series with both�
the + and - leads. Preferably, use the red & black power wire provided (order code:�
PCJ1-8). Red is positive, and black is negative (ground).�CAUTION! Make sure you have�
the polarity correct!�

Option 2:� supply regulated 5VDC (or 3V if using 3V mode) via the appropriate pins�
on the module. See module pinout diagram in Appendix C for the Vcc and GROUND pins to�
use.�CAUTION! Leave J1 unconnected. Double-check your connections before applying�
power! If you are applying 3V, be sure to read the notes on 3-Volt operation in chapter 3.�

2.2 DEMO PROGRAMS�
 We’ve included a few demo programs on the CD-ROM (also available from the�

product webpage) to give you a starting point. There are some examples in C and some in�
assembler. The source code is included, so you’re free to modify them all you want! Visit�
our Support Library and the product webpage (once there, click on the Resources tab) for�
more examples, application notes, and links to third-party sites.�

4�

2.3 USING THE DEBUG/MONITOR�
uBug12 is a Windows-based graphical user interface (GUI) for Freescale’s HCS12 Serial�

Monitor program. It aims to emulate the most common debug/monitor commands, and to�
provide an easy-to-use interface. The following paragraphs will help you get started with�
uBug12.�

Install uBug12 from the included CD simply by unzipping it onto your C: drive. Launch�
the application, and then apply power to the module. A sign-on message will appear in the�
uBug12 window. A full list of uBug12 commands is provided in Appendix A.�

The first step after you have launched uBug12 is to activate the connection to the�
target device (ie. The MCU module) which is running the Serial Monitor Program. This is�
done via the CON command, which takes one parameter: the number of the comport to�
which the device is connected.�

eg.�CON 2�

In this example, uBug12 will open a connection to the target hardware attached to�
com2. Then you can choose any of the uBug12 commands.�

One of the most useful commands is FLOAD. This command lets you load an S-record�
file into the target device flash. If you are loading a file containing linear S2 records, just�
type FLOAD, if you are using a banked S2, such as those generated by ImageCraft’s ICC12,�
Metrowerks Codewarrior, and other tools, use FLOAD ;B. Once you have typed the FLOAD�
command followed by the ENTER key, a dialog box will appear and you will be able to�
browse to the file you want to load. If you have omitted the ;B parameter, only files with�
an S2 extension will be displayed for loading. Before loading another file, though, make�
sure to erase flash, using the FBULK command.�

One nice feature you’ll discover is command line history. Use the UP and DOWN arrows�
on your keyboard to recall previously typed commands. You can then edit them, as�
needed, before hitting <ENTER>.�

2.4 NEW TO FREESCALE MICROCONTROLLERS?�
 If you’ve come from an 8051, PIC, or other background (or have never used micro-�

controllers before), you should get up to speed on Freescale MCUs by reading�Understand-�
ing Small Microcontrollers,� found on the CD-ROM. Written by Freescale’s Jim Sibigtroth,�
principal design engineer of the HC12 family, this excellent book uses an earlier MCU�
(68HC05) to introduce you to the basic concepts and design philosophy upon which the�
9S12 was built. You should also make sure to have a copy of the MC68HC11 Reference�
Manual, since it contains detailed descriptions and examples for many of the hardware�
subsystems.�

2.5 MIGRATING FROM 68HC11�
 If you are already experienced with the 68HC11 family of microcontrollers, writing�

programs for the HCS12 family will not present a big challenge (don’t throw away your�
HC11 Reference Manual-- the trusty “pink book”). In fact, you can use your existing�
68HC11 assembly code and re-assemble it to run on the CPU12 core, but there are a few�
things to keep in mind.�

Assembler syntax.� You may need to edit your source file to conform to the syntax�
and directives of the HC12 assembler you’ll be using. There are several assemblers�
available (e.g. AS12, MiniIDE, IASM12, MCUez), and each has its own syntax to be aware�
of.�

Register Block.� Instead of $1000, the register block default location is $0000�

5�

through $03FF, and there are a few hundred�
registers! You’ll need to locate the relevant�
registers for the subsystems you plan to use, and�
make sure they are properly configured.�

RAM location.� Following reset, the mem-�
ory map configuration has the register block�
overlapping RAM, starting at $0000, with regis-�
ters taking priority, so the first 1K bytes of RAM�
are not usable. In order to free up all of the�
RAM. the monitor program re-maps RAM to start�
at $3800 through $3FFF (via the RAMinit regis-�
ter). This means you’ll need to initialize the�
Stack Pointer to $4000 (on the HCS12, the stack�
pointer points to the address following the top of�
the stack).�

High-speed Bus.� The default bus speed is�
half the crystal frequency of 8 MHz, so it is 4 MHz. If you enable the PLL, it will be even�
higher (up to 24 MHz). This will mean changing some initialization values for control�
registers and revising delay constants if you are using any software timing loops in your old�
68HC11 code.�

I/O Ports.� The digital I/O ports on the HCS12 are more flexible than ever. Besides�
selecting the direction of each port pin via a Data Direction Register, there are registers�
controlling output drive level (standard and reduced), internal pullup and pulldown resis-�
tors, and output logic polarity (ie. true or inverted logic).�

COP Watchdog.� On most flavours of HC11, this could be enabled via a bit in the�
non-volatile CONFIG register. On the HC12, it is dynamic, and automatically enabled�
following reset. Therefore you have to choose whether you’re going to service it, or disable�
it.�

Write-Once Registers.� On the HCS12, there is no 64-cycle startup window in which�
you have to write all the protected registers. Instead, the HC12 implements a WriteOnce�
rule on sensitive registers. What this means is that, following reset, you have one chance�
to write them, then they become “Read Only”. The advantage of this is that you have�
more control of when you alter these register values. To take advantage of this safeguard,�
you should initialize all the registers that are crucial, even if the default values are what�
you want. That way, if your code runs amok, or there are any glitches which try to change�
register values, they will be protected.�

 There are many more differences, and you should make sure to read through the�
Freescale App Note (AN1284) that details the new instructions and addressing modes of the�
68HC12, explaining differences from the 68HC11.�

2.6 MIGRATING FROM THE 68HC912�
 You gain a lot more speed, memory, and flexibility, but you have a lot more regis-�

ters to think about, and many of their addresses have changed. Gone are the Vfp genera-�
tor and flash voltage switch, since the new flash technology uses 5V, and has built-in�
self-timed algorithms for program and erase functions. But your s-records must contain an�
even number of bytes, and begin on an even address boundary if you’re going to “burn”�
them into flash. Some assemblers will generate this format for you but others, such as the�
included AS12, don’t. In the latter case, you’ll need to use the utility called SRECCVT.�

6�

 3 HARDWARE DESIGN FEATURES�

3.1 3-VOLT OPERATION�
One of the nice features of the 9S12C is that it can operate on 3 to 5 V, while maintain-�

ing full bus speed capability. To support 3 Volt operation, the module incorporates an�
adjustable regulator whose output voltage is set by a resistive voltage divider. The circuit�
has been designed such that simply inserting a shorting jumper causes the regulator’s�
output to shift from 5V to 3.3V. When operated at 3V, there are a few precautions that�
should be noted, however.�

The logic pins are�not� 5V-tolerant, so you will need to take the necessary steps to�
prevent damage to the I/O pins of the MCU. Also, the maximum VRH voltage is limited to�
3.3V, so any external voltage or precision voltage reference you supply should be scaled�
accordingly. One last point is that some BDM pods will not work with 3 Volt targets, so you�
should check the specs of the BDM pod you intend to use. A good choice is our�
MicroBDM12LX (#UBDM12LX), which works at both 3V and 5V.�

3.2 RESET�
Unlike previous HC11 and HC12 designs, the 9S12C MCU has an on-chip low-voltage�

inhibit (LVI) reset circuit, so it is not necessary to provide such a circuit externally. A�
momentary tact switch is provided for manual reset, and the LVI circuit will provide a clean�
reset signal upon power-up.�

3.3 ABOUT THE VOLTAGE REGULATOR�
 Adapt9S12C includes an LM1086CT-ADJ voltage regulator. Housed in a TO-220�

package, it is capable of handling a whopping 1.5 Amps at room temperature! Other nice�
features are: reasonably low quiescent current (5mA, typical), and low dropout voltage�
(1V @ 1A)-- it will work with an input voltage down to about 6 Volts, making it quite�
well-suited to battery operation. It is also designed to withstand reverse polarity. One�
drawback, however, is that it can become unstable and start to oscillate at low tempera-�
tures, especially if the input voltage source is connected via long wires. If low-temperature�
operation is anticipated, the on-board 10uF tantalum capacitor can be replaced with a�
higher value (47uF or 100uF). To compensate for long lead-in wires, add capacitance of�
100uF at, or close to, connector J1. Refer to the manufacturer’s data sheet for more.�

Heatsinking�. Because the regulator is mounted on the underside of the circuit board,�
with the package body parallel to the plane of the board, it can be safely attached to a�
heatsink. Many clip-on heatsinks are available for use with TO-220 packages. Another�
option is to mount the board on a sheet of aluminum, using standoffs and insulated hard-�
ware. If the appropriate length is chosen for the standoffs, the tab of the regulator will lie�
flush with the aluminum sheet, and can be coated with silicone grease and bolted (or�
riveted) to the plate (tightening a nut and bolt will require a little ingenuity).�CAUTION!�
Unlike some other voltage regulators, the metal tab is not Ground-- it is con-�
nected to Vout so, in most cases, you will need a heatsink insulation kit.�

3.4 PLL�
While the supplied crystal is only 8MHz, the MCU is capable of running at a much higher�

speed. The phase-locked loop feature of the MCU allows you to boost the bus speed by an�
integer multiple of the crystal frequency, so by enabling the PLL, you can actually run the�
MCU at 24Mhz.�

7�

3.5 ADDITIONAL INPUT/OUTPUT PINS�
An additional I/O connector is located on the upper edge of the module, providing�

access to an another 8-pin I/O port (PORTH). The extra two pins on the connector bring�
out Ground and Vcc for convenience. This means a standard 10-pin ribbon cable may be�
used to interface them to your circuit. We make a 10-pin solderless breadboard adapter�
(#ADIDC10-M) which can be used with a 10-conductor ribbon cable (#RC10FF6) to bring�
the extra pins down to your solderless breadboard.�

 4 WRITING SOFTWARE�

4.1 IMPACT OF THE SERIAL MONTIOR�
When you are working without a BDM pod, the Serial Monitor program is the only�

method available to load and erase flash. It is in a protected block of flash, so there’s no�
way to accidentally erase it. There are two modes, controlled by switch SW2: Run and�
Load. The monitor mode is determined immediately following reset by checking the�
position of switch SW2. When working with the monitor program in place, there are a few�
points to be noted:�

1) while the user vectors are implemented by the monitor at 0xF780 to 0xF7FF, you�
don’t really have to worry about it, because the monitor program will automatically adjust�
them when your s-record is loaded.�

2) the monitor relocates RAM to the address range 0x3800 to 0x4000 from the default�
location after MCU reset of 0x0000 to 0x07FF.�

3) the monitor program enables the phase-locked loop (PLL), so the target is running at�
24Mhz (when in LOAD mode) and not at the startup speed of 4Mhz.�

4) the user code must clear the CCR I-Bit, either via a CLI in assembler or via the�
INTR_ON() in ICC12.�

5) SCI0 cannot be used by the user program when in LOAD mode, since it is dedicated�
to the monitor program.�

6) COP cannot be disabled in Load mode.�

4.2 WRITING A SIMPLE C PROGRAM IN ICC12�
Before starting, you’ll need to set up your compiler settings, as follows:�
Program Memory = 0x4000.0x7FFF:0xC000.0xFFFF�
Data Memory = 0x3800�
Stack Pointer = 0x3FC0�

Note that the Data Memory and Stack Pinter addresses shown are valid only for a�
device with a resident monitor, since the monitor remaps the RAM following reset. If you�
are writing software for a completely blank chip, and loading it in via a BDM pod, you’ll�
need to change these values to work with the default RAM address range (see the MCU�
datasheet).�

//this programflashes LED D1 on PP0 twice a second�
#include <hcs12c32.h>�

#define DUMMY_ENTRY (void (*)(void))0xFFFF�

#pragma nonpaged_function _startextern void _start(void); /* entry point in crt12.s */�
void main(){�

8�

9�

 INTR_ON(); //needed for the SerialMonitor�

 DDRP = 0x01; //Enable LED port�

 RTICTL = 0x7F; //Set RTI divider for 4Hz time base�
 CRGFLG |= 0x80; //Clear the RTI Flag�

 CRGINT |= 0x80; //Enable the RTI�
}#pragma interrupt_handler rti_handler�
void rti_handler(){�
 CRGFLG |= 0x80; // Clear the RTI Flag�
 PTP ^= 0x01; //Toggle LED�
 INTR_ON(); //Enable Interrupts�
}�

#pragma abs_address:0xFFF0�

void (*interrupt_vectors[])(void) =�
{�
 rti_handler, /*Real Time Interrupt*/�

 DUMMY_ENTRY, /*IRQ*/�
 DUMMY_ENTRY, /*XIRQ*/�

 DUMMY_ENTRY, /*SWI*/�
 DUMMY_ENTRY, /*Unimplemented Intruction Trap*/�

 DUMMY_ENTRY, /*COP failure reset*/�
 DUMMY_ENTRY, /*Clock monitor fail reset*/�
 _start, /*Reset*/�

};�
#pragma interrupt_handler rti_handlervoid rti_handler(){�

 CRGFLG |= 0x80; // Clear the RTI Flag�
 PTP ^= 0x01; //Toggle LED�

 INTR_ON(); //Enable Interrupts�
}�

#pragma abs_address:0xFFF0�

void (*interrupt_vectors[])(void) =�
{�
 rti_handler, /*Real Time Interrupt*/�

 DUMMY_ENTRY, /*IRQ*/�
 DUMMY_ENTRY, /*XIRQ*/�
 DUMMY_ENTRY, /*SWI*/�
 DUMMY_ENTRY, /*Unimplement Intruction Trap*/�
 DUMMY_ENTRY, /*COP failure reset*/�
 DUMMY_ENTRY, /*Clock monitor fail reset*/�
 _start, /*Reset*/�

};�

4.3 OTHER ISSUES WITH ICC12�
Because the register addresses have changed from what they were in HC12, meaning�

the header file is different for the C32, some library files in ICC12 will need to be re-�
compiled, using the new header file, if you want to use them. Of course, if you’re not�
using library functions, or you are using functions that don’t involve registers, then there�

won’t be a problem with the existing versions. The modified functions are included on the�
CD-ROM to get you started.�

To use the SCI, make sure to include�C32_iochar.c� and�C32_serial.c�.� Also, you’ll�
need the complete vector file for the C32, which is called�C32_vectors.c�. Unzip�
C32_C.zip� and place�hcs12c32.h� in�c:\icc\include\� (or in your equivalent path). Make�
sure to place�C32_Vectors.c� in the same folder as your project, and add it to you project�
via the “add file menu item”.�

4.4 “HELLO WORLD” PROGRAM�
First of all create a new project from the Project menu.�
Then create a new file and save it as HelloWorld.c Add it to the Project by right�

clicking in the Project Panel and using Add Files to add it to the Files section.�

Next type in the following code:�

#define _SCI�
#include <hcs12c32.h>�

#pragma nonpaged_function _start�
extern void _start(void); /* entry point in crt12.s */�

extern int _textmode;�

int putchar(char c)�
 {�
 if (_textmode && c == ‘\n’)�
 putchar(‘\r’);�
 while ((SC0SR1 & TDRE) == 0)�
 ;�
 SC0DRL = c;�
 return c;�
 }�

void main(){�
 INTR_ON(); //need for the SerialMonitor�

 DDRP = 0x01; //Enable LED�
 SCI0BD = 26; //9600 Baud�
 SCI0CR2 = 0x0C; /* enable transmitter and receiver */�

 puts(“Hello, World!”);�

}�

#pragma abs_address:0xFFFE�

void (*interrupt_vectors[])(void) =�
{�
 _start, /*Reset*/�
};�

Since�puts� calls�putchar�, we define it before invoking it in�main�.�Main� has an implicit�

10�

_Start� entry point, which is called after the setup by�CRT12.o�, which is a module that the�
ICC12 linker links in as the starting point of the program. Besides initializing the stack and�
other system features it initializes memory, initialized variables and constants before�
transferring control to the Main.�

Compile and link the program, fixing any syntax errors that may have cropped up.�
Ensure that the Project Options | Device Configuration drop down box points to the�
9S12C32 Flash Mode. This sets the link address to start the code section at 0x4000 and�
the stack at top of RAM (0x4000).�

 return c;�
 }�

void main(){�
 INTR_ON(); //need for the SerialMonitor�

 DDRP = 0x01; //Enable LED�
 SCI0BD = 26; //9600 Baud�
 SCI0CR2 = 0x0C; /* enable transmitter and receiver */�

 puts(“Hello, World!”);�

}�

#pragma abs_address:0xFFFE�

void (*interrupt_vectors[])(void) =�
{�
 _start, /*Reset*/�
};�

Since�puts� calls�putchar�, we define it before invoking it in�main�.�Main� has an implicit�
_Start� entry point, which is called after the setup by�CRT12.o�, which is a module that the�
ICC12 linker links in as the starting point of the program. Besides initializing the stack and�
other system features it initializes memory, initialized variables and constants before�
transferring control to the Main.�

Compile and link the program, fixing any syntax errors that may have cropped up.�
Ensure that the Project Options | Device Configuration drop down box points to the�
9S12C32 Flash Mode. This sets the link address to start the code section at 0x4000 and�
the stack at top of RAM (0x4000).�

4.5 USING A BDM POD�
If you have a BDM pod, you can erase the resident monitor program completely. This�

will free up all the MCU resources for your program (most importantly, the SCIs). Without�
the monitor in place, the RAM will be at the default location following reset, so make sure�
to use the correct compiler/linker settings. Also, the PLL won’t be enabled, so the bus�
speed will be 4 MHz.�

4.6 AUTOMATING S-RECORD CONVERSION IN ICC12�
You may have to convert the s-record file to get it into the proper format for your BDM�

pod to load correctly. ICC12 has a nice feature at�Project->Options->Compiler-�
>ExecuteCommandAfterBuild� where you can add the SRECCVT command mentioned�
earlier.�

11�

 5 GOING FURTHER�

If you’d like to get started interfacing common electronic devices such as LEDs, switch-�
es, relays, etc., you may consider purchasing the optional Demo Card (Adapt9S12DemoH1,�
shown). It includes a light sensor, thermistor, bargraph LED, DIP switch, potentiometer,�
audio transducer, and a couple of logic MOSFETs, and has support for an optional character�
LCD.�

Several other Application Cards are available, including�
• a Display/Keypad/Keyboard Interface (DKKI) which supports character LCDs, PS/2�

keyboard, and/or matrix keypads. Communication with the LCD is accomplished via the�
SPI, using a serial shift register, reducing the number of port pins required.�

• a Voice Record/Playback Module (AD11DXVRPM) which incorporates the Winbond�
ISD2560 60-second solid state record/playback chip, and supports MCU control�

• a Servo/Sensor Interface Module (AD9S12SSIM) which supports standard robotics�
applications (hobby servo control, IR distance-measuring sensors, sonar distance-measur-�
ing sensors, audio microphone, audio transducer, etc.)�

• a 3-axis Bi-polar Stepper Motor Controller board (AD12DXXYZSM), which can be�
utilized to implement CNC applications�

Check the subcategory called Application Cards on our website to browse the currently�
available selection.�

12�

13�

APPENDIX A - SERIAL MONITOR�
INTRODUCTION�

This appendix describes the Freescale 2 Kbyte monitor program for the HC9S12 series�
MCU. This program supports 23 primitive debug commands to allow FLASH / EEPROM�
programming and debug through an RS232 serial interface to a personal computer. These�
include commands to reset the target MCU, read or modify memory (including FLASH�
/EEPROM memory), read or modify CPU registers, go, halt, or trace single instructions. In�
order to allow a user to specify the address of each interrupt service routine, this monitor�
redirects interrupt vectors to an unprotected portion of FLASH just below the protected�
monitor program. This monitor is intended to be device unspecific, this single application�
with very slight modification should execute on any HC9S12 derivative. A user on a tight�
budget can evaluate the MCU by writing programs, programming them into the MCU, then�
debug using only a serial I/O cable and free software (uBug12) for their personal computer.�

This monitor does not use any RAM other than the stack itself. The COP watchdog is�
utilized for a cold reset function; user code should not disable the COP (ie. by writing 0x00�
to COPCTL). This development environment assumes you reset to the monitor when you�
are going to perform debug operations. If your code takes control directly from reset, and�
then an SCI0 interrupt or a SWI attempts to enter the monitor, the monitor may not�
function because SCI0, the phase locked loop (PLL), and memory initialization registers�
may not be initialized as they would be for a cold reset into the monitor. There is no error�
handling for the PLL. If the frequency source is missing or broken, the monitor will not�
function. The monitor sets the operating speed of the MCU to 24 MHz. Modification of the�
MCU speed by the user with out considerations for the monitor program will render the�
monitor nonfunctional. If the PLL loses lock during operation, the monitor will fail.�

BLOCK PROTECTION�
In order to prevent accidental changes to the monitor program itself, the 2 Kbyte block�

of FLASH memory where it resides ($F800-$FFFF), is block protected. Additionally all write�
commands are restricted from modifying the monitor memory space. The only way to�
change the contents of this protected block is to use a BDM-based development. In the�
lowest cost applications where the monitor is used with an SCI serial interface to the�
RS232 serial port on a personal computer, there is no way to accidentally erase or modify�
the monitor software.�

COP CONFIGURATION�
The monitor as written creates hard reset function by using the COP watchdog timer. It�

does so by enabling the COP and waiting for a COP timeout reset to occur. If the user�
application uses the COP two issues must be considered.�

•If the COP is disabled in the user application, the monitor will be unable to perform a�
hard reset and will soft reset to the start of the monitor instead.�

•The monitor does not service the COP timer. If the user application implements COP�
timer servicing, upon re-entry into the monitor a hard reset is likely to occur.�

MEMORY CONFIGURATION�
1) Register space is $0000-$03FF.�
2) Flash memory is any address greater than $4000. All paged addresses are assumed�

to be Flash memory.�
3) RAM ends at $3FFF and builds down to the limit of the device’s available RAM.�
4) External devices attached to the multiplexed external bus interface are not support-�

ed.�

14�

SERIAL PORT USAGE�
In order for this monitor to function the SCI0 serial interface is used. It is assumed that�

the monitor has exclusive use of this interface. User application code should not implement�
communications on this serial channel. This monitor accommodates RS232 serial communi-�
cations through SCI0 at 115.2 kbaud. For applications requiring the use of SCI0, you�
should purchase a BDM pod which allows for more advanced debugging.�

VECTOR REDIRECTION AND INTERRUPT USE�
Access to the user vectors is accomplished via a jump table located within the monitor�

memory space. This table points all interrupt sources to a duplicate vector table located�
just below the monitor. ($F780-$F7FE). The monitor will automatically redirect vector�
programming operations to these user vectors. The user’s code should therefore continue�
to implement the normal (non-monitor) vector locations ($FF80-$FFFE). If execution of an�
interrupt with an un-programmed vector is attempted, behavior is undefined. For this�
reason, the user is strongly encouraged to implement a software trace for all vectors, as is�
good programming practice. The monitor depends on interrupts being available for monitor�
re-entry after GO or TRACE commands. Therefore, it is important that the user application�
executes with interrupts enabled.�

APPENDIX B - UBUG12 COMMAND LIST�

--------------------------------------�REGISTERS� ---�
RD - Register Display�
RM <RegisterName> <Data8/16> - Register Modify�
CCR <Data8> - Set CCR register�
D <Data16> - Set D register�
PC <Data16> - Set PC register�
PP <Data8> - Set PP register�
SP <Data16> - Set SP register�
X <Data16> - Set X register�
Y <Data16> - Set Y register�

-----------------------------------�MEMORY MODIFY� ------------------------------------�
BF <StartAdd> <EndAdd> <Data8> - Block fill�
BFW <StartAdd> <EndAdd> <Data16> - Block fill word�
MD <StartAdd> [<EndAdd>] - Memory display�
MDW <StartAdd> [<EndAdd>] - Memory display word�
MM <Address> <Data8> - Memory modify byte�
MMW <Address> <Data16> - Memory modify word�

---� FLASH� --�
FBULK - Flash bulk erase�
FLOAD [;B][;M] - Flash load�

---------------------------------------�DEVICE INFO� --------------------------------------�
DEVICE - Get device name�

--�GO/HALT� --�
GO [<StartAddress>] - Start execution�
HALT - Halt execution�
RESET - Reset target�

---�GUI� ---�
CON <Comport> - Connect to target�
DISCON - Disconnect from target�
EXIT - Terminate GUI�
HELP - Display help�
OP <Opacity%> - Set main GUI opacity�

15�

Adapt9S12C Module�
Features and Pin Configuration�

2.8�

1.7
�

Dimensions in inches�

PIN #� NAME� PIN #� NAME�
1� PM2/MISO� 50� GROUND�
2� PM4/MOSI� 49� GROUND�
3� PM5/SCK� 48� PS0 or PJ6 (set by JB2)�
4� PM3/SS*� 47� Vcc�
5� PS1 or PJ7 (set by JB2)� 46� PE1 (IRQ*)�
6� PT7/IOC7� 45� PE0 (XIRQ*)�
7� PT6/IOC6� 44� RESET*�
8� PT5/IOC5� 43� PE7 (XECLKS*)�
9� PT4/IOC4/PW4� 42� PA0/ADDR8/DATA8�
10� PT3/IOC3/PW3� 41� PA1/ADDR9/DATA9�
11� PT2/IOC2/PW2� 40� PA2/ADDR10/DATA10�
12� PT1/IOC1/PW1� 39� PA3/ADDR11/DATA11�
13� PT0/IOC0/PW0� 38� PA4/ADDR12/DATA12�
14� PB7/ADDR7/DATA7� 37� PA5/ADDR13/DATA13�
15� PB6/ADDR6/DATA6� 36� PA6/ADDR14/DATA14�
16� PB5/ADDR5/DATA5� 35� PA7/ADDR15/DATA15�
17� PB4/ADDR4/DATA4� 34� PE2 (R/W*)�
18� PB3/ADDR3/DATA3� 33� PE4 (ECLK)�
19� PB2/ADDR2/DATA2� 32� PE3 (LSTRB*)�
20� PB1/ADDR1/DATA1� 31� Vana�
21� PB0/ADDR0/DATA0� 30� VRH�
22� PAD00/AN00� 29� PAD04/AN04�
23� PAD01/AN01� 28� PAD05/AN05�
24� PAD02/AN02� 27� PAD06/AN06�
25� PAD03/AN03� 26� PAD07/AN07�

www.technologicalarts.com • sales@technologicalarts.com • phone: +1 (416) 963-8996 • fax: +1 (416) 963-9179�

RS232 Port�

80-pin 9S12C MCU�

H1 Pin Assignments�

RS232 Interface�

50-pin I/O�
connector H1�

Power in�
(5 to 24 VDC)�

Voltage regulator�
(rear-mounted)� mounting holes 0.126�

dia. typical�
(2 places)�

Auxilliary I/O�
connector H2�

Standard Connector Options� (use “NC” for no connector)�

SB� RA� RA1� FRA1� FRA� M� M1� F1� F�

0.30�

FM� FM1�

Order Codes:�
AD9S12C32M-�q�
AD9S12C128M-�q�
(specify H1 connector option code)�

C19 �

R13 �

D2�
R4�

U3�

R3�

R�
1 �7 �R�

1 �6 �

0� 0�

1�1�

S �
W�
2 �

W7�
U4�

R10 �

W4�

V�
C�
C�

V�
I �N�

BDM IN �

CAN�

BOOT�

PT7 �
Adapt9S12C �

3�. �3�V�

D1�W1�

JB1�

W9�

W11�

W3�

U1�

JB3�

U2�

U5�

(C)2005 TECHNOLOGICAL ARTS �

R�
S�2�
3�2�

RUN�

RESET�

H1 �

REV 2�

1 �

50�

25�

26�

J1 �

www.technologicalarts.com�

J2 �

PWR�

J3 �

J4 �

H2 �

W10 �
J �B �
4 �

C1�

W6�

W5�
C16 �

C18 �

C17 �

R9�

C13 �

C14 �

C6�

R2�

R1�

R8�

R18 �

SW1 �

R6 �

C8 �

R11 �

C20 �

C5�

C3�
C15 �

C�
1 �0 �

C11 �

C�
2 �

R �
1 �5 �

C4�

W2�

MODB� MODA�

R12�

R7�

TERM. �

R�
1�4�

JB2�

R�
5� C�

9�C7�

PJ6 � PJ7 �

W8�
W12 �

W13 �

P �S �
0 �

P �S �
1 �

Y1�

MCU Mode Select�

CAN Interface�
Vref Source Select�

(when optional U3 used)�

PortS/PortJ Mapping�
Monitor Mode Select:�

RUN = run user program�
BOOT = run monitor program�

User LED�

5V/3.3V select�
Out=5V�

BDM Interface�

Precision Vref chip�
(optional)�

PIN #� NAME� PIN #� NAME�
1� PP0/KWP0/PW0� 2� PP7/KWP7�
3� PP1/KWP1/PW1� 4� PP6/KWP6/ROMCTL�
5� PP2/KWP2/PW2� 6� PP5/KWP5/PW5�
7� PP3/KWP3/PW3� 8� PP4/KWP4/PW4�
9� Vcc� 10� GND�

H2 Pin Assignments�

0.10�

0.10�

0.10�

0.33�
0.23� 0.23� 0.23� 0.23� 0.33� 0.33�

0.33�
0.32�

0.32�

0.33�

