Thermistor Constant Conversions - Beta to Steinhart-Hart

The non-linear resistance-temperature characteristics of negative-temperature coefficient (NTC) thermistors may be modeled to a high degree of accuracy using several modeling techniques. The most popular model is the Steinhart-Hart equation.

(1)
$$1/T = C1 + C2^{*}(\ln R) + C3^{*}(\ln R)^{3}$$

An early equation called the "Beta" formula proved to be useful over narrow temperature ranges. This equation requires a twopoint calibration but, under the best conditions, is accurate to approximately $\pm 1^{\circ}$ C over the temperature range of 0°C to 100°C.

(2)
$$R = R_0^* e^{\beta(1/T - 1/T_0)}$$

Where R_0 and T_0 are the "base" values for the thermistor. Temperature (T) is in Kelvin, and resistance (R) is in ohms.

If it is not possible to measure the temperature-resistance characteristics of a thermistor, this equation can be used to calculate the resistance-temperature characteristics. These resistance values can then be used in the Steinhart-Hart equation to calculate the C1, C2, and C3 constants.

Create a table of temperature-resistance values for a given Beta (B). Table 1 (right) is for temperatures of 273.15, 298.15, and 323.15 K. The thermistor resistances in Ω were calculated using equation (2) at each temperature. The values for R₀, T₀, and B were 10440, 298.15, and 4140, respectively. Once the resistance values are calculated, the Steinhart-Hart equation (1) can be used to calculate the constants C1, C2, and C3. ILX Lightwave's Application Note #4 offers pre-programmed methods for calculating C1, C2, and C3 based on the Steinhart-Hart equation.

Temperature (K)	R _{calc} (Ω)
273.15	37208
298.15	10440
323.15	3565

Table 1. Calculated Resistance Values

This method is not as accurate as actual resistancetemperature measurements because the resistance-temperature characteristics are calculated and based on a two-point calibration used to generate values for a three-point model. The magnitude of the error depends on the temperature range over which the resistance measurement is made versus the given T_0 . The measured thermistor resistance will be less accurate for temperatures further away from T_0 .

www.ilxlightwave.com