mikroElektronika

Development tools - Books - Compilers
www.mikroe.com

[S
—
=
S
=

BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

mikroBASIC

Making it simple

Develop your applications quickly and easily with the world's
most intuitive BASIC compiler for PIC Microcontrollers (families
PIC12, PIC16, and PIC18).

Highly sophisticated IDE provides the power you need with the
simplicity of a Windows based point-and-click environment.

With useful implemented tools, many practical code examples,

& S
supllnn'l'[n broad set of built-in routines, and a comprehensive Help,
mikroBasic makes a fast and reliable tool, which can satisfy

Irom “5.0 needs of experienced engineers and beginners alike.

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

| Reader’s note |

DISCLAIMER:

mikroBasic and this manual are owned by mikroElektronika and are protected by copyright
law and international copyright treaty. Therefore, you should treat this manual like any other
copyrighted material (e.g., a book). The manual and the compiler may not be copied, par-
tially or as a whole without the written consent from the mikroElektronika. The PDF-edition
of the manual can be printed for private or local use, but not for distribution. Modifying the
manual or the compiler is strictly prohibited.

HIGH RISK ACTIVITIES

The mikroBasic compiler is not fault-tolerant and is not designed, manufactured or intended
for use or resale as on-line control equipment in hazardous environments requiring fail-safe
performance, such as in the operation of nuclear facilities, aircraft navigation or communica-
tion systems, air traffic control, direct life support machines, or weapons systems, in which
the failure of the Software could lead directly to death, personal injury, or severe physical or
environmental damage ("High Risk Activities"). mikroElektronika and its suppliers specifically
disclaim any express or implied warranty of fitness for High Risk Activities.

LICENSE AGREEMENT:

By using the mikroBasic compiler, you agree to the terms of this agreement. Only one per-
son may use licensed version of mikroBasic compiler at a time.

Copyright © mikroElektronika 2003 - 2006.

This manual covers mikroBasic version 5.0.0.2 and the related topics. New versions may
contain changes without prior notice.

COMPILER BUG REPORTS:
The compiler has been carefully tested and debugged. It is, however, not possible to
guarantee a 100% error free product. If you would like to report a bug, please contact us at
the address office@mikroe.com. Please include the following information in your bug report:
- Your operating system
- Version of mikroBasic
- Code sample
- Description of a bug

CONTACT US:

mikroElektronika

Voice: + 381 (11) 30 66 377, + 381 (11) 30 66 378
Fax: + 381 (11) 30 66 379

Web: www.mikroe.com

E-mail: office@mikroe.com

PIC, PICmicro and MPLAB is a Registered trademark of Microchip company. Windows is a
Registered trademark of Microsoft Corp. All other trade and/or services marks are the
property of the respective owners.

[y MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

I BASIGRUSERSEnanlia

Table of Contents

CHAPTER 1 mikroBasic IDE
CHAPTER 2 Building Applications
CHAPTER 3 mikroBasic Reference
CHAPTER 4 mikroBasic Libraries

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

MIKROBASIG - BASIC BOMPILER FOR MICROCHIP PIC MICROCONTROLLERS | _______ making it simple...
CHAPTER 1: mikroBasic IDE 1
Quick Overview 1
Code Editor 3
Code Explorer 6
Debugger 7

Error Window 10
Statistics 11
Integrated Tools 14
Keyboard Shortcuts 17
CHAPTER 2: Building Applications 19
Projects 20
Source Files 21
Search Paths 21
Managing Source Files 21
Compilation 23
Output Files 23
Assembly View 23
Error Messages 24
CHAPTER 3: mikroBasic Language Reference 27
PIC Specifics 28
mikroBasic Specifics 30
Predefined Globals and Constants 30
Accessing Individual Bits 30
Interrupts 31
Linker Directives 32
Code Optimization 34
mikrolCD (In-Circuit Debugger) 35
mikrolCD Debugger Options 37
mikrolCD Debugger Example 38
mikrolCD Overview 42
Lexical Elements 44
Whitespace 44
Comments 45
Tokens 46
Literals 47
Integer Literals 47
Floating Point Literals 47

“TTpage e

g MIKROELEKTRONIKA: DEVELOPMENT TOOLS - Books - COMPILERS

mikroBASIC

making & smple... ! MIKROBASIC - BASIE COMPILER FOR MICROCHIP PIE MICROCONTROLLERS
Character Literals 48
String Literals 48
Keywords 49
Identifiers 50
Punctuators 51
Program Organization 53
Scope and Visibility 56
Modules 57
Include Clause 57
Main Module 58
Other Modules 59
Variables 60
Constants 61
Labels 62
Symbols 63
Functions and Procedures 64
Functions 64
Procedures 65
Types 67
Simple Types 68
Arrays 69
Multidimensional Arrays 70
Strings 71
Pointers 72
Structures 73
Types Conversions 75
Implicit Conversion 75
Explicit Conversion 76
Arithmetic Conversion 77
Operators 78
Precedence and Associativity 78
Arithmetic Operators 79
Relational Operators 80
Bitwise Operators 81
Expressions 84
Statements 85
asm Statement 85
Migration from older versions (v2.x) 86
Assignment Statements 87
Conditional Statements 87
Iteration Statements 90
Jump Statements 92
Compiler Directives 95
page

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS

mikroBASIC

MIKROBASIG - BASIC BOMPILER FOR MICROCHIP PIC MICROCONTROLLERS | _______ making it simple...
CHAPTER 4: mikroBasic Libraries 99

Built-in Routines 100
Library Routines 106
ADC Library 107
CAN Library 109
CAN Constants 115
CANSPI Library 121
Compact Flash Library 130
EEPROM Library 142
Ethernet Library 144
SPI Ethernet Library 156
Flash Memory Library 163
I12C Library 166
Keypad Library 171
LCD Library (4-bit interface) 175
LCD Library (8-bit interface) 181
Graphic LCD Library 186
Toshiba T6963C Graphic LCD Library 196
Manchester Code Library 212
Multi Media Card Library 219
OneWire Library 232
PS/2 Library 236
PWM Library 239
RS-485 Library 243
Software 12C Library 249
Software SPI Library 253
Software UART Library 256
Sound Library 259
SPI Library 261
USART Library 265
USB HID Library 269
Util Library 274
Conversions Library 275
Delays Library 281
Math Library 283
String Library 290
SPI Graphic LCD Library 298
Port Expander Library 309
SPI LCD Library (4-bit interface) 317
SPI LCD Library (8-bit interface) 322
SPI T6963C Graphic LCD Library 327
Contact Us 312

“TTpage e

= MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

CHAPTER

mikroBasic

QUICK OVERVIEW

mikroBasic is a powerful, feature rich development tool for PIC microcontrollers.
It is designed to provide the customer with the easiest possible solution for
developing applications for embedded systems, without compromising perform-
ance or control.

Highly advanced IDE, broad set of hardware libraries, comprehensive
documentation, and plenty of ready to run examples should be more than enough
to get you started in programming microcontrollers.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Code
Explorer

Code
Editor

Error
Window

mikroBasic for PIC by mikroElektronika
Fle Edit Search Project Run View Tools Help

DD % & |HRE|Q & P58 oud [viewStatistics A View Assembly

=l [cnts.phas }

[zh Start Debugger (2} 4

mikroBASIC
making ct simple...

Watch
Window

80 % 9T @

Code Explorer | QHeln | Kevbosd| | 1o 25 end sun Watch Window T
¥ = e 88 Eh By | 20 #) o0 oI @ [2
| |
- Functions s Variables | Stopwatch | Call Stack |
~ interupt " {4
Extract_Digit s Addiess | Hame [vaiue [
e e 30 TRISA = %00 * PORTA ALL oUTPUTH | 004A Master 0000 0002 /
e 51 TICOINT = 0O 047 input 0000 0000
R 0048 SFilb_S_A_spl_ead 0000 0000
_ . 0047 data 0000 0000
° 33 FIE1.RCIE = O cdisable usart in 0ds temp o000 0000
e 4+ PIEL.TXIE = 0O 0048 _getADC 0000 C506
° B FIE1.THMR1IE = 1 " enable interrupt 0052 measurement 0000 0000
e 5 THRLH = $3B " these values are |[|0054 lastValue 0000 0001
L - sac . gg:g ::hannel ggnu 0000
° 28 TiCoN = $F9 " set intermnal clo 4B p':p 0000 0000
i 0000 0000
- send_flag Colurn 0000 0000
- P5aveFSAL Fiow 0000 0000
- P5aveFSAH _ . 004D tent 0000 0000
*EIZ INTCON*_SCD ENABLE INTERRUFTH O04E i 0000 0000
RS Counter=0 0027 Istrl 00100000
@ 104 DoSend = FALSE 0028 Istrl 01000001 bl
° igz 1; o 0,00 us 0 cycles @ &.000000 MH:
c
® 107 function Concat (= string[30]; b: shingl30]): - Breakpoint: 5]
Prfect Set | project surmay | | g0 function Compare (3 stinal50L b: snglS 0k word: e rrupt might oS =
Do o 10s ot CORCON: word: igtie Module Line Number
s PROT. ON = §FFFD caunterd 100
F18F8720 - Lo const CODE_PROTJOFF = 4FFFF counterd n A
Clock; O &% = counterd a8
’7@3 000000 MHz : 112 rUKLA - o T turn omes aispiay on o
111 150 lines in File

2@ Messages | &) Find | [QConverar|

Line/Calumn_| Message No. | Message Text [Uit

oo 5 ‘warmning: |dentifier "RsPin" overrides declaration infunit “led_dbit" Painters_test

oo 5 ‘waming: |dentifier "EnPin" overrides declaration infnit "led_4bit"! Painters_test

.I.E.iﬂ_» 3 Identifier k' was not declared Painters_test

oo 101 Build failed
Code Breakpoints
Assistant Window

mikroBasic allows you to quickly develop and deploy complex applications:

- Write your BASIC source code using the highly advanced Code Editor

- Use the included mikroBasic libraries to dramatically speed up the development:
data acquisition, memory, displays, conversions, communications...

- Monitor your program structure, variables, and functions in the Code Explorer.
Generate commented, human-readable assembly, and standard HEX compatible

with all programmers.

- Inspect program flow and debug executable logic with the integrated Debugger.
Get detailed reports and graphs on code statistics, assembly listing, calling tree...

- We have provided plenty of examples for you to expand, develop, and use as

building bricks in your projects

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikro_BASIc

Mééw iz simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

CODE EDITOR

=

Tools Icon.

The Code Editor is advanced text editor fashioned to satisfy the needs of profes-
sionals. General code editing is same as working with any standard text-editor,
including familiar Copy, Paste, and Undo actions, common for Windows environ-
ment.

Advanced Editor features include:

- Adjustable Syntax Highlighting
- Code Assistant

- Parameter Assistant

- Code Templates

- Auto Correct for common typos
- Bookmarks and Goto Line

You can customize these options from Editor Settings dialog. To access the set-
tings, click Tools > Options from the drop-down menu, or click the Tools icon.

Editor Settings

=1~ Editar
Colors Scheme: [MewSchemel ~| 1 {§DEF INE PEM_SEQEI;CE_ON}
Z procedure 3etu H
#uita Conect [ﬂew Scheme] [Delete] B P
Auto Complete 3 Label A Label;
Toolz Aszembler ~ 4 var float variable: real;
—I- Praject Eha{adet[£ hex_warishle: word:
Search Path Floorgtmen [dec_wvarishle: integer;
Output Hexadecimal 7 begin
Identifier =] { Inititate ABS controller for new sessio
llegal Char s TRISE := §F000;
g“tm'lje' 10 float varisble := 12.345;
ctal B = g
Preprocessor 1L hex_wvariable := §1234;
Feserved Word 1z dec_wariable == -12345;
Space 13 asm
§"in.9. v 14 mowv [wil4], wil
£ b 15 mow wl, LATE
Foreground: 16 end; /) asm
17 if GetiB3S%3tate = TRUE then
M hd
— e e e o (T
ackground: 1o/
j—re] e o (R
Text Attibutes 21 L Lakel:
D Bold D Urderline zz if ZSystemBeady then
[Italic [Stikeout z3 TestSyatem|14] ;
[ok J ’ Cancel] ’ Apply

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS @

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Code Assistant [CTRL+SPACE]

If you type first few letter of a word and then press CTRL+SPACE, all valid iden-
tifiers matching the letters you typed will be prompted to you in a floating panel
(see the image). Now you can keep typing to narrow the choice, or you can select
one from the list using the keyboard arrows and Enter.

o
funchion Concat [a: ztring[30]; b: sting[30]]: ;
function Compare [a: zting[50]; b zting[50]); word;
war CORCON: word;

cohist CODE PROT ON = $FFFD:
CODE_FPROT_OFF = $FFFF;

Parameter Assistant [CTRL+SHIFT+SPACE]

The Parameter Assistant will be automatically invoked when you open a parenthe-
sis "(" or press CTRL+SHIFT+SPACE. If name of valid function or procedure
precedes the parenthesis, then the expected parameters will be prompted to you in
a floating panel. As you type the actual parameter, next expected parameter will
become bold.

dim channel as byte
unc_ Read)

Code Template [CTR+J]

You can insert the Code Template by typing the name of the template (for
instance, whileb), then press CTRL+J, and Editor will automatically generate
code. Or you can click button from Code toolbar and select template from the list.

You can add your own templates to the list. Just select Tools > Options from the
drop-down menu, or click the Tools Icon from the Settings Toolbar, and then
select the Auto Complete Tab. Here you can enter the appropriate keyword,
description, and code of your template.

4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Méaﬂ? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Auto Correct

The Auto Correct feature corrects some common typing mistakes. To access the
list of recognized typos, select Tools > Options from the drop-down menu, or click
Tools Icon from Settings Toolbar, and then select Auto Correct Tab. You can also
add your own preferences to the list.

I
D } Comment/Uncomment

Comment/ — The Code Editor allows you to comment or uncomment selected block of code by
Uncomment Icon.

a simple click of a mouse, using the Comment/Uncomment icons from the Code
Toolbar.

Bookmarks

Bookmarks make navigation through large code easier.

CTRL+<number> : Goto bookmark

CTRL+SHIFT+<number> : Set bookmark

Goto Line

Goto Line option makes navigation through large code easier. Select Search >
Goto Line from the drop-down menu, or use the shortcut CTRL+G.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 5

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W de-

CODE EXPLORER

=

Collapse/Expand

The Code Explorer is placed to the left of the main window by default, and gives
clear view of every declared item in the source code. You can jump to declaration
of any item by right clicking it, or by clicking the Find Declaration icon. To
expand or collapse treeview in Code Explorer, use the Collapse/Expand All icon.

Also, two more tab windows are available in the Code Explorer. QHelp Tab lists
all the available built-in and library functions, for a quick reference. Double-click-
ing a routine in the QHelp Tab opens the relevant Help topic. Keyboard Tab lists

All'lcon. all the available keyboard shortcuts in mikroBasic.
#2 Code Explarer l@ QHeIp] % Keyboard T2 Code Explorer @ QHelp l% Keyboald] T2 Code Explorer] @ QHelp I% K.evboard l
¥ =@ COMPACT FLASH || [IDE Shortcuts ~
- CF_Irit Fi Help
< man CF_Detect CTRL+M New Unit
constants CF_'wiite_Byte CTRL+0 Open
= variables CF_Write_word CTRL+F3 Compile
Ses CF_Read Byte CTRL+F11 Cade Explorer an/aff
Min CF_Read ‘ward CTRL+SHIFT+FS ‘iew breakpaints
Hr CF_Set_Reg_adr Advanced Editor shortcuts
Day CF_wirite_Init CTRL+SPACE Code Assistant
M CF_Read_|nit CTRL+SHIFT+5PACE Parameters Assistar
ear I2c CTRL+D Find declaration
-t I2C_w/ait_For_Read CTALG Goto line
=l Zern_fill 12C_wWait_Far_ldle CTRL+ Ingert Cade Template
CDTStantS 12c_Init CTRL+<number> Goto bookmark
- wariables 12C_Start CTRL+SHIFT+<rumber> Set bagkmark
=l Read_time 12C_Fiepeated Start CTRL+SHIFT+ Indent selection
constants I2C_Stop CTRL+SHIFT+L Urindent selectian
- variahles 12C_wir CTRL+ALT+SELECT Select columns
Sec 12C_Rd ALT+SELECT Select columns
Min Close_|2C Debugger Shortcuts
Hr FadhA F4 Run ta Cursor
Day Pt _I it F5 Toggle breakpoint
Mn Prn_ Dty FE Run/Pause Debugger
vear PwM_Stap F7 Stepinto
+ Tr.ansfomj_tlme A0OC F2 Step over
=1 Display_time ADC_Read F3 Debug
constants 5Pl CTRL+F2 Reset
* wariables SPI_Irit_advanced Basic Editor shortcuts
It Spi_lnit =} Eind Find hlaut b
Cori adribe v | =)
page

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Méaﬂ? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

DEBUGGER

Source-level Debugger is an integral component of mikroBasic development envi-
ronment. It is designed to simulate operations of Microchip Technology's
PICmicros and to assist users in debugging software written for these devices.

'@:"

Start Debugger.

Debugger simulates program flow and execution of instruction lines, but does not
fully emulate PIC device behavior: it does not update timers, interrupt flags, etc.

After you have successfully compiled your project, you can run the Debugger by
selecting Run > Debug from the drop-down menu, or by clicking Debug Icon .
Starting the Debugger makes more options available: Step Into, Step Over, Run to
Cursor, etc. Line that is to be executed is color highlighted.

Debug [F9]
1 Start the Debugger.

[unet]

Pause Debugger.

Run/Pause Debugger [F6]
Run or pause the Debugger.

Step Into [F7]
w0 Execute the current BASIC (single— or multi—cycle) instruction, then halt. If the
Step Into. instruction is a routine call, enter the routine and halt at the first instruction fol-
lowing the call.
Step Over [F8]
'ﬁn Execute the current BASIC (single— or multi—cycle) instruction, then halt. If the
Step Over. insl‘{ruction is a routine call, skip it and halt at the first instruction following the
call.

Step Out [Ctrl+F8]
(1 Execute the current BASIC (single— or multi—cycle) instruction, then halt. If the
instruction is within a routine, execute the instruction and halt at the first instruc-

Step Out. K .
tion following the call.
ol Run to cursor [F4]
Executes all instructions between the current instruction and the cursor position.

Run to Cursor.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 7

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Jump to Interrupt.

C]

Toggle
Breakpoint.

Jump to Interrupt [F2]
Jump to address $04 for PIC12/16 or to address $08 for PIC18 and execute the
procedure located at that address.

Toggle Breakpoint [F5]

Toggle breakpoint at the current cursor position. To view all the breakpoints, select
Run > View Breakpoints from the drop-down menu. Double clicking an item in
window list locates the breakpoint.

Watch Window

Debugger Watch Window is the main Debugger window which allows you to
monitor program items while running your program. To show the Watch Window,
select View > Debug Windows > Watch Window from the drop-down menu.

Watch Window E|@|E|
Eh By By | ®n o9 &I oo

[add
Jptr =l
IF Mame | Walue |
PCL OxFFFF
STATUS 0000 000 oo, .,
Wi OxE1EZ
phr Inaccessible
radius 3.141593E+000
krnp 4056
wolure 1

PC= 0x001355 Time= 10,46 ms

The Watch Window displays variables and registers of PIC, with their addresses
and values. Values are updated as you go through the simulation. Use the drop-
down menu to add and remove the items that you want to monitor. Recently
changed items are colored red.

Double clicking an item opens the Edit Value window in which you can assign a
new value to the selected variable/register. Also, you can change view to binary,
hex, char, or decimal for the selected item.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Méaﬂ? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Stopwatch Window

Debugger Stopwatch Window is available from the drop-down menu,
View > Debug Windows > Stopwatch.

The Stopwatch Window displays the current count of cycles/time since the last
Debugger action. Stopwatch measures the execution time (number of cycles) from
the moment Debugger is started, and can be reset at any time. Delta represents the
number of cycles between the previous instruction line (line where the Debugger
action was performed) and the active instruction line (where the Debugger action
landed).

Stopwatch Window

Cyiles: Time:
Current Count: | 34,794 13.92 ms
Delta: 3 2,00 us
Skopwatch: 119 47,60 Us
Reset To Zero
Clock: 10 MHz

Note: You can change the clock in the Stopwatch Window; this will recalculate
values for the newly specified frequency. Changing the clock in the Stopwatch
Window does not affect the actual project settings — it only provides a simulation.

View RAM Window

Debugger View RAM Window is available from the drop-down menu,
View > Debug Windows > View RAM.

The View RAM Window displays the map of PIC’s RAM, with recently changed
items colored red. You can change value of any field by double-clicking it.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS @

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS maéon? dW

ERROR WINDOW

In case that errors were encountered during compiling, compiler will report them
and won't generate a hex file. The Error Window will be prompted at the bottom
of the main window.

Error Window is located under message tab, and displays location and type of
errors compiler has encountered. The compiler also reports warnings, but these do
not affect generating hex code. Only errors can interefere with generation of hex.

Line/Colurnn | Me&&age Mo, | Meszage Text Uit

1 34 Invalid expresion C:\Program Flles'\M|kroe|ektron|ka\m|krnE\E Ma..
_ ! ewpected but = found [ogram Fil nelekin nik,
1 35 Internal eror C:\Program Fllex‘\M|kru:ue|ektron|ka\m|kmE\E ¥a...

Double click the message line in the Error Window to highlight the line where the
error was encountered.

Consult the Error Messages for more information about errors recognized by the
compiler.

ﬂ @ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikro_BASIl:

Méém? et simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

STATISTICS

i After successful compilation, you can review statistics of your code. Select

Project > View Statistics from the drop-down menu, or click the Statistics icon.
Statistics Icon. L here are six tab windows:

Memory Usage Window
Provides overview of RAM and ROM memory usage in form of histogram.

% Statistics ‘ZHE”X‘
] Frocedures (Graph) | Procedures (locations) | Frocedures (details) | RiaM | ROM |

RéM Memary Lsags (Ications)

ROM Memary Usage (Iocations)

540

1,617 Free RAM 30,581 Free ROM
23 Used RAM 2,176 Used ROM

Free RaM Used RAM Fres RO Used ROM

Procedures (Graph) Window
Displays functions in form of histogram, according to their memory allotment.

Statistics

Memory usage | Procedures (Graph] | Procedures [lacations) | Procedures (details] | RAM | ROM |

ROM usage by procedure (ROM locations)

Main

CF_write_word SO

CF_yrite_irt -SRI P 10 - - - - - - - - < - - o oo s

CF_Rend_Word SR BN - - - - - - - --- - << - - §o-nmnoee oo eposeessossoodiooo

CF_Reac_Int

CF_Reod Byte JRNNRRRY - - - - --- <o ooooee oo

CF Int_Port B B e il e

CF _Detect B e e e s Rt

CF \wiite_Byte JREET

F _set_Reg_por WMEEE

RG] T Jamems e e e e S e e e e S o e e

200 400

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Procedures (Locations) Window
Displays how functions are distributd in microcontroller’s memory.

*# Stati

mikroBASIC
making ct simple...

CF,

iCF,

CF_Read_Byt

CF_Wite_Byte

CF_Set_Reg_Adr ¢

istics

Memory usage | Procedures (Graph) | Procedures flocalions] | Procedures (detalls) | Rt | ROM |

_\Aite_ord

CF_Wite_init

_Read_ord

CF_Read_nit

CF_init_Part

CF_Detect f

delay_1 |
Tl

1)

500

1,000

1,500 2,000

ROM Address

Procedures (Details) Window
Displays complete call tree, along with details for each procedure and function:

= main

compact_C_|
= compact_C_F_cf_wite_init

compact_C_F _cf_init_port

=1 compact_C_F_cf_wite_byte
delays_delay_us

_sel_reg_adh

e_word

T
2
3
E]
2
z
o
I3
n

!
o

o
3
2

i
3
2
E

delays_delay_Tus

= compact_C._F_cf_wite_byte

delaps_delay_Tus

compact_C_F_cf_raad_init

= compact_C_F_cf_wite_byte
delaps_delay_us
compast_C_F_cf_set_reg_adr

= compact_C_F_cf read_byle

delaps_delay_Tus

Unit:

Memory usage | Procedures (Graph) | Procedues (localions] Procedures (detais) | RaM | ROM |

|ompact_C_F ppas

Procedure: Name: [compact_C_F_cf_read_wor [Fieal Name: [CF_Read_wiord

Size

Fieturn Type
Stait Address
End Addiess:
Memory Page
Variables:

Canstants:

ED Frequency: |1

E A

653 = [ox0356

(—
compact_C_F_cf_read_word_param_ctrlpart_2

[
[

[EN(EN

size, start and end address, calling frequency, return type, etc.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikro_BASIc

Mééw iz simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

RAM Window
Summarizes all GPR and SFR registers and their addresses. Also displays symbol-
ic names of variables and their addresses.

Memory usage | Frocedures (Graph) | Procedures (locations] | Frocedures [details) Fié }F\DM |
General purpase registers (GPR) Spesial lunction registers (SFR]
iddiess [Register [~ [adcress [Register ~
GO00C __emply 0:FE7 INDF1
G000 __emply O4FEE POSTINCI
OO00E __emply 04FES POSTDECT
OO00F __empty 0«FE4 PREINCT
G000 __emply DFE3 PLUSWA
00011 __emply 0OFE2 FSRIH
00012 __empty OOFET FSRIL
00013 __emply 0:FED BSA
00014 __emply 0:FDF | INDF2
040015 main_giobal 1 0FDE POSTINGZ
040016 main_giobal 2 0«FDD POSTDEC2
00017 compact_C_F_cl_wite_byte_param_ctrport_1 04FDC PREINCZ
040017 compact_C_F_cf set req_adi_param_ctrport_1 0OFDB PLUSW2
040018 compact_C_F_cf_wite_byte_param_ctrport_2 0FDA FSRZH
00018 compact_C_F_cf_sel_reg_adi_param_ctpart_2 04FDI FSRZL
00019 compact_C_F_cf_wite_bute_pariam_datapor_1 0«0FD8 STATUS
040019 compact_C_F_of_sst_req_adi_param_ach 0:OFD7 TMROH
040014 compact_C_F_cf_wite_byte_param_datspor_2 0:FDE TMROL
000TE compact_C_F_cl_wite_byte_param_bdata 0«FD5 TOCON
04001C compact_C_F_of_wite_init_param_ctlpor_1 | |oaF03 osooon v

ROM Window
Lists op-codes and their addresses in form of a human readable hex code.

] ‘nz |na |n-1 ‘ns ‘ns ‘07 i3] |na [~
1o = {F002 FFFF FFFF o100 0000 o2 oo coT? FFES
020 ctoig FrEA S0EF 6E01 OEFe 1401 6E00 5019 1000 £E00
0030 017 FFES oole FFEA cooo FFEF oz oo EE] FFES
0040 014 FFEA [EE] FFEF 17 FFES cots FFEA 8400 BEEF
0050 20600 1000 EE00 EFF 5000 E103 0000 EF2z Fooo EC4
0060 FoOo cot? FFES [EE] FFEA 9CEF ECD4 Fooo 8CEF EC4
0070 Fooo oz oo GATE oore FFES coin FFEA £A00 BSEF
080 2500 0E00 5000 E104 OEFF BETE EF4E Fooo oz o100
0080 cote FFES oo FFEA OEED EEEF 12 6ES BAEF BEEF
0040 BEEF COtE FFES CoTF FFEA OE0D BEEF [[3H 26E9 BAEF
00 ooz oo oiE FFES cotF FFEA OES4 GEEF [3H] 2669
oco CEFF BEEF ECO4 Fooo cotc FFES cot FFEA BA00 BEEF
000 2500 0E00 5000 E103 o000 EF72 Fo0o ECO04 Fooo oo1e
00ED FFES con FFEA 96EF EC4 Food COTE FFES CoTF FFEA
00F0 S0EF 6E20 ECO4 Fooo oo1e FFES colp FFEA S0EF i
o100 cotc FFES oo FFEA oot FFEF S0EF EC04 Fooo CoTE
v
— = e = o = n e e i —

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

mikroBASIC
making ct simple...

INTEGRATED TOOLS
USART Terminal

mikroBasic includes the USART (Universal Synchronous Asynchronous Receiver
Transmitter) communication terminal for RS232 communication. You can launch
it from the drop-down menu Tools > Terminal or by clicking the Terminal icon.

S, Communication Terminal

Settings Communication
e e —]
Baud: Append: [v] CR LF [Send as typing
Stop Bits: Fommat
+ ASCI " HEX " DEC
Paity:
0 Connected to COM1
Sent: at
Drata bits;)
Received: OK
Commands
RTS DTR
" Off o 0if
" On " On
Status
Send Receive LTS DsR
L] L] (] L]

ASCII Chart

ASCII Chart is a handy tool, particularly useful when working with LCD display.

You can launch it from the drop-down menu Tools > ASCII chart.

B[(=]e

% ASCII Chart

CHAPR DEC HEX EIN

NUL u] Ox00 oooo oooo
S0H 1 Ox0l oooo oool
BT E Ox0Z oooo 0010
ETx 3 0x03 o000 0011
EOT 4 Ox04 oooo 0loo
ENQ = Ox0& oooo o010l
ACE) Ox0& oooo 0110
EEL 7 0x07 oooo 0111
EZ =] Ox03 oooo 1000
HT 9 Ox039 oooo 100l
LF 10 Ox0h o000 1010
VT 11 0x0B o000 1011
FF 1z OxoC oooo 1100
CR 13 Ox0D oooo 110l

M

|

ﬂ 4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS -

Books - COMPILERS

mikro_BASIc

Mééw iz simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

7 Segment Display Decoder

The 7seg Display Decoder is a convenient visual panel which returns decimal/hex
value for any viable combination you would like to display on 7seg. Click on the
parts of 7 segment image to the left to get the desired value in the edit boxes. You
can launch it from the drop-down menu Tools > 7 Segment Display.

7 segment display decoder, FZ|

_ Common cathode
$ED
Comman ahode

$12

Decode in:
" decimal value
¢ hex value

EEPROM Editor
EEPROM Editor allows you to easily manage EEPROM of PIC microcontroller.

7. EEprom Dump @

0x 00 [FF Usze thiz
Data Memory Size: 256 Bytes r EEFB.DM
definition

8280 34 56 78 98 FF 56 66 FF |66 FF FF FF FF FF FF
ex10 |FF 12 |34 56 78 90 FF FF FF 55 44 FF FF FF FF FF
8x20 |FF FF 12 34 56 78 90 FF FF FF FF 33 FF FF FF FF
8x30 |FF FF [FF FF FF FF FF FF FF FF FF FF FF FF FF FF
ox40 |FF FF [FF FF FF FF FF FF FF FF FF FF FF FF FF FF
8x50 |FF FF [FF FF FF FF FF FF FF FF FF FF FF FF FF FF
8x60 |FF FF [FF FF FF FF FF FF FF FF FF FF FF FF FF FF
8x70 |FF FF [FF FF FF FF FF FF FF FF FF FF FF FF FF FF
8x80 |FF FF [FF FF FF FF FF FF FF FF FF FF FF FF FF FF
8x98 |FF FF [FF FF FF FF FF FF FF FF FF FF FF FF FF FF
exad |FF FF [FF FF FF FF FF FF FF FF FF FF FF FF FF FF
8xB8 |FF FF [FF FF FF FF FF FF FF FF FF FF FF FF FF FF
8xC8 |FF FF [FF FF FF FF FF FF FF FF FF FF FF FF FF FF
8xD0 |FF FF [FF FF FF FF FF FF FF FF FF FF FF FF FF FF
8xE® |FF FF [FF FF FF FF FF FF FF FF FF FF FF FF FF FF
8xF® |FF FF [FF FF FF FF FF FF FF FF FF FF FF FF FF FF

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ 5

MIKROBASIC -

mikroBASIC

BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

mikroBootloader
mikroBootloader can be used only with PICmicros that support flash write.

1. Load the PIC with the appropriate hex file using the conventional programming
techniques (e.g. for PIC16F877A use p16f877a.hex).

2. Start mikroBootloader from the drop-down menu Tools > Bootoader.

3. Click on Setup Port and select the COM port that will be used. Make sure that
BAUD is set to 9600 Kpbs.

4. Click on Open File and select the HEX file you would like to upload.

5. Since the bootcode in the PIC only gives the computer 4-5 sec to connect, you
should reset the PIC and then click on the Connect button within 4-5 seconds.

6. The last line in then history window should now read “Connected”.

7. To start the upload, just click on the Start Bootloader button.

8. Your program will written to the PIC flash. Bootloader will report an errors that
may occur.

9. Reset your PIC and start to execute.

The boot code gives the computer 5 seconds to get connected to it. If not, it starts
running the existing user code. If there is a new user code to be downloaded, the
boot code receives and writes the data into program memory.

The more common features a bootloader may have are listed below:

- Code at the Reset location.

- Code elsewhere in a small area of memory.

- Checks to see if the user wants new user code to be loaded.

- Starts execution of the user code if no new user code is to be loaded.

- Receives new user code via a communication channel if code is to be loaded.
- Programs the new user code into memory.

Integrating User Code and Boot Code

The boot code almost always uses the Reset location and some additional program
memory. It is a simple piece of code that does not need to use interrupts; therefore,
the user code can use the normal interrupt vector at 0x0004. The boot code must
avoid using the interrupt vector, so it should have a program branch in the address
range 0x0000 to 0x0003. The boot code must be programmed into memory using
conventional programming techniques, and the configuration bits must be pro-
grammed at this time. The boot code is unable to access the configuration bits,
since they are not mapped into the program memory space.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Méaﬂ? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

KEYBOARD SHORTCUTS

Below is the complete list of keyboard shortcuts available in mikroBasic IDE. You
can also view keyboard shortcuts in the Code Explorer, tab Keyboard.

IDE Shortcuts

MIKROELEKTRONIKA: DEVELOPMENT TOOLS -

F1 Help
CTRL+SHIFT+E Edit Project

Ctrl+N New Module

Ctrl+O Open

SHIFT+F9 Build all

Ctrl+F9 Compile

Fl11 Program

F12 Options

CTRL+F11 Compile and program
Ctrl+Shift+F5 View breakpoints

Basic Editor shortcuts

F3 Find, Find Next
CTRL+A Select All
CTRLAC Copy
CTRL+F Find
CTRL+P Print
CTRL+R Replace
CTRL+S Save module
CTRL+SHIFT+S Save As
CTRL+V Paste
CTRL+X Cut
CTRL+Y Redo
CTRL+Z Undo

COMPILERS

MIKROBASIC -

Advanced Editor shortcuts

Ctrl+Space
Ctrl+Shift+Space
Ctrl+D

CTRL+E

Ctrl+G

Ctrl+]

Ctrl+L

CTRL+/
Ctrl+number
Ctrl+Shift+number
Ctrl+Shift+1
Ctrl+Shift+U
Alt+Select

Tab

Shift+Tab
Ctrl+Alt+Select
Alt+F3

Debugger Shortcuts

F4
F5
F6
F7
F8
Ctrl+F8
F9
F2
Ctrl+F2
Ctrl+F5

BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Code Assistant
Parameter Assistant
Find declaration
Incremental search
Goto line

Insert Code Template
Procedures list
Toggle line comment
Goto bookmark

Set bookmark

Indent selection
Unindent selection
Select columns
Indent selection
Unindent selection
Select columns

Find in files

Run to Cursor
Toggle Breakpoint
Run/Pause Debugger
Step into

Step over

Step out

Debug

Jump to Interrupt
Reset

Add to watch

mIkI‘IlBAS“:

MIKROELEKTRONIKA: DEVELOPMENT TOOLS -

BOooks -

COMPILERS

CHAPTER

Buildin
Applications

Creating applications in mikroBasic is easy and intuitive. Project Wizard allows
you to set up your project in just few clicks: name your application, select chip,
set flags, and get going.

mikroBasic allows you to distribute your projects in as many modules as you find
appropriate. You can then share your mikroCompiled Libraries (.mc1 files) with
other developers without disclosing the source code. The best part is that you can
use .mc1 bundles created by mikroPascal or mikroC!

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

PROJECTS

mikroBasic organizes applications into projects, consisting of a single project file
(extension .pbp) and one or more source files (extension .pbas). You can com-
pile source files only if they are part of a project.

Project file carries the following information:

- project name and optional description

- target device

- device flags (config word) and device clock
- list of project source files with paths

Y New Project
Sl
New Project. The easiest way to create project is by means of New Project Wizard, drop-down

menu Project > New Project. Just fill the dialog with desired values (project name
and description, location, device, clock, config word) and mikroBasic will create
the appropriate project file.

Also, an empty source file named after the project will be created by default.
mikroBasic does not require you to have source file named same as the project,
it’s just a matter of convenience.

= Editing Project
e
Edit Project. Later, you can change project settings from the drop-down menu Project > Edit.

You can add or remove source files from project, rename the project, modify its
description, change chip, clock, config word, etc.

To delete a project, simply delete the folder in which the project file is stored.

2@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Méaﬂ? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

SOURCE FILES

Source files containing BASIC code should have the extension .pbas. List of
source files relevant for the application is stored in project file with extension
.pbp, along with other project information. You can compile source files only if
they are part of a project.

Search Paths

You can specify your own custom search paths. This can be configured by select-
ing Tools > Options from the drop-down menu and Compiler > Search Paths.

When including source files with the include clause, mikroBasic will look for
the file in following locations, in this particular order:

1. mikroBasic installation folder > “defs” folder

2. mikroBasic installation folder > “uses” folder

3. your custom search paths

4. the project folder (folder which contains the project file . pbp)

Managing Source Files

Creating a new source file

]

New File.

To create a new source file, do the following:

Select File > New from the drop-down menu, or press CTRL+N, or click the New
File icon. A new tab will open, named “Untitled1”. This is your new source file.
Select File > Save As from the drop-down menu to name it the way you want.

If you have used New Project Wizard, an empty source file, named after the proj-
ect with extension .pbas, is created automatically. mikroBasic does not require
you to have the source file named same as the project, it’s just a matter of conven-
ience.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 2 ﬂ

mikroBASIC

MIKROBASIGC - BASIC COMPILER FOR MICROGHIP PIC MICROCONTROLLERS _________________ making & simple. ..
|j Opening an Existing File
Open File, Select File > Open from the drop-down menu, or press CTRL+O, or click the
Open File icon. The Select Input File dialog opens. In the dialog, browse to the
location of the file you want to open and select it. Click the Open button.
The selected file is displayed in its own tab. If the selected file is already open, its
current Editor tab will become active.
é Printing an Open File
Print File. Make sure that window containing the file you want to print is the active window.

Select File > Print from the drop-down menu, or press CTRLAP, or click the Print
icon. In the Print Preview Window, set the desired layout of the document and
click the OK button. The file will be printed on the selected printer.

Saving File

=

Make sure that window containing the file you want to save is the active window.

Save File.
Select File > Save from the drop-down menu, or press CTRL+S, or click the Save
icon. The file will be saved under the name on its window.
ﬁ Saving File Under a Different Name
Save File As. Make sure that window containing the file you want to save is the active window.

Select File > Save As from the drop-down menu, or press SHIFT+CTRL+S. The
New File Name dialog will be displayed. In the dialog, browse to the folder where
you want to save the file. In the File Name field, modify the name of the file you
want to save. Click the Save button.

Closing a File

&

Make sure that tab containing the file you want to close is the active tab. Select

Close File.
File > Close from the drop-down menu, or right click the tab of the file you want
to close in Code Editor. If the file has been changed since it was last saved, you
will be prompted to save your changes.
CTpage T

22 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

W d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

COMPILATION

v When you have created the project and written the source code, you will want to
(A compile it. Select Project > Build from the drop-down menu, or click the Build
Icon, or simply hit CTRL+F9.

Build Icon.

Progress bar will appear to inform you about the status of compiling. If there are
errors, you will be notified in the Error Window. If no errors are encountered,
mikroBasic will generate output files.

Output Files

Upon successful compilation, mikroBasic will generate output files in the project
folder (folder which contains the project file . pbp). Output files are summarized
below:

Intel HEX file (. hex)
Intel style hex records. Use this file to program PIC MCU.

Binary mikro Compiled Library (.mc1)
Binary distribution of application that can be included in other projects.

List File (.1st)
Overview of PIC memory allotment: instruction addresses, registers, routines, etc.

Assembler File (.asm)
Human readable assembly with symbolic names, extracted from the List File.

Assembly View

After compiling your program in mikroBasic, you can click View Assembly Icon
or select Project > View Assembly from the drop-down menu to review generated
View Assembly assembly code (. asm file) in a new tab window. Assembly is human readable

Icon. with symbolic names. All physical addresses and other information can be found
in Statistics or in list file (. 1st).

A

If the program is not compiled and there is no assembly file, starting this option
will compile your code and then display assembly.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 2@

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

ERROR MESSAGES

Error Messages

Message Message Number
Error: "%s" is not a valid identifier 1
Error: Unknown type "%s" 2
Error: Identifier "%s" was not declared 3
Error: Expected "%s" but "%s" found 4
Error: Argument is out of range 5
Error: Syntax error in additive expression 6
Error: File "%s" not found 7
Error: Invalid command "%s" 8
Error: Not enough parameters 9
Error: Too many parameters 10
Error: Too many characters 11
Error: Actual and formal parameters must be identical 12
Error: Invalid ASM instruction: "%s" 13
Error: Identifier "%s" has been already declared 14
Error: Syntax error in multiplicative expression 15
Error: Definition file for "%s" is corrupted 16

24 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Mééw iz simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Hint and Warning Messages

Message Message Number
Hint: Variable "%s" has been declared, but was not used 1
Warning: Variable "%s" is not initialized 2
Warning: Return value of the function "%s" is not defined 3
Hint: Constant "%s" has been declared, but was not used 4
Warning: Identifier "%s" overrides declaration in unit "%s" 5

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 25

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dtW'n

2@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

CHAPTER

mikroBasic
Language Reference

Why BASIC in the first place? The answer is simple: it is legible, easy-to-learn,
structured programming language, with sufficient power and flexibility needed for
programming microcontrollers. Whether you had any previous programming expe-
rience, you will find that writing programs in mikroBasic is very easy. This chap-
ter will help you learn or recollect BASIC syntax, along with the specifics of pro-
gramming PIC microcontrollers.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

PIC SPECIFICS

In order to get the most from your mikroBasic compiler, you should be familiar
with certain aspects of PIC MCU. This knowledge is not essential, but it can pro-
vide you a better understanding of PICs’ capabilities and limitations, and their
impact on the code writing.

Types Efficiency

First of all, you should know that PIC’s ALU, which performs arithmetic opera-
tions, is optimized for working with bytes. Although mikroBasic is capable of han-
dling very complex data types, PIC may choke on them, especially if you are
working on some of the older models. This can dramatically increase the time
needed for performing even simple operations. Universal advice is to use the
smallest possible type in every situation. It applies to all programming in general,
and doubly so with microcontrollers.

When it comes down to calculus, not all PICmicros are of equal performance. For
example, PIC16 family lacks hardware resources to multiply two bytes, so it is
compensated by a software algorithm. On the other hand, PIC18 family has HW
multiplier, and as a result, multiplication works considerably faster.

Nested Calls Limitations

Nested call represents a function call within function body, either to itself (recur-
sive calls) or to another function. Recursive calls, as form of cross-calling, are
unsupported by mikroBasic due to the PIC’s stack and memory limitations.

mikroBasic limits the number of non-recursive nested calls to:

- 8 calls for PIC12 family,
- 8 calls for PIC16 family,
- 31 calls for PIC18 family.

The number of allowed nested calls decreases by one if you use any of the follow-
ing operators in the code: * / %. It further decreases by one if you use interrupt
in the program. If the allowed number of nested calls is exceeded, compiler will
report stack overflow error.

2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

W d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

PIC16 Only Specifics
Breaking Through Pages

In applications targeted at PIC16, no single routine should exceed one page (2,000
instructions). If routine does not fit within one page, linker will report an error.
When confront with this problem, maybe you should rethink the design of your
application — try breaking the particular routine into several chunks, etc.

Limits of Indirect Approach Through FSR

Pointers with PIC16 are “near”: they carry only the lower 8 bits of the address.
Compiler will automatically clear the 9th bit upon startup, so that pointers will
refer to banks 0 and 1. To access the objects in banks 3 or 4 via pointer, user
should manually set the IRP, and restore it to zero after the operation.

Note: It is very important to take care of the IRP properly, if you plan to follow
this approach. If you find this method to be inappropriate with too many variables,
you might consider upgrading to PIC18.

Note: If you have many variables in the code, try rearranging them with linker
directive absolute. Variables that are approached only directly should be moved
to banks 3 and 4 for increased efficiency.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 2@

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

mikroBASIC SPECIFICS

Predefined Globals and Constants

To facilitate programming, mikroBasic implements a number of predefined globals
and constants.

All PIC SFR registers are implicitly declared as global variables of byte type, and
are visible in the entire project. When creating a project, mikroBasic will include
an appropriate .def file, containing declarations of available SFR and constants
(such as PORTB, TMRI1, etc). Identifiers are all in uppercase, identical to nomen-
clature in Microchip datasheets. For the complete set of predefined globals and
constants, look for “Defs” in your mikroBasic installation folder, or probe the
Code Assistant for specific letters (CTRL+SPACE in Editor).

Accessing Individual Bits

mikroBasic allows you to access individual bits of variables. Simply use the dot
(.) with a variable, followed by a number. For example:

dim myvar as longint ' range of bits is myvar.0 .. myvar.31
r

' If RBO is set, set the 28th bit of myvar:
if PORTB.0 = 1 then

myvar.27 = 1
end if

There is no need for any special declarations; this kind of selective access is an
intrinsic feature of mikroBasic and can be used anywhere in the code. Provided
you are familiar with the particular chip, you can access bits by their name (e.g.
INTCON.TMROF).

@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOkS - COMPILERS

mikroBASIC

Méaﬂ? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Interrupts

Interrupts can be easily handled by means of reserved word interrupt.
mikroBasic implictly declares procedure interrupt which cannot be redeclared.

Write your own procedure body to handle interrupts in your application.
mikroBasic saves the following SFR on stack when entering interrupt and pops
them back upon return:

PIC12 family: w, STATUS, FSR, PCLATH

PIC16 family: w, STATUS, FSR, PCLATH
PIC18 family: FSR (fast context is used to save WREG, STATUS, BSR)

Note: mikroBasic does not support low priority interrupts; for PIC18 family, inter-
rupts must be of high priority.

Routine Calls from Interrupt

Calling functions and procedures from within the interrupt routine is now possible.
The compiler takes care about the registers being used, both in "interrupt" and in
"main" thread, and performs "smart" context-switching between the two, saving

only the registers that have been used in both threads.

The functions and procedures that don't have their own frame (no arguments and
local variables) can be called both from the interrupt and the "main" thread.

Interrupt Examples

Here is a simple example of handling the interrupts from TMRO (if no other inter-
rupts are allowed):

sub procedure interrupt

counter = counter + 1
TMRO = 96
INTCON = $20

end sub

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 3 ﬂ

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Linker Directives

mikroBasic uses internal algorithm to distribute objects within memory. If you
need to have variable or routine at specific predefined address, use linker direc-
tives absolute and org.

Directive absolute

Directive absolute specifies the starting address in RAM for variable. If variable
is multi-byte, higher bytes are stored at consecutive locations.

Directive absolute is appended to the declaration of variable:

dim x as byte absolute $22
' Variable x will occupy 1 byte at address $22

dim y as word absolute $23
' Variable y will occupy 2 bytes at addresses $23 and $24

Be careful when using absolute directive, as you may overlap two variables by
mistake. For example:

dim i as byte absolute $33
' Variable i1 will occupy 1 byte at address $33

dim jjjj as longint absolute $30

' Variable jjjj will occupy bytes at $30, $31, $32, $33; thus,
' changing 1 changes jjjj highest byte at the same time

Directive org

Directive org specifies the starting address of routine in ROM. It is appended to
the declaration of routine. For example:

sub procedure proc(dim par as byte) org $200
" Procedure proc will start at address $200

end sub

Note: Directive org can be applied to any routine except the interrupt procedure.
Interrupt will always be located at address $4 (or $8 for P18), Page0.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

méap? 684«“4!#56 MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Directive volatile
Directive volatile gives variable possibilty to change without intervention from
code.

Typical volatile variables are: STATUS, TIMERO, TIMER1, PORTA, PORTB etc.

dim MyVar as byte absolute $123 register volatile

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 3@

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Code Optimization

Optimizer has been added to extend the compiler usability, cuts down the amount
of code generated and speed-up its execution. Main features are:

Constant folding
All expressions that can be evaluated in the compile time (i.e. are constant) are
being replaced by their result. (3 + 5 -> 8);

Constant propagation

When a constant value is being assigned to certain variable, the compiler recog-
nizes this and replaces the use of the variable in the code that follows by constant,
as long as variable's value remains unchanged.

Copy propagation
The compiler recognizes that two variables have same value and eliminates one of
them in the further code.

Value numbering
The compiler "recognize" if the two expressions yield the same result, and can
therefore eliminate the entire computation for one of them.

"Dead code" ellimination
The code snippets that are not being used elsewhere in the programme do not
affect the final result of the application. They are automatically being removed.

Stack allocation
Temporary registers ("Stacks") are being used more rationally, allowing for VERY
complex expressions to be evaluated with minimum stack consumption.

Local vars optimization
No local variables are being used if their result does not affect some of the global
or volatile variables.

Better code generation and local optimization

Code generation is more consistent, and much attention has been made to imple-
ment specific solutions for the code "building bricks" that further reduce output
code size.

@4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mII(I‘OBASIG

BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

mikro ICD (In-Circuit Debugger)

mikro ICD is highly effective tool for Real-Time debugging on hardware level.
ICD debugger enables you to execute a mikroBasic program on a host PIC micro-

controller and view variable values, Special Function Registers (SFR), memory
and EEPROM as the program is running.

If you have appropriate hardware and software for using mikro ICD then you have

to upon completion of writing your program to choose between Release build
Type or ICD Debug build type.

Device: .ChODSE RF.:lF.‘aSE type Device
|P16Fa77A v| if you don't want to |P16Fa77a v|
use mikrolCD,
Clack: Clack:
008, 000000 MHz 00%,000000 MHz
Euild Twpe Build Type
() Release <} (D Release
() 1CD Debug

’—b (%) 1D Debug

Choose ICD Debug
type if you want
to use mikrolCD
debug.

After you choose ICD Debug build type it's time to compile your project. After
you have successfully compiled your project you must program PIC using F11
shortcut. After successful PIC programming you have to select mikro ICD by

selecting Debugger » Select Debugger » mikro ICD Debugger from the drop-
down menu.

Debugger | Run Tools Help

i| Select Dehugger 3
x|

Software Pic Simulakor

v | mikrolCD Debugger
[%] Led_Elin Ll :

—

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS maéon? de'

You can run the mikro ICD by selecting Run > Debug from the drop-down menu,
or by clicking Debug Icon . Starting the Debugger makes more options available:
Step Into, Step Over, Run to Cursor, etc. Line that is to be executed is color high-
lighted (blue by default). There is also notification about program execution and it
can be found on Watch Window (yellow status bar). Note that some functions take
time to execute, so running of program is indicated on Watch Window.

] Hol Hz b IS R Fawr)

[x] LED'_blinking.pbas

= Program LCD_demo
= dim text as string[z1]
. i as hyte [Add [add &l [Remave Al
L main: Select variable From list:
® .« FORTD = $00 [enabis =
=3 7 4 Search for wariable by assembly name: .
e = text = "mikroElektronika' | g
® 10 Led Init (PORTI) Name Yalue Address
® » Led Cmd(LCD_CURSOR_OFF) TRIZD 255 0x0F95 ~
® - Lod Cmd{LCD_CLEAR) text Lk 0x0021 -
- i 17 0037
@ = for i=1 to 17 WREG 23z Ox0FES
@ 15 Led Chril,i,textc[i-1]) STATUS 15 O:x0FDE 3
@ = next i e I Aenren b
= end. PC= 0000428 Time= 0,00 us

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mlkroBASIc

MIKROBASIC

mikro ICD Debugger Options

- BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Name

Description

Function Key

Debug

Starts Debugger.

[F9]

Run/ Pause
Debugger

Run or pause Debugger.

[F6]

Toggle
Breakpoints

Toggle breakpoint at the current cursor posi-
tion. To view all the breakpoints, select Run »
View Breakpoints from the drop-down menu.
Double clicking an item in window list
locates the breakpoint.

[F5]

Run to cursor

Execute all instructions between the current
instruction and the cursor position.

[F4]

Step Into

Execute the current C (single— or
multi—cycle) instruction, then halt. If the
instruction is a routine call, enter the routine
and halt at the first instruction following the
call.

[F7]

Step Over

Execute the current C (single— or
multi—cycle) instruction, then halt. If the
instruction is a routine call, skip it and halt at
the first instruction following the call.

[F8]

Flush RAM

Flushes current PIC RAM. All variable val-
ues will be changed according to values from
watch window.

N/A

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

mikroBASIC
making

mikro ICD Debugger Example

Here is a step by step mikro ICD Debugger Example. First you have to write a
program. We will show how mikro ICD works using this example:

program LCD demo
dim text as stringl 21]

i as byte
main:
PORTD = $00
TRISD = $00
text = "mikroElektronika"

Lcd_Init (PORTD)
Lcd Cmd (1)
Lcd Cmd (192)

for i=1 to 17
Led Chr(l,i,text[i-1])
next i
end.

After successful compilation and PIC programming press F9
for starting mikro ICD. After mikro ICD initialization blue active line should

appear.

~rg

[*] LED_blirking. pbas

H 4z

WA L pams e T TRNES] oo

= program LCD demo

= dim text as string[Z1]

] i as hyte
5 main;:
] = PORTD = $00
=]
[
® 10 Led Init (PORTD)

@ = Led Cwd (LCD CURSCR_OFF)
= Led Cmd (LCD CLEAR)

for i=1 to 17

® 15 Led Chriil,i,text[i-1])
@ » next i
= end.

|E| Watch

-—

e | =

By B B | ® o o1 #0 M Flushram
[-dn £dd [dp ndd ol [k Remave Al
Select variable From lisk:
| enable b |
Search for variable by assembly name: .
[(&
Mame Walue Address
TRISD 255 Ox0F95 £
kext {0} 0x0021 _
i 17 00037
WREG 23z Ox0FES
STATUS 15 Ox0FDGE w
PC= 0x000425 Tirne= 0,00 us

MIKROELEKTRONIKA: DEVELOPMENT TOOLS -

Books - COMPILERS

mikro_BASIl:

Méém? et simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

We will debug program line by line. Pressing F8 we are executing code line by
line. It is recommended that user does not use Step Into [F7] and Step Over [F8]
over Delays routines and routines containing delays. Instead use Run to cursor
[F4] and Breakpoints functions.

~r Ho 43 Hol 433 Wea A g =y = = AL

[%] LED_blinking.pbas

[B] Watch

= program LCD_demo

. [En B Ea | ® ob ¢ %0 M FushRam

= dim text as string[Z1]

. i as byte [Acd [add Al [Remave Al

5 main: Select variable From lisk:
& - PORTD = 300 [enabi1e 2
o 7 3 Search for wariable by assembly name: .
@ = text = "mikroElektronika® | g
@ 10 Led Init (PORTD) Narne Walue Address
© - Lod Cwd(LCD CURSOR_OFF) PORTD v P ~
™ « Led Cwd(LCD CLELR) TRISD 255 Ox0F95

o - - bexk s 0x0021 o
e = for i=1 to 17 i 17 0x0037
@ 15 Led Chril,i,texc[i-1]) WREG 232 0x0FES
o = next i STATUS 15 Ox0FDE v

" it PC=0x000425 Time= 0.00 us

All changes are read from PIC and loaded into Watch Window. Note that TRISD
changed its value from 255 to 0.

o Hol =z b I R P) WA a (ST T | LU) - E]

[x] LED_blinking.pbas

= program LCD_demo
. Er B By | ® 00 oI 90 M Fushpam
= dim text as string[Z1]
) i as hyte [Add [add Al [Remove Al
£ main: Select variable from lisk:
@ = PORTD = %00 |enable v|
e = TRISD = %00 Search for wariable by assembly name:
@ = text = "mikroElektronika'™ | g
10 Name Walue Address
® . Led Cwmd(LCD_CURSOR_OFF) PORTD v 0x0Fe3 ~
® . Led Cmd(LCD CLEAR) TRISD o 0 0F9G
. - - best {ot 00021 -
= for i=1 to 17 i 17 0x0037
® 15 Led Chril,i,textc[i-1]) WREG 23z 0x0FES
= next i STATUS 13 0x0OFDS I
" Rl PC= 0x00046C Time= 0,00 us
page

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS @@

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS maéat? de'

Step No. 4

Step Into [F7] and Step Over [F8] are mikro ICD debugger functions that are used
in stepping mode. There is also Real-Time mode supported by mikro ICD.
Functions that are used in Real-Time mode are Run/ Pause Debugger [F6] and
Run to cursor [F4]. Pressing F4 goes to line selected by user. User just have to
select line with cursor and press F4, and code will be executed until selected line

is reached.
~ra S W L B T A L pay [T Lot wa v e I — A =l
[x] LED_blinking.pbas
]] atcr AE
= program LCD_demo
. Er By By | ® 00 oI 20 M Fushpam
= dim text as string[Z1]
) i as hyte [Add [add Al [Remove Al
£ main: Select variable from lisk:
e . PORTD = $00 |enab1e v
@ = TRISD = %00 Search for variable by assembly name:
@ = text = "mikroElektronika" | @
= 10 Mame Walue Address
® . Led Cmd(LCD_CURSOR_OFF] PORTD v o A
® .| Lecd Cwd(LCD_CLEAR) JIEIS0 o OxOF 95
. - - best L) 00021
e = for i=1 teo 17 i 17 00037
® 15 Led Chril,i,textc[i-1]) WREG 23z 0x0FES
@ = next i STATUS 1a 0x0OFDS v
" PC= 0xDO046C Time= 0,00 us

Run(Pause) Debugger [F6] and Toggle Breakpoints [F5] are mikro ICD debugger
functions that are used in Real-Time mode. Pressing FS marks line selected by
user for breakpoint. F6 executes code until breakpoint is reached. After reaching
breakpoint Debugger halts. Here at our example we will use breakpoints for writ-
ing "mikroElektronika" on LCD char by char. Breakpoint is set on LCD_Chr and
program will stop everytime this function is reached. After reaching breakpoint we
must press F6 again for continuing program execution.

4@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikrn_BASIl:

WW? &tdmtﬁée... MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS
i mE | aorr I‘-l_l‘-L:) -‘-l_l‘-l,:)l\ﬁ" nuuu||:<)|:ml;u| Lo R ‘_l"‘"' = | = e BN
[%] LED_blinking.pbas -
(] Watch

= Program LCD_demo

- = B B | @, 0B O B0 M FlushRAM

= dim text as string[21

. i as byte glz1] [}Add Remave Properties [}P.dd all @-Remove all

L main: Select variable From list:
@ . PORTD = 300 |enable v
[= TRIZD = %00 Search for wariable by assembly name:

= text = "mikroElektronika" | g
® 10 Led Init (PORTI) Name Yalue Address
® « Led Cmd(LCD CURSOR OFF) FORTD 192 DxDFS3 A
=N - W . — TRISD 0 Ox0F35

. texk {0k 0x0021 =
@ « for i=1 to 17 i 17 00037
B 15 WREG 232 Ox0FES
@ = mext i STATUS 18 0x0FDE w

g =" PC= 0x000462 Time= 0,00 us

Breakpoints has been separated into two groups. There are hardware and software
break points. Hardware breakpoints are placed in PIC and they provide fastest
debug. Number of hardware breakpoints is limited (1 for P16 and 1 or 3 for P18).
If all hardware brekpoints are used, next breakpoints that will be used are software
breakpoint. Those breakpoints are placed inside mikro ICD, and they simulate
hardware breakpoints. Software breakpoints are much slower than hardware break-
points. This differences between hardware and software differences are not visible
in mikro ICD software but their different timings are quite notable, so it is impor-
tant to know that there is two types of breakpoints.

. TR FER R F R RFE R

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 4ﬂ

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W de-

mikro ICD (In-Circuit Debugger) Overview
Watch Window

Debugger Watch Window is the main Debugger window which allows you to
monitor program items while running your program. To show the Watch Window,
select View > Debug Windows » Watch Window from the drop-down menu.

The Watch Window displays variables and registers of PIC, with their addresses
and values. Values are updated as you go through the simulation. Use the drop-
down menu to add and remove the items that you want to monitor. Recently
changed items are colored red.

|E| Watch -_‘ @l E‘
Zh [2h 5 | #» o2 #T 20 M Flushram
[add [Add ol [Remave Al
Select variable From list:
enable v
Search For variable by assembly name:
&
Marng Walue Address
PORTD 192 0=0F33 ~
TRISD 0 0x0F95 |
text {o} 00021
i 17 020037
WREG 232 0:=0FE3
STATUS 15 0z0FDE
PCL 100 0=0FF9
PCLATH 126 0=0FFA 0
PCLATU o 0x0FFB
TosU a 0x0FFF
TOSH 4 0x0FFE
TosL 130 0x0FFD
FSR2L 255 0x0FD9
F3RZH a 0x0FDA
INDFZ o 0x0FDF
B3R S 0x0FED
PRODL o 0x0FF3 v
PC= 0x000452 Time= 0,00 us

Double clicking an item opens the Edit Value window in which you can assign a
new value to the selected variable/register. Also, you can change view to binary,
hex, char, or decimal for the selected item.

Edit value
| 0000 FFFF
Representation
" Dec * Hex " Bin " Float " Char
[sigred [ok] [Cancel

42 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikl'o_BASIc

Mééw iz simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

View RAM Window

Debugger View RAM Window is available from the drop-down menu, View >
Debug Windows > View RAM.

The View RAM Window displays the map of PIC’s RAM, with recently changed
items colored red.

uli] | 01 | 0z | 0z | 04 | s | i3 | a7 | 0 | 09 | 04 | O | ac | oo | OE | aF |ﬁ5CH |A

oooo | FF ula} 0 0z | 04 10 Z0 40 i} uli} uli}] 40 uli} oo oo

ooio) 14 0z i} o1 a0 an 40 20 10 04 0z 03 a3 aF 83 | OF

oozo) 01 | 6D 69 BB | 72 6F 45 | &C 65 6E 74 72 6F GE 89 | BB

oo el ol o 0A 1o | Ao iz a0 11 i} 0F 61 0 0F a7 06 | 05

o040 | 04 a3 aF oz oo 03 i} uli] Julu} it} Juli} 19 04 i} o0 30

ooso | =29 14 40 0z | 54 Juli} uli} 0z ula} 22 o0 04 Juli} 42 40 | 00

oos0 | oo ula} 4 oo ool 4 0 oo 0c 40 s}] il uli} oo 40

oo7o) oc | CE 41 on o 40 20 i} 45 Julu} an Juli} uli] ili} 40 oo oo

ooso | Sz 0s uli} o1 1C a4 0 20 o1 Al o1 03 Juli} 04 04 | 83

oos0 | oo ula} 0 04 | oo 40 uli} gz 20 20 uli} an 52 a1 0F | oo

ooAny 20 01 i oz 1C Do i} 20 Julu} an oo oc | &c 48 13 | 0o

Oogo | 10 g2 43 20 0o 12 10] a0 15 5} 03 | A0 aF a0 &0

oocoy oo i} ik} 40 | 45 oo Do an ula} 01 uli}] 40 | 04 2% | Bl

oapo | oo Julu} 10 51 40 an 0z 13 Julu} o1 an a0 10 i} o1 03

Oo0En | oS 50 uli} 0% | 83 24 an 10 10 01 uli} 03 0z uli} g2 | 46

OoFo | oo 10 [} 04 | oo oo 0c 0z 20 09 04] Juli} 0 04 | oo

Common Errors

- Trying to program PIC while mikro ICD is active.

- Trying to debug Release build Type version of program.

- Trying to debug changed program code which hasn't been compiled and pro-
grammed into PIC.

- Trying to select line that is empty for Run to cursor [F4] and Toggle Breakpoints
[F5] functions.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 4@

MIKROBASIC -

mikroBASIC

BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

LEXICAL ELEMENTS

These topics provide a formal definition of the mikroBasic lexical elements. They
describe the different categories of word-like units (tokens) recognized by a lan-

guage.

In the tokenizing phase of compilation, the source code file is parsed (that is, bro-
ken down) into fokens and whitespace. The tokens in mikroBasic are derived from
a series of operations performed on your programs by the compiler.

A mikroBasic program starts as a sequence of ASCII characters representing the
source code, created by keystrokes using a suitable text editor (such as the
mikroBasic Code Editor). The basic program unit in mikroBasic is the file. This
usually corresponds to a named file located in RAM or on disk and having the
extension .pbas.

Whitespace

Whitespace is the collective name given to spaces (blanks), horizontal and vertical
tabs, and comments. Whitespace serves to indicate where tokens start and end, but
beyond this function, any surplus whitespace is discarded.

For example, the two sequences

dim tmp as byte
dim j as word

and

dim tmp as byte
dim j as word

are lexically equivalent and parse identically.

Note: Newline character (CR/LF) is not a whitespace in BASIC, and serves as a
statement terminator/separator. In mikroBasic, however, you may use newline to
break long statements into several lines. Parser will first try to get the longest pos-
sible expression (across lines if necessary), and then check for statement termina-
tors.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

méap? et simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Newline Character

Newline character (CR/LF) is not a whitespace in BASIC, and serves as a state-
ment terminator/separator. Optionally, you may use newline to break very long
statements into several lines, as parser will first try to get the longest possible
expression. See Statements for more information.

Whitespace in Strings

The ASCII characters representing whitespace can occur within string literals, in
which case they are protected from the normal parsing process (they remain as
part of the string). For example, statement

some string = "mikro foo"

parses to four tokens, including the single string literal token:

some string

"mikro foo"
newline character

Comments

Comments are pieces of text used to annotate a program, and are technically
another form of whitespace. Comments are for the programmer’s use only; they
are stripped from the source text before parsing.

Use the apostrophe to create a comment:

' Any text between an apostrophe and the end of the
' line constitutes a comment. May span one line only.

Multi-line comments are not supported in BASIC.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 45

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

TOKENS

Token is the smallest element of a BASIC program that is meaningful to the com-
piler. The parser separates tokens from the input stream by creating the longest
token possible using the input characters in a left—to-right scan.

mikroBasic recognizes these kinds of tokens:

- keywords

- identifiers

- constants

- operators

- punctuators (also known as separators)

Token Extraction Example

Here is an example of token extraction. Let’s have the following code sequence:

end flag = 0

The compiler would parse it as the following four tokens:

end flag ' variable identifier
= ' assignment operator
0 ' literal

newline ' statement terminator

Note that end flag would be parsed as a single identifier, rather than as the key-
word end followed by the identifier flag.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Méaﬂ? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

LITERALS
Literals are tokens representing fixed numeric or character values.
The data type of a constant is deduced by the compiler using such clues as numer-
ic value and the format used in the source code.
Integer Literals
Integral values can be represented in decimal, hexadecimal, or binary notation.
In decimal notation, numerals are represented as a sequence of digits (without
commas, spaces, or dots), with optional prefix + or - operator to indicate the sign.

Values default to positive (6258 is equivalent to +6258).

The dollar-sign prefix ($) or the prefix 0x indicates a hexadecimal numeral (for
example, $8F or 0x8F).

The percent-sign prefix (%) indicates a binary numeral (for example, $0101).
The allowed range of values is imposed by the largest data type in mikroBasic —
longint. Compiler will report an error if the literal exceeds 2147483647
($7FFFFFFF).

Floating Point Literals

A floating-point value consists of:

- Decimal integer

- Decimal point

- Decimal fraction

- e or E and a signed integer exponent (optional)

Negative floating constants are taken as positive constants with the unary operator
minus (-) prefixed.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 47

MIKROBASIC

mikroBASIC

- BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W“? dW

mikroBasic limits floating-point constants to range
+1.17549435082E38 .. £6.80564774407E38.

Here are some examples:

0. ''=0.0

-1.23 ''= -1.23
23.45e6 ''= 23.45 * 1076
2e-5 '=2.0* 10"-5
3E+10 ''=3.0* 10710
.09E34 ''=0.09 * 1034

Character Literals

Character literal is one character from the extended ASCII character set, enclosed
by quotes (for example, "A"). Character literal can be assigned to variables of byte
and char type (variable of byte will be assigned the ASCII value of the character).
Also, you can assign character literal to a string variable.

String Literals

String literal is a sequence of up to 255 characters from the extended ASCII char-
acter set, enclosed by quotes. Whitespace is preserved in string literals, i.e. parser
does not “go into” strings but treats them as single tokens.

Length of string literal is the number of characters it consists of. String is stored
internally as the given sequence of characters plus a final null character (ASCII
zero). This appended “stamp” does not count against string’s total length. String
literal with nothing in between the quotes (null string) is stored as a single null
character. You can assign string literal to a string variable or to an array of char.

Here are several string literals:

"Hello world!"

" "

nen

nn

' message, 12 chars long

' two spaces, 2 chars long
' letter, 1 char long

' null string, 0 chars long

Quote itself cannot be a part of the string literal, i.e. there is no escape sequence.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mlkroBASIc

KEYWORDS

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Keywords are words reserved for special purposes and must not be used as normal

identifier names.

Beside standard BASIC keywords, all relevant SFR are defined as global variables
and represent reserved words that cannot be redefined (for example: TMRO, PCL,
etc). Probe the Code Assistant for specific letters (CTRL+SPACE in Editor) or

refer to Predefined Globals and Constants.

Here is the alphabetical listing of keywords in mikroBasic:

absolute
abs

and
array
asm
begin
boolean
case
char
chr
clear
const
dim
div

do
double
else
end
exit

float
for
function
goto
gosub

if
include
in

int
integer
interrupt
is

loop
label
mod
module
message
new
next
not

or
org
print
procedure
program
read
select
sub

step
string
switch
then

to

until
wend
while
with

xXor

Also, mikroBasic includes a number of predefined identifiers used in libraries. You
could replace these by your own definitions, if you plan to develop your own
libraries. For more information, see mikroBasic Libraries.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BoOkSs -

COMPILERS

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

IDENTIFIERS

Identifiers are arbitrary names of any length given to functions, variables, symbol-
ic constants, user-defined data types, and labels. All these program elements will
be referred to as objects throughout the help (not to be confused with the meaning
of object in object-oriented programming).

Identifiers can contain the letters a to z and A to z, the underscore character ' ',
and the digits 0 to 9. The only restriction is that the first character must be a letter
or an underscore.

Case Sensitivity

BASIC is not case sensitive, so Sum, sum, and suM represent an equivalent
identifier.

Uniqueness and Scope

Although identifier names are arbitrary (within the rules stated), errors result if the
same name is used for more than one identifier within the same scope and sharing
the same name space. Duplicate names are legal for different name spaces regard-
less of scope rules. For more information on scope, refer to Scope and Visibility.

Identifier Examples
Here are some valid identifiers:

temperature V1
Pressure
no_hit
dat2string
SUM3

_vtext

5@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOkS - COMPILERS

mikro_BASIc

Mééw iz simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

PUNCTUATORS

The mikroBasic punctuators (also known as separators) include brackets, parenthe-
ses, comma, colon, and dot.

Brackets

Brackets[] indicate single and multidimensional array subscripts:

dim alphabet as byte[30]

r

alphabet[2] = "c"

For more information, refer to Arrays.

Parentheses

Parentheses () are used to group expressions, isolate conditional expressions,
and indicate function calls and function declarations:

d=c¢c* (a + b) ' Override normal precedence

if (d = z) then ... ' Useful with conditional statements
func () ' Function call, no args

sub function func2(dim n as word) ' Function declaration

For more information, refer to Operators Precedence and Associativity,
Expressions, or Functions and Procedures.

Comma

The comma (,) separates the arguments in routine calls:

Lcd Out (1, 1, txt)

Further, the comma separates identifiers in declarations:

dim i, j, k as word

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 5 ﬂ

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

The comma also separates elements in initialization lists of constant arrays:

const MONTHS as bytel 12] = (31,28,31,30,31,30,31,31,30,31,30,31)

Colon

Colon (:) is used to indicate a labeled statement:

start: nop

goto start

For more information, refer to Labels.

Dot

Dot (.) indicates access to a structure member. For example:
person.surname = "Smith"

For more information, refer to Structures.

Dot is a necessary part of floating point literals. Also, dot can be used for access-
ing individual bits of registers in mikroBasic.

52 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Méaﬂ? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

PROGRAM ORGANIZATION

mikroBasic imposes strict program organization. Below you can find models for
writing legible and organized source files. For more information on file inclusion
and scope, refer to Modules and to Scope and Visibility.

Organization of Main Module

Basically, main source file has two sections: declaration and program body.
Declarations should be in their proper place in the code, organized in an orderly
manner. Otherwise, compiler may not be able to comprehend the program
correctly.

When writing code, follow the model presented in the following page.

Organization of Other Modules

Units other than main start with the keyword module; implementation section
starts with the keyword implements. Follow the models presented in the following
two pages.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 5@

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS Wﬂ? de-

Main unit should look like this:

program <program name>
include <include other modules>

T 5k ok %k ok ok ok ok ok ok & ok ok ok ok ok ok kb ok ok ok ok ok ok ok ok b ok ok ok ok b ok ok ok ok ok o ok ok b ok ok o ok b ok kb ok ok A ok ok

'* Declarations (globals):
L e b i b i b b b i b i b b b b b b b b b b b b i b i b b b b b b b b b b b b b b b i

' symbols declarations

symbol ...

' constants declarations
const ...

' variables declarations
dim ...

' procedures declarations
sub procedure procedure name(...)
<local declarations>

end sub

' functions declarations
sub function function name(...)
<local declarations>

end sub

T 5k ok ok o ok ok ok ok ok & ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok b ok b ok ok ok ok ok ok ok ok b ok ok ok ok b ok ok ok ok ok A ok ko

'* Program body:
L b b i i b i b b b i b b b b b b b b b b b b b b i b i b b b b b b i b b S b b b b b b i

main:

' write your code here
end.

54 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikl'o_BASIc

Méé&? iz simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Other units should look like this:

module <module name>
include <include other modules>

T 5k ok %k ok ok ok ok ok 5k & ok b ok ok ok ok ok ok ok ok b ok ok o ok b ok kb ok ok A ok ok

'* Interface (globals):
L b b b i b i b i b i b b b b b b b b b b b b b b i b i b b b b b b b b b b b b b b b

' symbols declarations

symbol ...

' constants declarations
const ...

' variables declarations
dim ...

' procedures prototypes
sub procedure procedure name(...)

' functions prototypes
sub function function name(...)

T 5k o ok ok ok ok ok ok ok & ok ok ok ok ok b ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok b ok ok ok ok ok o ok ok b ok ok o ok b ok kb ok ok A ok ko

"* Implementation:
T ok

implements

' constants declarations
const ...

' variables declarations
dim ...

' procedures declarations
sub procedure procedure name(...)
<local declarations>

end sub

' functions declarations
sub function function name(...)
<local declarations>

end sub

end.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 55

mikroBASIC

MIKROBASIC - BASIC GOMPILER FOR MICROGHIF PIG MICROGONTROLLERS | ________ making & slmple...
SCOPE AND VISIBILITY
Scope

The scope of identifier is the part of the program in which the identifier can be
used to access its object. There are different categories of scope which depend on
how and where identifiers are declared:

If identifier is declared in the declaration section of a main module, out of any
function or procedure, scope extends from the point where it is declared to the end
of the current file, including all routines enclosed within that scope. These identi-
fiers have a file scope, and are referred to as globals.

If identifier is declared in the function or procedure, scope extends from the point
where it 1s declared to the end of the current routine. These identifiers are referred
to as locals.

If identifier is declared in the interface section of a module, scope extends the
interface section of a module from the point where it is declared to the end of the
module, and to any other module or program that uses that module. The only
exception are symbols which have scope limited to the file in which they are
declared.

If identifier is declared in the implementation section of a module, but not within
any function or procedure, scope extends from the point where it is declared to the
end of the module. The identifier is available to any function or procedure in the
module.

Visibility

The visibility of an identifier is that region of the program source code from which
legal access can be made to the identifier’s associated object.

Scope and visibility usually coincide, though there are circumstances under which
an object becomes temporarily hidden by the appearance of a duplicate identifier:

the object still exists but the original identifier cannot be used to access it until the
scope of the duplicate identifier is ended.

Technically, visibility cannot exceed scope, but scope can exceed visibility.

5@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Méaﬂ? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

MODULES

In mikroBasic, each project consists of a single project file, and one or more mod-
ule files. Project file, with extension .pbp contains information about the project,
while modules, with extension .pbas, contain the actual source code.

Modules allow you to:

- break large programs into encapsulated modules that can be edited separately,
- create libraries that can be used in different projects,
- distribute libraries to other developers without disclosing the source code.

Each module is stored in its own file and compiled separately; compiled modules
are linked to create an application. To build a project, the compiler needs either a
source file or a compiled module file for each module.

Include Clause

mikroBasic includes modules by means of include clause. It consists of the
reserved word include, followed by a quoted module name. Extension of the file
should not be included.

You can include one file per include clause. There can be any number of
include clauses in each source file, but they all must be stated immediately after
the program (or module) name.

Here’s an example:

program MyProgram
include "utils"

include "strings"
include "MyUnit"

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 57

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Given a module name, compiler will check for the presence of .mc1 and .pbas
files, in order specified by the search paths.

- If both .pbas and .mc1 files are found, compiler will check their dates and
include the newer one in the project. If the .pbas file is newer than the .mcl, new
library will be written over the old one;

- If only .pbas file is found, compiler will create the .mc1 file and include it in
the project;

- If only .mc1 file is present, i.e. no source code is available, compiler will
include it as found;

- If none found, compiler will issue a “File not found” warning.

Main Module

Every project in mikroBasic requires single main module file. Main module is
identified by the keyword program at the beginning; it instructs the compiler
where to “start”.

After you have successfully created an empty project with Project Wizard, Code
Editor will display a new main module. It contains the bare-bones of a program:

program MyProject
' main procedure
main:

' Place program code here
end.

Other than comments, nothing should precede the keyword program. After the
program name, you can optionally place the include clauses.

Place all global declarations (constants, variables, labels, routines) before the label
main.

Note: In mikroBasic, the end . statement (the closing statement of every program)
acts as an endless loop.

5 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOkS - COMPILERS

mikroBASIC

W d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Other Modules

Modules other than main start with the keyword module. Newly created blank
module contains the bare-bones:

module MyModule
implements

end.

Other than comments, nothing should precede the keyword module. After the
module name, you can optionally place the include clause.

Interface Section

Part of the module above the keyword implements is referred to as interface sec-
tion. Here, you can place global declarations (constants, variables, and labels) for
the project.

You do not define routines in the interface section. Instead, state the prototypes of
routines (from implementation section) that you want to be visible outside the
module. Prototypes must match the declarations exactly.

Implementation Section

Implementation section hides all the irrelevant innards from other modules, allow-
ing encapsulation of code.

Everything declared below the keyword implements is private, i.e. has its scope

limited to the file. When you declare an identifier in the implementation section of
a module, you cannot use it outside the module, but you can use it in any block or
routine defined within the module.

By placing the prototype in the interface section of the module (above the
implements) you can make the routine public, i.e. visible outside of module.
Prototypes must match the declarations exactly.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 5@

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

VARIABLES

Variable is object whose value can be changed during the runtime. Every variable
is declared under unique name which must be a valid identifier. This name is used
for accessing the memory location occupied by the variable.

Variables are declared in the declaration part of the file or routine — each variable
needs to be declared before it can be used. Global variables (those that do not
belong to any enclosing block) are declared below the include statement, above
the label main.

Specifying a data type for each variable is mandatory. mikroBasic syntax for vari-
able declaration is:

dim identifier list as type

Here, identifier 1list is a comma-delimited list of valid identifiers, and type
can be any data type.

For more details refer to Types and Types Conversions. See also Scope and
Visibility.
Here are a few examples of variable declarations:

dim i, j, k as byte
dim counter, temp as word

Variables and PIC

Every declared variable consumes part of RAM memory. Data type of variable
determines not only the allowed range of values, but also the space variable occu-
pies in RAM memory. Bear in mind that operations using different types of vari-
ables take different time to be completed. mikroBasic recycles local variable mem-
ory space — local variables declared in different functions and procedures share
same memory space, if possible.

There is no need to declare SFR explicitly, as mikroBasic automatically declares
relevant registers as global variables of byte. For example: TOIE, INTF, etc.

@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOkS - COMPILERS

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

CONSTANTS

Constant is data whose value cannot be changed during the runtime. Using a con-

stant in a program consumes no RAM memory. Constants can be used in any

expression, but cannot be assigned a new value.

Constants are declared in the declaration part of program or routine. You can
declare any number of constants after the keyword const:

const constant name [as type] = value

Every constant is declared under unique constant name which must be a valid
identifier. It is a tradition to write constant names in uppercase. Constant requires
you to specify value, which is a literal appropriate for the given type. The type
is optional; in the absence of type, compiler assumes the “smallest” of the types

that can accommodate value.
Note: You cannot omit type if declaring a constant array.

Here are a few examples:

const MAX as longint = 10000

const MIN = 1000 ' compiler will assume word type
const SWITCH = "n" " compiler will assume char type
const MSG = "Hello" ' compiler will assume string type
const MONTHS as bytel 12] = (31,28,31,30,31,30,31,31,30,31,30,31)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

LABELS

Labels serve as targets for goto and gosub statements. Mark the desired state-
ment with label and a colon like this:

label identifier : statement

No special declaration of label is necessary in mikroBasic.

Name of the label needs to be a valid identifier. The labeled statement, and
goto/gosub statement must belong to the same block. Hence it is not possible to
jump into or out of a procedure or a function. Do not mark more than one state-

ment in a block with the same label.

Note: Label main marks the entry point of a program and must be present in the
main module of every project. See Program Organization for more information.

Here is an example of an infinite loop that calls the procedure Beep repeatedly:

loop: Beep
goto loop

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Méaﬂ? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

SYMBOLS

BASIC symbols allow you to create simple macros without parameters. You can
replace any one line of code with a single identifier alias. Symbols, when properly
used, can increase code legibility and reusability.

Symbols need to be declared at the very beginning of the module, right after the
module name and the (optional) include clauses. Check Program Organization for
more details. Scope of a symbol is always limited to the file in which it has been
declared.

Symbol is declared as:

symbol alias = code

Here, alias must be a valid identifier which you will be using throughout the
code. This identifier has file scope. The code can be any one line of code (literals,
assignments, function calls, etc).

Using a symbol in a program consumes no RAM memory — compiler simply
replaces each instance of a symbol with the appropriate line of code from the dec-

laration.

Here are a few examples:

symbol MAXALLOWED = 216 ' Symbol as alias for numeric value
symbol PORT = PORTC ' Symbol as alias for SFR

symbol MYDELAY = Delay ms (1000) " Symbol as alias for proc. call
dim cnt as byte ' Some variable

'.-.

main:

if cnt > MAXALLOWED then
cnt = 0
PORT.1 = 0
MYDELAY

end if

Note: Symbols do not support macro expansion in the way C preprocessor does.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS @@

MIKROBASIC

mikroBASIC

- BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

FUNCTIONS AND PROCEDURES

Functions and procedures, collectively referred to as routines, are subprograms
(self-contained statement blocks) which perform a certain task based on a number
of input parameters. Function returns a value when executed, and procedure does
not.

mikroBasic does not support inline routines.

Functions

Function is declared like this:

sub function function name(parameter list) as return type
[local declarations]
function body

end sub

The function name represents a function’s name and can be any valid identifier.
The return type is the type of return value and can be any simple type. Within
parentheses, parameter 1ist is a formal parameter list similar to variable dec-
laration. In mikroBasic, parameters are always passed to function by value; to pass
argument by the address, add the keyword byref ahead of identifier.

Local declarations are optional declarations of variables and/or constants,
local for the given function. Function body is a sequence of statements to be
executed upon calling the function.

A function is called by its name, with actual arguments placed in the same
sequence as their matching formal parameters. The compiler is able to coerce mis-
matching arguments to the proper type according to implicit conversion rules.
Upon function call, all formal parameters are created as local objects initialized by
values of actual arguments. Upon return from a function, temporary object is cre-
ated in the place of the call, and it is initialized by the expression of return state-
ment. This means that function call as an operand in complex expression is treated
as the function result.

Use the variable result (automatically created local) to assign the return value of
a function.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

méap? et simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Function calls are considered to be primary expressions, and can be used in situa-
tions where expression is expected. Function call can also be a self-contained
statement, in which case the return value is discarded.

Here’s a simple function which calculates x» based on input parameters x and n
(n > 0):

sub function power (dim x, n as byte) as longint
dim i as byte
i =20
result =1
if n > 0 then
for i =1 ton
result = result*x
next i
end if
end sub

Now we could call it to calculate, say, 312:

tmp = power (3, 12)

Procedures

Procedure is declared like this:

sub procedure procedure name(parameter 1ist)
[local declarations]
procedure body

end sub

The procedure name represents a procedure’s name and can be any valid identi-
fier. Within parentheses, parameter 1ist is a formal parameter list similar to
variable declaration. In mikroBasic, parameters are always passed to procedure by
value; to pass argument by the address, add the keyword byref ahead of
identifier.

Local declarations are optional declaration of variables and/or constants,
local for the given procedure. Procedure body is a sequence of statements to be
executed upon calling the procedure.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS @5

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

mlkroBASI(:

A procedure is called by its name, with actual arguments placed in the same
sequence as their matching formal parameters. The compiler is able to coerce mis-

matching arguments to the proper type according to implicit conversion rules.

Upon procedure call, all formal parameters are created as local objects initialized

by values of actual arguments.

Procedure call is a self-contained statement.

Here’s an example procedure which transforms its input time parameters, prepar-

ing them for output on LCD:

sub procedure time prep(dim byref sec, min,

sec = ((sec and S$F0) >> 4)*10 + (sec and

min = ((min and $FO0) >> 4)*10 + (min and

hr = ((hr and S$SFO0) >>4)*10 + (hr and
end sub

hr as byte)
SOF)
SOF)
SOF)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BoOkKkSs -

COMPILERS

mikroBASIC

Méaﬂ? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

BASIC is a strictly typed language, which means that every variable and constant
need to have a strictly defined type, known at the time of compilation.

The type serves:

- to determine the correct memory allocation required,
- to interpret the bit patterns found in the object during subsequent accesses,
- in many type-checking situations, to ensure that illegal assignments are trapped.

mikroBasic supports many standard (predefined) and user-defined data types,
including signed and unsigned integers of various sizes, arrays, strings, pointers,
and structures.

Type Categories
Types can be divided into:

- simple types

- arrays

- strings

- pointers

- structures (user defined types)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS @7

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

SIMPLE TYPES

Simple types represent types that cannot be divided into more basic elements, and
are the model for representing elementary data on machine level.

Here is an overview of simple types in mikroBasic:

Type Size Range
byte 8-bit 0..255
char* 8-bit 0..255
word 16-bit 0.. 65535
short 8-bit - 128 ..127
integer 16-bit -32768 .. 32767
longint 32-bit -2147483648 .. 2147483647
float 12-bit +1.17549435082 * 10-38 .

£6.80564774407 * 1038

* char type can be treated as byte type in every aspect

You can assign signed to unsigned or vice versa only using the explicit conversion.
Refer to Types Conversions for more information.

@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOkS - COMPILERS

mikroBASIc

Mééw iz simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

ARRAYS

An array represents an indexed collection of elements of the same type (called the
base type). Because each element has a unique index, arrays, unlike sets, can
meaningfully contain the same value more than once.

Array types are denoted by constructions of the form:
typel array length]

Each of the elements of an array is numbered from 0 through the
array length - 1. Every element of an array is of type and can be accessed by
specifying array name followed by element’s index within brackets.

Here are a few examples of array declaration:

dim weekdays as byte] 7]
dim samples as word 50]

begin
' Now we can access elements of array variables, for example:

samples[0] = 1
if samples[37] = 0 then

Constant Arrays

Constant array is initialized by assigning it a comma-delimited sequence of values
within parentheses. For example:

' Declare a constant array which holds no. of days in each month:

const MONTHS as bytel 12] = (31,28,31,30,31,30,31,31,30,31,30,31)
' Declare constant numbers:
const NUMBER as bytel 4][4] = ((0O, 1, 2, 3), (5, 6, 7, 8), (9, 10,

11,12), (13,14, 15, 16))

Note that indexing is zero based; in the previous example, number of days in
January is MONTHS[0] , and number of days in December is MONTHS[11] .

The number of assigned values must not exceed the specified length. Vice versa is
possible, when the trailing “excess” elements will be assigned zeroes.

For more information on arrays of char, refer to Strings.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS @@

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

MULTI-DIMENSIONAL ARRAYS

An array is one-dimensional if it is of scalar type. One-dimensional arrays are
sometimes referred to as vectors.

Multidimensional arrays are constructed by declaring arrays of array type. These
arrays are stored in memory in such way that the right most subscript changes
fastest, i.e. arrays are stored “in rows”. Here is a sample 2-dimensional array:

dim m as byte[50][20] '2-dimensional array of size 50x20

Variable m is an array of 50 elements, which in turn are arrays of 20 bytes each.
Thus, we have a matrix of 50x20 elements: first element is m[0][0], last one is
m[49][19]. First element of the 5th row would be m[0][5].

If you are not initializing the array in the declaration, you can omit the first dimen-
sion of multi-dimensional array. In that case, array is located elsewhere, e.g. in
another file. This is a commonly used technique when passing arrays as function
parameters:

sub procedure example (dim byref m as byte[50][20])
' we can omit first dimension

inc(m[1][1])
end sub

dim m as byte[50][20] '2-dimensional array of size 50x20
dim n as byte[4][2]1[7] '3-dimensional array of size 4x2x7
main:

func (m)

end.

7@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOkS - COMPILERS

mikro_BASIc

Mééw iz simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

STRINGS

A string represents a sequence of characters, and is an equivalent to an array of
char. It is declared like:

stringl string length]

Specifier string length is the number of characters string consists of. String is
stored internally as the given sequence of characters plus a final null character
(zero). This appended “stamp” does not count against string’s total length.

A null string (") is stored as a single null character.

You can assign string literals or other strings to string variables. String on the right
side of an assignment operator has to be the shorter of the two, or of equal length.
For example:

dim msgl as stringl 20]
dim msg2 as stringl 19]

begin
msgl = "This is some message"
msg2 = "Yet another message"
msgl = msg2 ' this is ok, but vice versa would be illegal

Alternately, you can handle strings element-by—element. For example:

dim s as string] 5]

s = "mik"

' s[0] is char literal "m"
' s[1] is char literal "i"
' s[2] 1is char literal "k"
' s[3] 1is zero

' s[4] 1is undefined

' s[5] 1is undefined

Be careful when handling strings in this way, since overwriting the end of a string
can cause access violations.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 7 ﬂ

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

POINTERS

A pointer is a data type which holds a memory address. While a variable accesses
that memory address directly, a pointer can be thought of as a reference to that
memory address.

To declare a pointer data type, add a carat prefix (*) before type. For example, if
you are creating a pointer to an integer, you would write:

“integer

To access the data at the pointer’s memory location, you add a carat after the vari-
able name. For example, let’s declare variable p which points to integer, and
then assign the pointed memory location value 5:

dim p as “integer

A pointer can be assigned to another pointer. However, note that only the address,
not the value, is copied. Once you modify the data located at one pointer, the other
pointer, when dereferenced, also yields modified data.

(@ Operator

The @ operator returns the address of a variable or routine; that is, @ constructs a
pointer to its operand. The following rules apply to @:

- If X is a variable, @X returns the address of X.
- If ¥ is a routine (a function or procedure), @F returns F’s entry point (result is of
longint).

72 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIc

Mééw iz simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

STRUCTURES

A structure represents a heterogeneous set of elements. Each element is called a
member; the declaration of a structure type specifies a name and type for each
member. The syntax of a structure type declaration is

structure structname
dim memberl as typel

dim membern as typen
end structure

where structname is a valid identifier, each type denotes a type, and each
member is a valid identifier. The scope of a member identifier is limited to the
structure in which it occurs, so you don’t have to worry about naming conflicts
between member identifiers and other variables.

For example, the following declaration creates a structure type called Dot:

structure Dot
dim x as float
dim y as float

end structure

Each Dot contains two members: x and y coordinates; memory is allocated when
you instantiate the structure, like this:

dim m as Dot
dim n as Dot

This variable declaration creates two instances of Dot, called m and n.

A member can be of previously defined structure type. For example:

' Structure defining a circle:
structure Circle

dim radius as real

dim center as Dot
end structure

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 7@

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W de-

Structure Member Access

You can access the members of a structure by means of dot (.). If we had declared
variables circlel and circle?2 of previously defined type Circle:

dim circlel, circle2 as Circle

we could access their individual members like this:

circlel.radius = 3.7
circlel.center.x = 0
circlel.center.y = 0

You can also commit assignments between complex variables, if they are of the
same type:

circle2 = circlel ' This will copy values of all members

74 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Méaﬂ? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

TYPES CONVERSIONS

Conversion of object of one type is changing it to the same object of another type
(i.e. applying another type to a given object). mikroBasic supports both implicit
and explicit conversions for built-in types.

Implicit Conversion

You cannot mix signed and unsigned objects in expressions with arithmetic or
logical operators. You can assign signed to unsigned or vice versa only using the
explicit conversion.

Compiler will provide an automatic implicit conversion in the following
situations:

- statement requires an expression of particular type (according to language
definition), and we use an expression of different type,

- operator requires an operand of particular type, and we use an operand of
different type,

- function requires a formal parameter of particular type, and we pass it an object
of different type,

- result does not match the declared function return type.

Promotion

When operands are of different types, implicit conversion promotes the less
complex to more complex type taking the following steps:

byte/char -> word
short -> integer
short -> longint
integer -> longint
integral -> float

Higher bytes of extended unsigned operand are filled with zeroes. Higher bytes of
extended signed operand are filled with bit sign (if number is negative, fill higher
bytes with one, otherwise with zeroes).

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 75

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Clipping

In assignments, and statements that require an expression of particular type,
destination will store the correct value only if it can properly represent the result
of expression (that is, if the result fits in destination range).

If expression evaluates to more complex type than expected, excess data will be
simply clipped (higher bytes are lost).

dim i as byte
dim j as word

SFFOF
i =3 ' i becomes S0F, higher byte SFF is lost

S .
Il

Explicit Conversion

Explicit conversion can be executed at any point by inserting type keyword (byte,
word, short, integer, or longint) ahead of the expression to be converted.
The expression must be enclosed in parentheses. Explicit conversion can be
performed only on the operand left of the assignment operator.

Special case is conversion between signed and unsigned types. Explicit conversion
between signed and unsigned data does not change binary representation of data; it
merely allows copying of source to destination.

For example:

dim a as byte

dim b as short

b = -1

a byte (b) '"'a is 255, not 1

' This 1s because binary representation remains
' 11111111; it's just interpreted differently now

You cannot execute explicit conversion on the operand left of the assignment
operator.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Mé‘”? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Arithmetic Conversions

When you use an arithmetic expression, such as a + b, where a and b are of differ-
ent arithmetic types, mikroBasic performs implicit type conversions before the
expression is evaluated. These standard conversions include promotions of
“lower” types to “higher” types in the interests of accuracy and consistency.

Assigning a signed character object (such as a variable) to an integral object
results in automatic sign extension. Objects of type short always use sign exten-
sion; objects of type byte always set the high byte to zero when converted to int.

Converting a longer integral type to a shorter type truncates the higher order bits
and leaves low-order bits unchanged. Converting a shorter integral type to a longer
type either sign-extends or zero-fills the extra bits of the new value, depending on
whether the shorter type is signed or unsigned, respectively.

Note: Conversion of floating point data into integral value (in assignments or via
explicit typecast) produces correct results only if the float value does not exceed
the scope of destination integral type.

In details:

Here are the steps mikroBasic uses to convert the operands in an arithmetic
expression:

First, any small integral types are converted according to the following rules:

byte converts to integer

short converts to integer, with the same value

short converts to integer, with the same value, sign-extended

byte converts to integer, with the same value, zero-filled

The result of the expression is the same type as that of the two operands.

Here are several examples of implicit conversion:
2+31 '>2.+31->51

S/4%3 1> (5/4)%3. > [*%3. > [*3. > 3.
3.%5/4 "> (3.%5)/4 > (3.%5)/4 > 15./4 > 15./4. > 3.75

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 77

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

OPERATORS

Operators are tokens that trigger some computation when applied to variables and
other objects in an expression.

There are four types of operators in mikroBasic:

- Arithmetic Operators
- Bitwise Operators
- Boolean Operators
- Relational Operators

Operators Precedence and Associativity

There are 4 precedence categories in mikroBasic. Operators in the same category
have equal precedence with each other.

Each category has an associativity rule: left-to-right, or right-to-left. In the absence
of parentheses, these rules resolve the grouping of expressions with operators of
equal precedence.

Precedence | Operands | Operators Associativity
4 1 @ not + - right-to-left
3 2 " left-to-righ

div mod and << >> elt-to-right
2 2 + - or XOr left-to-right
1 2 = <> < > <= >= left-to-right

7 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOkS - COMPILERS

mlkroBASIc

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Arithmetic Operators

Arithmetic operators are used to perform mathematical computations. They have
numerical operands and return numerical results. As char operators are
technically bytes, they can be also used as unsigned operands in arithmetic
operations. Operands need to be either both signed or both unsigned.

All arithmetic operators associate from left to right.

Operator Operation Precedence
+ addition 2
- subtraction 2
* multiplication 3
/ division 3
div division, rounds down to nearest integer 3
returns the remainder of integer division (can-
mod . . ; 3
not be used with floating points)

Operator - can be used as a prefix unary operator to change sign of a signed
value. Unary prefix operator + can be used, but it doesn’t affect the data.

For example: b = -a

Division by Zero

If 0 (zero) is used explicitly as the second operand (i.e. x div 0), compiler will
report an error and will not generate code. But in case of implicit division by zero:
x div y, where y is 0 (zero), result will be the maximum value for the appropri-
ate type (for example, if x and y are words, the result will be SFFFF).

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 7@

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Relational Operators

mlkl'oBASI(:

Use relational operators to test equality or inequality of expressions. All relational
operators return TRUE or FALSE.

All relational operators associate from left to right.

Operator Operation Precedence
= equal 1
<> not equal 1
> greater than 1
< less than 1
>= greater than or equal 1
<= less than or equal 1

Relational Operators in Expressions

Precedence of arithmetic and relational operators was designated in such a way to
allow complex expressions without parentheses to have expected meaning:

a+ 5> c¢c-1.0/ e "''-> (a + 5) >= (¢ -

(1.0 / e))

MIKROELEKTRONIKA: DEVELOPMENT TOOLS -

Books - COMPILERS

mikroBASIC

méap? et simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Bitwise Operators

Use the bitwise operators to modify the individual bits of numerical operands.
Operands need to be either both signed or both unsigned.

Bitwise operators associate from left to right. The only exception is the bitwise
complement operator not which associates from right to left.

Operator Operation Precedence

and bitwise AND; returns 1 if both bits are 1, oth- 3
erwise returns 0

bitwise (inclusive) OR; returns 1 if either or
both bits are 1, otherwise returns 0

bitwise exclusive OR (XOR); returns 1 if the

. . 2
wor bits are complementary, otherwise 0
not bitwise complement (unary); inverts each bit 4
— bitwise shift left; moves the bits to the left, 3
see below
o bitwise shift right; moves the bits to the right, 3

see below

Bitwise operators and, or, and xor perform logical operations on appropriate
pairs of bits of their operands. Operator not complements each bit of its operand.
For example:

$1234 and $5678 ' equals $1230
' because

' $1234 : 0001 0010 0011 0100
' $5678 : 0101 0110 0111 1000

" and : 0001 0010 0011 0000

' .. that is, $1230

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ

mIkI‘IlBAS":

MIKROBASIC - BASIE COMPILER FOR MICROCHIP PIC MICROCONTROLLERS "% g & sm bttt
Similarly:
$1234 or $5678 ' equals $567C
$1234 xor $5678 ' equals $444cC
not $1234 ' equals SEDCB

Unsigned and Conversions

If number is converted from less complex to more complex data type, upper bytes
are filled with zeroes. If number is converted from more complex to less complex
data type, data is simply truncated (upper bytes are lost).

For example:

dim
dim

~ 0O 0O o

as byte
as word

= SAA

= SFOFO

= b and a

a is extended with zeroes; b becomes S00A0

Signed and Conversions

If number is converted from less complex data type to more complex, upper bytes
are filled with ones if sign bit is 1 (number is negative); upper bytes are filled with
zeroes if sign bit is 0 (number is positive). If number is converted from more com-
plex data type to less complex, data is simply truncated (upper bytes are lost).

For example:

dim
dim

o

as byte
as word

-12
ST0FF
b and a

is sign extended, upper byte is SFF;
becomes S70F4

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Méaﬂ? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Bitwise Shift Operators

Binary operators << and >> move the bits of the left operand for a number of posi-
tions specified by the right operand, to the left or right, respectively. Right operand
has to be positive and less than 255.

With shift left (<<), left most bits are discarded, and “new” bits on the right are
assigned zeroes. Thus, shifting unsigned operand to left by n positions is equiva-
lent to multiplying it by 21 if all the discarded bits are zero. This is also true for
signed operands if all the discarded bits are equal to sign bit.

With shift right (>>), right most bits are discarded, and the “freed” bits on the left
are assigned zeroes (in case of unsigned operand) or the value of the sign bit (in
case of signed operand). Shifting operand to right by n positions is equivalent to
dividing it by 2.

For example, if you need to extract the higher byte, you can do it like this:

PORTB = word (temp >> 8)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS @

mIkI‘IlBAS":

MIKROBASIC - BASIG GCOMPILER FOR MIGROCHIP PIC MICROCONTROLLERS 7 making @ semple. ..
An expression is a sequence of operators, operands, and punctuators that returns a
value.

The primary expressions include: literals, variables, and function calls. From
these, using operators, more complex expressions can be created. Formally,
expressions are defined recursively: subexpressions can be nested up to the limits
of memory.

Expressions are evaluated according to certain conversion, grouping, associativity,
and precedence rules that depend on the operators used, the presence of parenthe-
ses, and the data types of the operands. The precedence and associativity of the
operators are summarized in Operator Precedence and Associativity. The way
operands and subexpressions are grouped does not necessarily specify the actual
order in which they are evaluated by mikroBasic.

You cannot mix signed and unsigned data types in assignment expressions or in
expressions with arithmetic or logical operators. You can use explicit conversion
though.

4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Méaﬂ? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

STATEMENTS

Statements define algorithmic actions within a program. Each statement needs to
be terminated by a newline character (CR/LF).

The simplest statements include assignments, routine calls, and jump statements.
These can be combined to form loops, branches, and other structured statements.
In the absence of specific jump and selection statements, statements are executed
sequentially in the order of appearance in the source code.

Statements can be roughly divided into:

- asm Statement

- Assignment Statements

- Conditional Statements

- Iteration Statements (Loops)
- Jump Statements

asm Statement

mikroBasic allows embedding assembly in the source code by means of asm
statement. Note that you cannot use numerals as absolute addresses for register
variables in assembly instructions. You may use symbolic names instead (listing
will display these names as well as addresses).

You can group assembly instructions with the asm keyword:

asm
block of assembly instructions
end asm

BASIC comments are not allowed in embedded assembly code. Instead, you may
use one-line assembly comments starting with semicolon. If you plan to use a cer-
tain BASIC variable in embedded assembly only, be sure to at least initialize it
(assign it initial value) in BASIC code; otherwise, linker will issue an error. This
does not apply to predefined globals such as PORTB.

Note: mikroBasic will not check if the banks are set appropriately for your vari-
able. You need to set the banks manually in assembly code.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 5

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Migration from older compiler versions (v2.xx)

The syntax that is being used in the asm blocks is somewhat different than it has
been in version 2. The differences are:

For example, for variable named :

_my Var, if it is global.

FARG +XX, if it is local (this is myVar's actual position in the local function
frame.

_myVar_LO(+XX), if it is a local static variable (+XX to access further individual
bytes).

The only types whose name remains the same in asm as it is in Basic are con-
stants, e.g. INTCON, PORTB, WREG, GIE, etc.

Accessing individual bytes is different as well. For example, if you have a global
variable "g_var", that is of type long (i.e. 4 bytes), you are to access it like this:

MOVF g vart0, 0 ;puts least-significant byte of g var in W register
MOVF g vartl, 0 ;second byte of g var; corresponds to Hi(g var)
MOVF g vart2, 0 ;Higher(g var)

MOVF g vart3, 0 ;Highest(g var)

.. etc.

Syntax for retrieving address of an object is different. For objects located in flash
ROM:

MOVLW # g var Lfirst byte of address
MOVLW (@# g var ;second byte of address
MOVLW (@@# g var sthird byte of address
.. and so on.

For objects located in RAM:

MOVLW CONSTI ;first byte of address
MOVLW @CONSTI ssecond byte of address
.. and so on.

@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Méaﬂ? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Assignment Statements
Assignment statements have the form:
variable = expression

The statement evaluates the expression and assigns its value to the variable.
All rules of the implicit conversion apply. Variable can be any declared variable
or array element, and expression can be any expression.

Do not confuse the assignment with relational operator = which tests for equality.
mikroBasic will interpret meaning of the character = from the context.

Conditional Statements

Conditional or selection statements select from alternative courses of action by
testing certain values. There are two types of selection statements in mikroBasic:
if and select case

If Statement

Use if to implement a conditional statement. Syntax of i f statement has the
form:

if expression then
statements
[else
other statements]
end if

When expression evaluates to true, statements execute. If expression is
false, other statements execute. The expression must convert to a boolean
type; otherwise, the condition is ill-formed. The el1se keyword with an alternate
block of statements (other statements) is optional.

Nested i f statements require additional attention. General rule is that the nested
conditionals are parsed starting from the innermost conditional, with each else
bound to the nearest available if on its left.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 7

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W de-

Select Case Statement

Use the select case statement to pass control to a specific program branch,
based on a certain condition. The select case statement consists of a selector
expression (a condition) and a list of possible values. Syntax of select case
statement is:

select case selector
case value 1
statements 1

case value n
statements n
[case else
default statements]
end select

The selector is an expression which should evaluate as integral value. The
values can be literals, constants, or expressions. The statements can be any
statements. The else clause is optional.

First, the selector expression (condition) is evaluated. The select case state-
ment then compares it against all the available values. If the match is found, the
statements following the match evaluate, and select case statement termi-
nates. In case there are multiple matches, the first matching statement will be
executed. If none of the values matches the selector, then the

default statements in the else clause (if there is one) are executed.

Here is a simple example of select case statement:

select case operator
case "*"
res = nl * n2
case "/"
res = nl / n2
case "+"
res = nl + n2
case "-"
res = nl - n2
case else
res = 0
Inc (cnt)
end select

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOkS - COMPILERS

mikl'o_BASIc

Méé&? iz simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Also, you can group values together for a match. Simply separate the items by
commas:

select case reg
case 0
opmode = 0
case 1,2,3,4
opmode 1
case 5,6,7
opmode
end select

Il
N

Nested Case Statements

Note that select case statements can be nested — values are then assigned to the
innermost enclosing select case statement.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS @

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Iteration Statements (Loops)

Iteration statements let you loop a set of statements. There are three forms of itera-
tion statements in mikroBasic: for, while, and do.

You can use the statements break and continue to control the flow of a loop
statement. The break terminates the statement in which it occurs, while
continue begins executing the next iteration of the sequence.

For Statement

The for statement implements an iterative loop and requires you to specify the
number of iterations. Syntax of for statement is:

for counter = initial value to final value [step step value]
statements
next counter

The counter is a variable which increases by step value with each iteration of
the loop. Parameter step value is an optional integral value, and defaults to 1 if
omitted. Before the first iteration, counter is set to the initial value and will
increment until it reaches (or exceeds) the final value.

The initial value and final value should be expressions compatible with
the counter; statements can be any statements that do not change the value of
counter.

Note that parameter step value may be negative, allowing you to create a
countdown.

Here is an example of calculating scalar product of two vectors, a and b, of length
n, using for statement:

s =0
for i = 0 to n

s = s + a[1] * D[1]
next i

The for statement results in an endless loop if the final value equals or
exceeds the range of counter’s type.

@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOkS - COMPILERS

mikroBASIc

Mééw iz simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

While Statement

Use the while keyword to conditionally iterate a statement. Syntax of while
statement is:

while expression
statements
wend

The statements are executed repeatedly as long as the expression evaluates
true. The test takes place before the statements are executed. Thus, if expres-

sion evaluates false on the first pass, the loop does not execute.

Here is an example of calculating scalar product of two vectors, using the while

statement:

while i < n
s = s + a 1] * b i]
i=1+1

wend

Do Statement

The do statement executes until the condition becomes true. Syntax of do state-
ment is:

do
Statements
loop until expression

The statements are executed repeatedly until the expression evaluates true.
The expression is evaluated after each iteration, so the loop will execute

statements at least once.

Here is an example of calculating scalar product of two vectors, using the do

statement:

do
s = s + a 1] * b i]
i=1i+1

loop until i = n

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS @ ﬂ

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Jump Statements

A jump statement, when executed, transfers control unconditionally. There are four
such statements in mikroBasic: break, continue, goto, and gosub.

Break Statement

Sometimes, you might need to stop the loop from within its body. Use the break
statement within loops to pass control to the first statement following the inner-
most loop (for, while, and do).

For example:

' Wait for CF card to be plugged; refresh every second
while true

Lcd Out(1,1,"No card inserted")

if Cf Detect() = 1 then

break

end if

Delay ms (1000)
wend

' Now we can work with CF card ...
Lcd Out (1,1, "Card detected ")

Continue Statement
You can use the continue statement within loops to “skip the cycle”:

- continue statement in for loop moves program counter to the line with
keyword for; it does not change the loop counter,

- continue statement in while loop moves program counter to the line with loop
condition (top of the loop),

- continue statement in do loop moves program counter to the line with loop
condition (bottom of the loop).

@2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

W d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Goto Statement

Use the goto statement to unconditionally jump to a local label — for more infor-
mation, refer to Labels. Syntax of goto statement is:

goto Iabel name

This will transfer control to the location of a local label specified by 1abel name.
The goto line can come before or after the label. It is not possible to jump into or
out of routine.

You can use goto to break out from any level of nested control structures. Never
jump into a loop or other structured statement, since this can have unpredictable
effects. Use of goto statement is generally discouraged as practically every algo-
rithm can be realized without it, resulting in legible structured programs. One pos-
sible application of goto statement is breaking out from deeply nested control
structures.

Gosub Statement

Use the gosub statement to unconditionally jump to a local label — for more
information, refer to Labels. Syntax of gosub statement is:

gosub label name

label name:

return

This will transfer control to the location of a local label specified by 1abel name.
Also, the calling point is remembered. Upon encountering a return statement,

program execution will continue with the next statement (line) after the gosub.
The gosub line can come before or after the label.

It is not possible to jump into or out of routine by means of gosub. Never jump
into a loop or other structured statement, since this can have unpredictable effects.

Note: Like with goto, use of gosub statement is generally discouraged.
mikroBasic supports gosub only for the sake of backward compatibility. It is bet-
ter to rely on functions and procedures, creating legible structured programs.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS @@

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Exit Statement

The exit statement allows you to break out of a routine (function or procedure).
It passes the control to the first statement following the routine call.

Here is a simple example:

sub procedure Procl ()
dim error as byte

. ' we're doing something here

if error = TRUE then

exit

end if
.. ' some code, which won't be executed if error 1is true
end sub

Note: If breaking out of a function, return value will be the value of the local
variable result at the moment of exit.

@4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Méaﬂ? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

COMPILER DIRECTIVES

Any line in source code with a leading # is taken as a compiler directive. The ini-
tial # can be preceded or followed by whitespace (excluding new lines). Compiler
directives are not case sensitive.

You can use conditional compilation to select particular sections of code to com-
pile while excluding other sections. All compiler directives must be completed in
the source file in which they begun.

Directives #DEFINE and #UNDEFINE

Use directive #DEFINE to define a conditional compiler constant (“flag”). You can
use any identifier for a flag, with no limitations. No conflicts with program identi-
fiers are possible, as flags have a separate name space. Only one flag can be set
per directive.

For example:

#DEFINE extended format

Use #UNDEFINE to undefine (“clear”) previously defined flag.

Directives #IF.. THEN..#ELSE

Conditional compilation is carried out by #IFDEF. . THEN directive. The # IFDEF
tests whether a flag is currently defined or not; that is, whether a previous
#DEFINE directive has been processed for that flag and is still in force.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS @5

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Directive # IFDEF . . THEN is terminated by the #ENDIF directive, and can have
any number of #ELSEIF clauses and an optional #ELSE clause:

#IFDEF flag THEN
block of code

[#ELSE
alternate block of code]
#ENDIF

First, # ITFDEF checks if flag is set by means of #DEFINE. If so, only block of
code will be compiled. Otherwise, compiler will check flags fiag 1 .. flag n,
and execute the appropriate block of code i. Eventually, if none of the flags is
set, alternate block of code in the #ELSE (if present) will be compiled.

The #ENDIF ends the conditional sequence. The result of the preceding scenario is
that only one section of code (possibly empty) is passed on for further processing.
The processed section can contain further conditional clauses, nested to any depth;
each # IFDEF must be matched with a closing #ENDIF.

Here is a simple example:

' Uncomment the appropriate flag for your application:
'"#DEFINE resolution$8

#IFDEF resolution8 THEN

' code specific to 8-bit resolution
#ELSE

' default code
#ENDIF

#1 is compiler directive for inserting content of given file into place where this
directive is called.

#I filename.txt

@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Méaﬂ? “W MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Predefined Flags

mikroBasic has several predefined flags for configuring hardware. These can be
found in definition files (“def” folder), specifying hardware settings for individual
chips. SFR are sorted under categories: SFR (umbrella for all registers),

__ _CONFIG 0ScC (oscillator), cONFIG WDT (Watchdog timer), and

__ CONFIG BORPOR (brown—out reset and power—on—timer).

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS @7

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dtW'n

@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

CHAPTER

mikroBasic
Libraries

mikroBasic provides a number of built-in and library routines which help you
develop your application faster and easier. Libraries for ADC, CAN, USART, SPI,
12C, 1-Wire, LCD, PWM, RS485, Serial Ethernet, Toshiba GLCD, Port Expander,
Serial GLCD, Serial Toshiba GLCD, Serial LCD (LCDS), numeric formatting, bit
manipulation, and many other are included along with practical, ready-to-use code
examples.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS maéat? dW

BUILT-IN ROUTINES

mikroBasic compiler provides a set of useful built-in utility functions. Built-in
routines can be used in any part of the project.

Currently, mikroBasic includes the following built-in functions:

Inc

Dec

Chr

Ord
SetBit
ClearBit
TestBit
Lo

Hi

Higher
Highest
Swap
Clock Khz
Clock Mhz
Reset
Clrwdt

ﬂ @@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOkS - COMPILERS

mikroBASIC

making & simple... ! MIKROBASIC - BASIC CoMPILER FOR MICROCHIP PIE MICROCONTROLLERS
Inc
Prototype sub function Inc(dim byref par as longint) as longint
Description Increases parameter par by 1. Note that the function may be called as a self-contained

statement. Function returns the value of increased parameter. This is an “inline” routine;
code is generated in the place of the call, so the call doesn’t count against the nested call

limit.
Dec

Prototype sub function Dec(dim byref par as longint) as longint

Description Decreases parameter par by 1. Note that the function may be called as a self-contained
statement. Function returns the value of decreased parameter. This is an “inline” routine;
code is generated in the place of the call, so the call doesn’t count against the nested call
limit.

Chr

Prototype sub function Chr (dim code as byte) as char

Returns Returns a character associated with the specified character code.

Description Function returns a character associated with the specified character code. Numbers
from 0 to 31 are the standard nonprintable ASCII codes. This is an “inline” routine; code
is generated in the place of the call, so the call doesn’t count against the nested call
limit.

Example c = Chr(10) ' returns a linefeed character

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ @ﬂ

mikroBASIC

MIKROBASIG - BASIC GOMPILER FOR MICROCHIP PIC MICROCANTROLLERS o oo. W o simple...
Ord
Prototype sub function Ord(dim character as char) as byte
Returns ASCII code of the character.
Description Function returns ASCII code of the character. This is an “inline” routine; code is gener-

ated in the place of the call, so the call doesn’t count against the nested call limit.

Example c = Ord("A") ' returns 65
SetBit
Prototype sub procedure SetBit (dim byref register as byte, dim rbit as
byte)
Description Function sets the bit rbit of register. Parameter rbit needs to be a variable or liter-

al with value 0..7. See Predefined globals and constants for more information on register
identifiers. This is an “inline” routine; code is generated in the place of the call, so the
call doesn’t count against the nested call limit.

Example SetBit (PORTB, 2) ' Set RB2
ClearBit
Prototype sub procedure ClearBit (dim byref register as byte, dim rbit as
byte)
Description Function clears the bit rbit of register. Parameter rbit needs to be a variable or lit-

eral with value 0..7. See Predefined globals and constants for more information on regis-
ter identifiers. This is an “inline” routine; code is generated in the place of the call, so
the call doesn’t count against the nested call limit.

Example ClearBit (PORTC, 7) ' Clear RC7

ﬂ @2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

M i vmple...] MIKROBASIC - BASIGC COMPILER FOR MIGROCHIP PIC MIGROCONTROLLERS
TestBit
Prototype sub function TestBit (dim register, rbit as byte) as byte
Returns If bit is set, returns 1, otherwise returns 0.
Description Function tests if the bit rbit of register is set. If set, function returns 1, otherwise

returns 0. Parameter rbit needs to be a variable or literal with value 0..7. See
Predefined globals and constants for more information on register identifiers. This is an
“inline” routine; code is generated in the place of the call, so the call doesn’t count
against the nested call limit.

Example flag = TestBit (PORTE, 2) ' 1 if RE2 is set, otherwise 0
Lo
Prototype sub function Lo (dim number as byte..longint) as byte
Returns Returns the lowest 8 bits (byte) of number, bits 0..7.
Description Function returns the lowest byte of number. Function does not interpret bit patterns of

number — it merely returns 8 bits as found in register.

Example = Lo (0x1AC30F4) ' Equals 0xF4
Hi
Prototype sub function Hi (dim number as word..longint) as byte
Returns Returns byte next to the lowest byte of number, bits §..15.
Description Function returns byte next to the lowest byte of number. Function does not interpret bit

patterns of number — it merely returns 8 bits as found in register.

Example a = Hi(0x1AC30F4) " Equals 0x30

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ @3

mikroBASIC

MIKROBASIC - BASIG GCOMPILER FOR MIGROCHIP PIC MICROGONTROLLERS W 98 simple. ..
Higher
Prototype sub function Higher (dim number as longint) as byte
Returns Returns byte next to the highest byte of number, bits 16..23.
Description Function returns byte next to the highest byte of number. Function does not interpret bit

patterns of number — it merely returns 8 bits as found in register.

Example a = Higher (0x1AC30F4) " Equals O0xAC
Highest
Prototype sub function Highest (dim number as longint) as byte
Returns Returns the highest byte of number, bits 24..31.
Description Function returns the highest byte of number. Function does not interpret bit patterns of

number — it merely returns 8 bits as found in register.

Example a = Highest (0x1AC30F4) ' Equals 0x01

Swap
Prototype sub function Swap(dim byref arg as byte) as byte
Returns Returns byte consisting of swapped nibbles.

Description Swaps higher nibble (bits <7..4>) and lower nibble (bits <3..0>) of arg.

Example PORTB = 0xFO
PORTA = Swap (PORTB) " PORTA = PORTB = 0x0F

ﬂ @4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

making & smple... ! MIKROBASIC - BASIE COMPILER FOR MICROCHIP PIE MICROCONTROLLERS
Clock_Khz
Prototype sub function Clock Khz as word
Returns Device clock in KHz.
Description Returns device clock in KHz, rounded to the nearest integer.
Example clk := Clock Khz()
Clock_Mhz
Prototype sub function Clock Mhz as byte
Returns Device clock in MHz.
Description Returns device clock in MHz, rounded to the nearest integer.
Example clk := Clock Mhz()
Reset
Prototype sub procedure Reset
Description This procedure is equal to assembler instruction reset. This procedure works only for
P18.
Example Reset 'Resets the PIC MCU
CirWdt
Prototype sub procedure ClrWdt
Description This procedure is equal to assembler instruction clrwdt.
Example ClrWdt 'Clears PIC's WDT
5 page

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ @5

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

LIBRARY ROUTINES

mikroBasic provides a set of libraries which simplifies the initialization and use of
PIC MCU and its modules. Library functions do not require any header files to be
included; you can use them anywhere in your projects.

Currently available libraries include:

- ADC Library - Delays Library
- CAN Library - Math Library
- CANSPI Library - String Library
- Compact Flash Library

- EEPROM Library

- Ethernet Library

- SPI Ethernet Library

- Flash Memory Library

- Graphic LCD Library

- T6963C Graphic LCD Library

- I?)C Library

- Keypad Library

- LCD Library

- LCDS Library

- Manchester Code Library

- Multi Media Card Library

- OneWire Library

- PS/2 Library

- PWM Library

- RS-485 Library

- Software I*)C Library

- Software SPI Library

- Software UART Library

- Sound Library

- SPI Library

- USART Library

- USB HID Library

- Util Library

- Port Expander Library

- SPI GLCD Library

- SPI LCD Library

- SPI LCD8 Library

- SPI T6963C Graphic LCD Library
- Conversions Library

ﬂ @@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOkS - COMPILERS

mikroBASIC

Méaﬂ? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

ADC Library

ADC (Analog to Digital Converter) module is available with a number of PIC
MCU models. Library function ADC_Read is included to provide you comfortable
work with the module.

Adc_Read

Prototype sub function Adc Read(dim channel as byte) as word

Returns 10-bit unsigned value read from the specified ADC channel.

Description Initializes PIC’s internal ADC module to work with RC clock. Clock determines the
time period necessary for performing AD conversion (min 12TAD). RC sources typical-
ly have Tad 4uS.

Parameter channel represents the channel from which the analog value is to be
acquired. For channel-to-pin mapping please refer to documentation for the appropriate
PIC MCU.

Requires PIC MCU with built-in ADC module. You should consult the Datasheet documentation
for specific device (most devices from PIC16/18 families have it).

Before using the function, be sure to configure the appropriate TRISA bits to designate
the pins as input. Also, configure the desired pin as analog input, and set Vref (voltage
reference value).

Example tmp = Adc Read (1) ' Read analog value from channel 1

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ @7

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS maéon? dW

Library Example

This code snippet reads analog value from channel 2 and displays it on PORTD (lower 8 bits) and
PORTB (2 most significant bits).

program Adc Test
dim temp res as word

main:
ADCON1 = $80 ' Configure analog inputs and Vref
TRISA = SFF " PORTA is input
TRISB = $3F ' Pins RB7 and RB6 are output
TRISD = $0 ' PORTD is output

while TRUE
temp_res = Adc_Read(2)

PORTD = temp_ res ' Send lower 8 bits to PORTD
PORTB = word(temp res >> 2) ' Send 2 most significant bits to PORTB
wend

end.

Hardware Connection

vcC [u RB7] 40 1 @' LDo
[RBG]”—\ 330 22 LD1

N L — @
<« *[ra2 RBAfSL 330 7x LD2

i T — C_—@
= E E 22?334— 330 @n LD3
(O reoE— 330 * LD4

vee [- i — @
[1 LD
Y nhee 0 330 2 LD5

JF%{GND By i v €i>
hosct il 330 é’ LD6

osc2 (Jy Il ‘%'
I i =0 X D7
vee 0 : % =
— %
X
2|] Reset 8MHz
.
O O

ﬂ @ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Méaﬂ? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

CAN Library

mikroBasic provides a library (driver) for working with the CAN module.

CAN is a very robust protocol that has error detection and signalling, self—check-
ing and fault confinement. Faulty CAN data and remote frames are re-transmitted
automatically, similar to the Ethernet.

Data transfer rates vary from up to 1 Mbit/s at network lengths below 40m to 250
Kbit/s at 250m cables, and can go even lower at greater network distances, down
to 200Kbit/s, which is the minimum bitrate defined by the standard. Cables used
are shielded twisted pairs, and maximum cable length is 1000m.

CAN supports two message formats:

Standard format, with 11 identifier bits, and
Extended format, with 29 identifier bits

Note: CAN routines are currently supported only by P18XXX8 PICmicros.
Microcontroller must be connected to CAN transceiver (MCP2551 or similar)
which is connected to CAN bus.

Note: Be sure to check CAN constants necessary for using some of the functions.
See page 99.

Library Routines

CANSetOperationMode
CANGetOperationMode
CANInitialize
CANSetBaudRate
CANSetMask
CANSetFilter
CANRead

CANWrite

Following routines are for the internal use by compiler only:

RegsToCANID
CANIDToRegs

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ @@

mlkmBASIl:

MIKROBASIE - BASIE COMPILER FOR MICROCHIP PIC MICROCONTROLLERS _________° making ¢ 6? _ semple. ..
CANSetOperationMode
Prototype sub procedure CANSetOperationMode (dim mode, wait flag as byte)

Description Sets CAN to requested mode, i.e. copies mode to CANSTAT. Parameter mode needs to
be one of CAN_OP_MODE constants (see CAN constants).

Parameter wait flag needs to be either 0 or $SFF:

If set to $FF, this is a blocking call — the function won’t “return” until the requested
mode is set. If 0, this is a non-blocking call. It does not verify if CAN module is
switched to requested mode or not. Caller must use function CANGetOperationMode
to verify correct operation mode before performing mode specific operation.

Requires CAN routines are currently supported only by P18XXX8 PICmicros. Microcontroller
must be connected to CAN transceiver (MCP2551 or similar) which is connected to
CAN bus.

Example CANSetOperationMode (CAN _MODE CONFIG, SFF)

CANGetOperationMode

Prototype sub function CANGetOperationMode as byte

Returns Current opmode.

Description Function returns current operational mode of CAN module.

Requires CAN routines are currently supported only by P18XXX8 PICmicros. Microcontroller
must be connected to CAN transceiver (MCP2551 or similar) which is connected to
CAN bus.

Example if CANGetOperationMode = CAN MODE NORMAL then

CTpage T

ﬂ ﬂ @ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIc

Méé&? ctd«wltﬁéeu. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS
CANiInitialize
Prototype sub procedure CANInitialize (dim SJW, BRP, PHSEGl, PHSEG2,

PROPSEG, CAN CONFIG FLAGS as byte)

Description Initializes CAN. All pending transmissions are aborted. Sets all mask registers to 0 to
allow all messages.

Filter registers are set according to flag value:

if (CAN CONFIG FLAGS and CAN CONFIG VALID XTD MSG) <> 0
' Set all filters to XTD MSG
else if (config and CONFIG VALID STD MSG) <> 0
' Set all filters to STD MSG
else
' Set half of the filters to STD, and the rest to XTD MSG.

Parameters:

sJw as defined in 18XXX8 datasheet (1-4)

BRP as defined in 18XXXS8 datasheet (1-64)

PHSEGI as defined in 18XXX8 datasheet (1-8)

PHSEG2 as defined in 18XXX8 datasheet (1-8)

PROPSEG as defined in 18XXXS8 datasheet (1-8)

CAN CONFIG_FLAGS is formed from predefined constants (see CAN constants).

Requires CAN must be in Config mode; otherwise the function will be ignored.
Example init = CAN CONFIG_SAMPLE THRICE and

CAN CONFIG PHSEG2 PRG ON and

CAN CONFIG STD MSG and

CAN CONFIG DBL BUFFER ON and
CAN CONFIG VALID XTD MSG and
CAN CONFIG LINE FILTER OFF

CANInitialize(1, 1, 3, 3, 1, init) ' Initialize CAN

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ ﬂ ﬂ

mIkI‘IlBAS“:

MIKROBASIE - BASIE COMPILER FOR MICROCHIP PIC MICROCONTROLLERS _________° making ¢ éf _ semple. ..
CANSetBaudRate
Prototype sub procedure CANSetBaudRate (dim SJW, BRP, PHSEGl, PHSEG2,

PROPSEG, CAN CONFIG FLAGS as byte)

Description Sets CAN baud rate. Due to complexity of CAN protocol, you cannot simply force a bps
value. Instead, use this function when CAN is in Config mode. Refer to datasheet for
details.

Parameters:

sJuw as defined in 18XXX8 datasheet (1-4)

BRP as defined in 18XXXS8 datasheet (1-64)

PHSEGI as defined in 18XXX8 datasheet (1-8)

PHSEG2 as defined in 18XXX8 datasheet (1-8)

PROPSEG as defined in 18XXX8 datasheet (1-8)

CAN CONFIG_FLAGS is formed from predefined constants (see CAN constants)

Requires CAN must be in Config mode; otherwise the function will be ignored.
Example init = CAN CONFIG SAMPLE THRICE and

CAN CONFIG PHSEG2 PRG ON and

CAN_CONFIG_STD MSG and

CAN CONFIG DBL BUFFER ON and
CAN CONFIG VALID XTD MSG and
CAN CONFIG LINE FILTER OFF

CANSetBaudRate (1, 1, 3, 3, 1, init)

ﬂ ﬂ 2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIc

méut? ctd«wkﬁéeu. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS
CANSetMask
Prototype sub procedure CANSetMask(dim CAN MASK as byte, dim value as

longint, dim CAN CONFIG FLAGS as byte)

Description Function sets mask for advanced filtering of messages. Given value is bit adjusted to
appropriate buffer mask registers.

Parameters: CAN MASK is one of predefined constant values (see CAN constants);
value is the mask register value; CAN CONFIG FLAGS selects type of message to filter,
either CAN CONFIG XTD MSG or CAN CONFIG STD MSG

Requires CAN must be in Config mode; otherwise the function will be ignored.

Exanqﬂe ' Set all mask bits to 1, i.e. all filtered bits are relevant:
CANSetMask (CAN MASK Bl, -1, CAN CONFIG XTD MSG)

' Note that -1 is just a cheaper way to write SFFFFFFFF.
" Complement will do the trick and fill it up with ones.

CANSetFilter

Prototype sub procedure CANSetFilter(dim CAN FILTER as byte, dim value as
longint, dim CAN CONFIG FLAGS as byte)

Description Function sets mask for advanced filtering of messages. Given value is bit adjusted to
appropriate buffer mask registers.

Parameters: CAN_MASK is one of predefined constant values (see CAN constants);
value is the filter register value; CAN CONFIG FLAGS selects type of message to filter,
either CAN CONFIG XTD MSG or CAN CONFIG STD MSG.

Requires CAN must be in Config mode; otherwise the function will be ignored.

Example ' Set id of filter BI F1 to 3:
CANSetFilter (CAN FILTER Bl F1, 3, CAN CONFIG XTD MSG)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ ﬂ 3

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

CANRead

Prototype sub function CANRead (dim byref id as longint, dim byref data as
byte[8] , dim byref datalen, CAN RX MSG FLAGS as byte) as byte

Returns Message from receive buffer or zero if no message found.

Description Function reads message from receive buffer. If at least one full receive buffer is found, it
is extracted and returned. If none found, function returns zero.
Parameters: id is message identifier; data is an array of bytes up to 8 bytes in length;
datalen is data length, from 1-8; CAN RX MSG_FLAGS is value formed from constants
(see CAN constants).

Requires CAN must be in mode in which receiving is possible.

Example rcv = CANRead (id, data, len, 0)

CANWrite

Prototype sub function CANWrite(dim id as longint, dim byref data as
byte[8] , dim datalen, CAN TX MSG FLAGS as byte) as byte

Returns Returns zero if message cannot be queued (buffer full).

Description If at least one empty transmit buffer is found, function sends message on queue for
transmission. If buffer is full, function returns 0.
Parameters: id is CAN message identifier. Only 11 or 29 bits may be used depending
on message type (standard or extended); data is array of bytes up to 8 bytes in length;
datalen is data length from 1-8; CAN_TX MSG_FLAGS is value formed from constants
(see CAN constants).

Requires CAN must be in Normal mode.

Example tx = CAN TX PRIORITY 0 and CAN TX XTD FRAME
CANWrite (id, data, 2, tx)

CTpage T

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikro_BASIc

Mééw iz simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

CAN Constants

There is a number of constants predefined in CAN library. To be able to use the
library effectively, you need to be familiar with these. You might want to check
the example at the end of the chapter.

CAN_OP_ MODE

can_op_ MODE constants define CAN operation mode. Function
CANSetOperationMode expects one of these as its argument:

const CAN MODE BITS = SEO ' Use it to access mode bits
const CAN MODE NORMAL =0

const CAN MODE SLEEP = $20

const CAN MODE LOOP = $40

const CAN MODE LISTEN = $60

const CAN MODE CONFIG = $80

CAN_CONFIG_FLAGS

CAN CONFIG FLAGS constants define flags related to CAN module configuration.
Functions caNInitialize and CANSetBaudRate expect one of these (or a bitwise
combination) as their argument:

const CAN CONFIG DEFAULT = SFF ' 11111111
const CAN CONFIG PHSEG2 PRG BIT = $01

const CAN_CONFIG_PHSEGZ_PRG_ON = SFF ' XXXXXXX1
const CAN_CONFIG_PHSEGZ_PRG_OFF = S$FE T XXXXXXX0
const CAN CONFIG LINE FILTER BIT = $02

const CAN CONFIG LINE FILTER ON = SFF ' XXXXXX1X
const CAN CONFIG LINE FILTER OFF = S$FD T XXXXXX0X
const CAN CONFIG SAMPLE BIT = $04

const CAN CONFIG SAMPLE ONCE = SFF ' XXXXX1IXX
const CAN CONFIG SAMPLE THRICE = S$SFB T XXXXX0XX
const CAN CONFIG MSG_TYPE BIT = $08

const CAN CONFIG STD MSG = SFF ' XXXX1XXX
const CAN CONFIG XTD MSG = $F7 T XXXX0XXX
' continues..

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ ﬂ 5

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MicROCHIP PIC MISROCONTROLLERS making it simple...

' ..continued

const CAN CONFIG DBL BUFFER BIT = $10

const CAN CONFIG DBL_ BUFFER ON = SFF ' XXXIXXXX

const CAN CONFIG DBL BUFFER OFF = SEF ' XXXO0XXXX

const CAN CONFIG MSG BITS = $60

const CAN CONFIG ALL MSG = $FF " X11XXXXX

const CAN CONFIG VALID XTD MSG = S$DF " X10XXXXX

const CAN CONFIG VALID STD MSG = S$BF " X0IXXXXX

const CAN CONFIG ALL VALID MSG = $9F " XO00XXXXX

You may use bitwise AND to form config byte out of these values. For example:

init = CAN CONFIG SAMPLE THRICE and CAN CONFIG PHSEG2 PRG ON and
CAN CONFIG STD MSG and CAN CONFIG DBL BUFFER ON and
CAN CONFIG VALID XTD MSG and CAN CONFIG LINE FILTER OFF

’

CANInitialize(1, 1, 3, 3, 1, init) ' initialize CAN

CAN_TX MSG_FLAGS

CAN Tx MSG_FLAGs are flags related to transmission of a CAN message:

const CAN TX PRIORITY BITS = 503

const CAN_TX_PRIORITY_O = SFC ' XXXXXX00
const CAN_TX_PRIORITY_I = SFD ' XXXXXX01
const CAN_TX_PRIORITY_Z = SFE ' XXXXXX10
const CAN_TX_PRIORITY_3 = SFF ' OXXXXXX11
const CAN TX FRAME BIT = 508

const CAN_TX_STD_FRAME = SFF ' OXXXXX1XX
const CAN_TX_XTD_FRAME = SF7 ' XXXXX0XX
const CAN TX RTR BIT = $40

const CAN_TX_NO_RTR_FRAME = SFF ' XIXXXXXX
const CAN_TX_RTR_FRAME = S$BF ' XOXXXXXX

You may use bitwise AND to adjust the appropriate flags. For example:

' form value to be used with CANSendMessage:
send _config = CAN TX PRIORITY 0 and CAN TX XTD FRAME and
CAN TX NO RTR FRAME

’

CANSendMessage (id, data, 1, send config)

ﬂ ﬂ @ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIc

Mééw iz simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

CAN_RX MSG_FLAGS

CAN RX MSG FLAGS are flags related to reception of CAN message. If a particular
bit is set; corresponding meaning is TRUE or else it will be FALSE.

const CAN RX FILTER BITS = $07 ' Use it to access filter bits
const CAN RX FILTER 1 = $00
const CAN RX FILTER 2 = $01
const CAN RX FILTER 3 = $02
const CAN RX FILTER 4 = $03
const CAN RX FILTER 5 = $04
const CAN RX FILTER 6 = $05
const CAN RX OVERFLOW = $08 ' Set if Overflowed; else clear

const CAN RX INVALID MSG
const CAN RX XTD FRAME
const CAN RX RTR FRAME
const CAN RX DBL BUFFERED

$10 ' Set if invalid; else clear
$20 ' Set if XTD msg; else clear
$40 ' Set if RTR msg; else clear
$80 ' Set if msg was

hardware double-buffered

You may use bitwise AND to adjust the appropriate flags. For example:

if MsgFlag and CAN RX OVERFLOW = O then
' Receiver overflow has occurred; previous message 1is lost.

CAN_MASK

can_Mask constants define mask codes. Function cansetMask expects one of these
as its argument:

const CAN MASK Bl = 0
const CAN MASK B2 = 1
CAN_FILTER

CAN_FILTER constants define filter codes. Function cansetFilter expects one of
these as its argument:

const CAN FILTER Bl F1 =
const CAN FILTER Bl F2 =
const CAN FILTER B2 F1 =
const CAN FILTER B2 F2 =
const CAN FILTER B2 F3 =
const CAN FILTER B2 F4 =

g W NP O

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ ﬂ 7

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Library Example

mikroBASIC
making ct simple...

The example demonstrates CAN protocol. It is a simple data exchange between 2 PIC’s, where
data is incremented upon each bounce. Data is printed on PORTC (lower byte) and PORTD (high-

er byte) for a visual check. Note that the data exchange doesn’t start until you press a button;
check the code below.

program can_test

dim aa, aal, aa2, lenn, zr, cont, oldstate as byte
dim data as byte[8]
dim id as longint
sub function TestButton as byte
result = true

if Button (PORTB, 0, 1, 0) then

oldstate = 255

end if
if oldstate and Button(PORTB, 0, 1, 1) then

result = false
oldstate = 0

end if
end sub

main:

TRISB.O
PORTC =
TRISC =
PORTD =
TRISD =
aa
aal =
aaz =

r

[

' RBO is input

co oo o0o ool

Form value to be used with CANSendMessage:

aal = CAN_TX PRIORITY 0 and

r

CAN TX XTD FRAME and
CAN TX NO RTR FRAME

Form value to be used with CANInitialize:

aa = CAN CONFIG SAMPLE THRICE and
CAN CONFIG PHSEG2 PRG ON and
CAN CONFIG STD MSG and
CAN CONFIG DBL BUFFER ON and
CAN CONFIG VALID XTD MSG and
CAN CONFIG LINE FILTER OFF

' continues
CTpage e

MIKROELEKTRONIKA: DEVELOPMENT TOOLS -

BOooks -

COMPILERS

mikl'o_BASIc

méc'm? iz simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

continued

cont = true
while cont

cont = TestButton
wend

' Initialize CAN
CANInitialize(1,1,3,3,1,aa)

' Set CONFIG mode
CANSetOperationMode (CAN MODE CONFIG, TRUE)
ID = -1

' Set all maskl bits to ones

CANSetMask (CAN MASK B1,ID,CAN CONFIG XTD MSG)
' Set all mask2 bits to ones

CANSetMask (CAN MASK B2, ID,CAN CONFIG XTD MSG)

' Set id of filter B1 F1 to 3
CANSetFilter(CAN_FILTER_Bl_Fl,3,CAN_CONFIG_XTD_MSG)

" Set NORMAL mode
CANSetOperationMode (CAN MODE NORMAL, TRUE)

PORTD = SFF
id = 12111
CANWrite (id, data, 1, aal) ' Send message via CAN

while true
oldstate = 0
zr = CANRead(id, Data, lenn, aa?2)
if (id = 3) and zr then

PORTD = SAA
PORTC = datal 0] ' Print data at PORTC
datal 0] = datal 0] +1
id = 12111
CANWrite (id, data, 1, aal) ' Send incremented data back
if lenn = 2 then ' If message contains two data bytes,
PORTD = datal 1] ! print second byte on at PORTD
end if
end if
wend
end.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ ﬂ @

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W (ZW

Hardware Connection

» CAN TX of MCU

— » CAN RX of MCU

-
o

1

| —

N\
L] T-cAN Rs

I”—z[GND CANH

vcc p——{] vec canL
L J|RrRxD vref

MCP2551

T‘“T”TT“

Shielded pair / L“

no longer than 300m

ﬂ @@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Méaﬂ? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

CANSPI Library

SPI module is available with a number of PICmicros. mikroBasic provides a
library (driver) for working with the external CAN modules (such as MCP2515 or
MCP2510) via SPI.

In mikroBasic, each routine of CAN library has its CANSPI counterpart with iden-
tical syntax. For more information on the Controller Area Network, consult the
CAN Library. Note that the effective communication speed depends on the SPI,
and is certainly slower than the “real” CAN.

Note: CANSPI functions are supported by any PIC MCU that has SPI interface on
PORTC. Also, CS pin of MCP2510 or MCP2515 must be connected to RCO.
Example of HW connection is given at the end of the chapter.

Note: Be sure to check CAN constants necessary for using some of the functions.
See page 99.

Note: spT_1nit must be called before initializing CANSPI.

Library Routines

CANSPISetOperationMode
CANSPIGetOperationMode
CANSPIInitialize
CANSPISetBaudRate
CANSPISetMask
CANSPISetFilter
CANSPIRead

CANSPIWrite

Following routines are for the internal use by compiler only:

RegsToCANSPIID
CANSPIIDToRegs

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ 2 ﬂ

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

CANSPISetOperationMode

Prototype sub procedure CANSPISetOperationMode (dim mode, wait flag as byte)

Description Sets CAN to requested mode, i.e. copies mode to CANSTAT. Parameter mode needs to
be one of CAN_OP MODE constants (see CAN constants, page 141).

Parameter wait flag needs to be either O or OXxFF: If set to OXFF, this is a blocking
call — the function won’t “return” until the requested mode is set. If 0, this is a non-
blocking call. It does not verify if CAN module is switched to requested mode or not.
Caller must use function CANSPIGetOperationMode to verify correct operation mode
before performing mode specific operation.

Requires CANSPI functions are supported by any PIC MCU that has SPI interface on PORTC.
Also, CS pin of MCP2510 or MCP2515 must be connected to RCO.

Example CANSPISetOperationMode (CAN _MODE CONFIG, S$SFF)

CANSPIGetOperationMode

Prototype sub function CANSPIGetOperationMode as byte
Returns Current opmode.
Description Function returns current operational mode of CAN module.
Example if (CANSPIGetOperationMode = CAN MODE CONFIG) then
CTpage T

ﬂ 22 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIc

Méé&? ctd«wk#éeu. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS
CANSPIInitialize
Prototype sub procedure CANSPIInitialize(dim SJW, BRP, PHSEGl, PHSEG2,

PROPSEG, CAN CONFIG FLAGS as byte, dim byref RstPort as byte, dim
RstPin as byte, dim byref CSPort as byte, dim CSPin as byte)

Description Initializes CANSPI. All pending transmissions are aborted. Sets all mask registers to 0
to allow all messages.

Filter registers are set according to flag value:

if ((CAN_CONFIG FLAGS and CAN CONFIG VALID XTD MSG) = 0) then
' Set all filters to XTD MSG

else if ((config and CONFIG VALID STD MSG) = 0) then
' Set all filters to STD MSG

else
' Set half the filters to STD, and the rest to XTD MSG

Parameters:

sJw as defined in 18XXX8 datasheet (1-4)

BRP as defined in 18XXXS8 datasheet (1-64)

PHSEGI as defined in 18XXX8 datasheet (1-8)

PHSEG2 as defined in 18XXX8 datasheet (1-8)

PROPSEG as defined in 18XXXS8 datasheet (1-8)

CAN CONFIG_FLAGS is formed from predefined constants (see CAN constants, page
99).

Requires SPI_Init must be called before initializing CANSPI.
CANSPI must be in Config mode; otherwise the function will be ignored.

Example init = CAN CONFIG SAMPLE THRICE and
CAN CONFIG PHSEG2 PRG ON and
CAN CONFIG_STD MSG and
CAN CONFIG DBL BUFFER ON and
CAN CONFIG VALID XTD MSG and
CAN CONFIG LINE FILTER OFF

' initialize external CAN module
CANSPIInitialize(1,1,3,3,1,aa, PORTC, 2, PORTC, 0)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ 23

mIkI‘IlBAS“:

MIKROBASIE - BASIE COMPILER FOR MICROCHIP PIC MICROCONTROLLERS _________° making ¢ 5.‘ _ semple. ..
CANSPISetBaudRate
Prototype sub procedure CANSPISetBaudRate (dim SJW, BRP, PHSEGl, PHSEG2,

PROPSEG, CAN CONFIG FLAGS as byte)

Description Sets CANSPI baud rate. Due to complexity of CANSPI protocol, you cannot simply
force a bps value. Instead, use this function when CANSPI is in Config mode. Refer to
datasheet for details.

Parameters:

sJuw as defined in 18XXX8 datasheet (1-4)

BRP as defined in 18XXXS8 datasheet (1-64)

PHSEGI as defined in 18XXX8 datasheet (1-8)

PHSEG2 as defined in 18XXX8 datasheet (1-8)

PROPSEG as defined in 18XXX8 datasheet (1-8)

CAN CONFIG_FLAGS is formed from predefined constants (see CAN constants)

Requires CANSPI must be in Config mode; otherwise the function will be ignored.
Example init = CAN CONFIG SAMPLE THRICE and

CAN CONFIG PHSEG2 PRG ON and

CAN_CONFIG_STD MSG and

CAN CONFIG DBL BUFFER ON and
CAN CONFIG VALID XTD MSG and
CAN CONFIG LINE FILTER OFF

CANSPISetBaudRate (1, 1, 3, 3, 1, init)

ﬂ 24 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIc

méut? ctd«wkﬁéeu. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS
CANSPISetMask
Prototype sub procedure CANSPISetMask(dim CAN MASK as byte, dim value as

longint, dim CAN CONFIG FLAGS as byte)

Description Function sets mask for advanced filtering of messages. Given value is bit adjusted to
appropriate buffer mask registers.

Parameters: CAN MASK is one of predefined constant values (see CAN constants);
value is the mask register value; CAN CONFIG FLAGS selects type of message to filter,
either CAN CONFIG XTD MSG or CAN CONFIG STD MSG.

Requires CANSPI must be in Config mode; otherwise the function will be ignored.

Exanqﬂe ' Set all mask bits to 1, i.e. all filtered bits are relevant:
CANSPISetMask (CAN MASK B1, -1, CAN CONFIG XTD MSG)

' Note that -1 is just a cheaper way to write SFFFFFFFF.
" Complement will do the trick and fill it up with ones

CANSPISetFilter

Prototype sub procedure CANSPISetFilter (dim CAN FILTER as byte, dim val as
longint, dim CAN CONFIG FLAGS as byte)

Description Function sets mask for advanced filtering of messages. Given value is bit adjusted to
appropriate buffer mask registers.

Parameters: CAN_MASK is one of predefined constant values (see CAN constants);
value is the filter register value; CAN CONFIG FLAGS selects type of message to filter,
either CAN CONFIG XTD MSG or CAN CONFIG STD MSG.

Requires CANSPI must be in Config mode; otherwise the function will be ignored.

Example ' Set id of filter BI F1 to 3:
CANSPISetFilter (CAN FILTER Bl F1, 3, CAN CONFIG XTD MSG)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ 25

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

CANSPIRead

Prototype sub function CANSPIRead (dim byref id as longint, dim byref data
as byte[8] , dim byref Datalen, CAN RX MSG FLAGS as byte) as byte

Returns Message from receive buffer or zero if no message found.

Description Function reads message from receive buffer. If at least one full receive buffer is found, it
is extracted and returned. If none found, function returns zero.

Parameters: id is message identifier; data is an array of bytes up to 8 bytes in length;
datalen is data length, from 1-8; CAN RX MSG_FLAGS is value formed from constants
(see CAN constants).

Requires CANSPI must be in mode in which receiving is possible.
Example rcv = CANSPIRead(id, data, len, rx)
CANSPIWrite
Prototype sub function CANSPIWrite(dim id as longint, dim byref data as
byte[8] , dim datalen, CAN TX MSG FLAGS as byte) as byte
Returns Returns zero if message cannot be queued (buffer full).
Description If at least one empty transmit buffer is found, function sends message on queue for

transmission. If buffer is full, function returns 0.

Parameters: id is CANSPI message identifier. Only 11 or 29 bits may be used depend-
ing on message type (standard or extended); data is array of bytes up to 8 bytes in
length; datalen is data length from 1-8; CAN TX MSG FLAGS is value formed from
constants (see CAN constants).

Requires CANSPI must be in Normal mode.

Example tx = CAN_TX PRIORITY 0 and CAN TX XTD FRAME
CANSPIWrite(id, data, 2, tx)

ﬂ 2@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Méaﬂ? iz simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Library Example

The example demonstrates CANSPI protocol. It is a simple data exchange between 2 PIC’s, where
data is incremented upon each bounce. Data is printed on PORTC (lower byte) and PORTD (high-
er byte) for a visual check.

program canspi test
dim aa, aal, aa2, lenn, zr as byte

dim data as byte| 8]
dim id as longint

main:
TRISB = 0
SPI init ' Must be performed before any other activity
TRISC.2 0 ' This pin is connected to Reset pin of MCP2510
PORTC.2 = 0 ' Keep MCP2510 in reset state
PORTC.0 =1 ' Make sure that MCP2510 is not selected
TRISC.0 = 0 " RCO is output
PORTD =0
TRISD = 0 ' PORTD is output
aa =0
aal = 0
aa2 = 0

Prepare flags for CANSPIinitialize

aa = CAN CONFIG SAMPLE THRICE and
CAN CONFIG PHSEG2 PRG ON and
CAN CONFIG STD MSG and

CAN CONFIG DBL BUFFER ON and
CAN CONFIG VALID XTD MSG

' Activate MCP2510 chip
PORTC.2 =1

' Prepare flags for CANSPIWrite
aal = CAN TX PRIORITY BITS and
CAN TX FRAME BIT and
CAN TX RTR BIT

' continues

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ 27

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS Wﬂ? de'

continued
Spi Init ' initialize SPI

' Initialize MCP2510
CANSPIInitialize(1,1,3,3,1,aa, PORTC, 2, PORTC, 0)

Set Config mode

CANSPISetOperationMode (CAN MODE CONFIG, true)
ID = -1

' Set all maskl bits to ones
CANSPISetMaSk(CAN_MASK_BI,id,CAN_CONFIG_XTD_MSG)
' Set all mask2 bits to ones
CANSPISetMaSk(CAN_MASK_BZ,O,CAN_CONFIG_XTD_MSG)

" Set filter bl f1 id to 12111
CANSPISetFilter (CAN FILTER Bl F1,12111,CAN CONFIG XTD MSG)

' Get back to Normal mode

CANSPISetOperationMode (CAN MODE NORMAL, true)

while true
zr = CANSPIRead(id, Data, lenn, aa2)
if (id = 12111) and zr then
PORTD = S$AA
PORTB = datal 0]
Inc (datal 0])
id = 3
Delay ms (10)
CANSPIWrite (id, data, 1, aal)
if lenn = 2 then
PORTD = datal 1]
end if
end if
wend

end.

ﬂ @ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikrn_BASIl:

Méém? ct simple MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Hardware Connection

vccC
100K D |:| vce i / i
{]
14 18 [i
" IF TX Vdd p E %
RX RST [—
—SIE CLKO Cs]16 [U]
‘Hm so [1° E 5 RB0:|33
45[™ sI]147 I
6 — E 13 vce [-_— Il
47[™ scK |- hE oo i
osc2 INT [———— 1 vee 1l
] : 0sc1 RX0B]% ow T J
SI—T—’MhZ E[e osct c-l; :
— ——= wmcP2s10 _ RN %
[et
RC3 Rrea[}2—
10 } i
i
1 N 8
L[] =x-cAN Rs [}—
I”—z[GND CANH [———
vcc}—j[VCC CANL]z—
L —{|rRxD wref [|—

MCP2551

Shielded pair = |
no longer than 300m ~

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ 2@

MIKROBASIC

mikroBASIC

- BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Compact Flash Library

Compact Flash Library provides routines for accessing data on Compact Flash
card (abbrev. CF further in text). CF cards are widely used memory elements,
commonly found in digital cameras. Great capacity (§SMB ~ 2GB, and more) and
excellent access time of typically few microseconds make them very attractive for
microcontroller applications.

In CF card, data is divided into sectors, one sector usually comprising 512 bytes

(few older models have sectors of 256B). Read and write operations are not per-

formed directly, but successively through 512B buffer. Following routines can be
used for CF with FAT16, and FAT32 file system. Note that routines for file han-

dling can be used only with FAT16 file system.

Important! Before write operation, make sure you don’t overwrite boot or FAT
sector as it could make your card on PC or digital cam unreadable. Drive mapping
tools, such as Winhex, can be of a great assistance.

Library Routines

Cf Init

Cf Detect

Cf Read Init

Cf Read Byte

Cf Write Init
Cf Write Byte
Cf Write Sector
Cf Read Sector

Cf Fat Init

Cf Fat Assign

Cf Fat Reset

Cf Fat Read

Cf Fat Rewrite

Cf Fat Append

Cf Fat Delete

Cf Fat Write

Cf Fat Set File Date
Cf Fat Get File Date
Cf Fat Get File Size
Cf Fat Get Swap File

Function Cf_Set Reg Adr is for compiler internal purpose only.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miIgmBASIl:

W @ simple...] MIKROBASIC - BASIC CoMPILER FOR MICROCHIP PIE MICROCONTROLLERS
Cf_Init
Prototype sub procedure Cf Init(dim byref ctrlport, dataport as byte)
Description Initializes ports appropriately for communication with CF card. Specify two different

ports: ctrlport and dataport.

Examp]e Cf Init (PORTB, PORTD)
Cf_Detect

Proknype sub function Cf Detect as byte
Returns Returns 1 if CF is present, otherwise returns 0.
Description Checks for presence of CF card on ctrlport.
Exanqﬂe ' Wait until CF card 1is 1inserted:

do

nop
loop until Cf Detect =1

Cf_Read_Init

Prototype sub procedure Cf Read Init(dim address as longint, dim sectcnt as
byte)
Description Initializes CF card for reading. Parameters: ctrlport is control port, dataport is data

port , address specifies sector address from where data will be read, and sectcnt is
total number of sectors prepared for read operation.

Requires Ports must be initialized. See Cf Init.

Example Cf Read Init (590, 1)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ 3@

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Cf_Read_Byte

Prototype sub function Cf Read Byte as byte

Returns Returns byte from CF.

Description Reads one byte from CF.

Requires CF must be initialized for read operation. See Cf Read Init.
Example PORTC = Cf Read Byte

Cf_Write_Init

Prototype sub procedure Cf Write Init(dim address as longint, dim sectcnt
as byte)

Description Initializes CF card for writing. Parameter ctrlport is control port, dataport is data
port , address specifies sector address where data will be stored, and sectcnt is total
number of sectors prepared for write operation.

Requires Ports must be initialized. See Cf Init.

Example Cf Write Init (590, 1)

Cf_Write_Byte

Prototype sub procedure Cf Write Byte(dim data as byte)
Description Writes one byte (data) to CF. All 512 bytes are transferred to a buffer.
Requires CF must be initialized for write operation. See Cf Write Init.
Example Cf Write Byte(100)
CTpage T

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

W d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Cf_Write_Sector

Prototype sub function Cf Write Sector(dim sector as longint, dim byref
data as bytel 512]) as byte

Returns Returns 0 if write was successful; returns 1 if there was an error in sending write com-
mand; returns 2 if there was an error in writing.

Description Function writes 512 bytes of data to CF card at sector address sector. Function returns 0
if write was successful, or 1 if there was an error in sending write command, or 2 if
there was an error in writing.

Requires Ports must be initialized. See Cf Init.

Example error = Cf Write Sector(sector, data)

Cf_Read_Sector

Prototype sub function Cf Read Sector (dim sector as longint, dim byref data
as byte[512]) as byte

Returns Returns 0 if read was successful, or 1 if an error occurred.

Description Function reads one sector (512 bytes) from CF card at sector address sector. Read data
is stored in the array data. Function returns 0 if read was successful, or 1 if an error
occurred.

Requires Ports must be initialized. See Cf Init.

Example error = Cf Read Sector (sector, data)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ 33

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Cf_Fat_Init

Prototype sub function Cf Fat Init(dim byref ctrlPort as byte, dim byref
dataPort as byte) as byte

Returns Returns 0 if initialization is successful, 1 if boot sector was not found and 255 if card
was not detected.

Description Initializes ports appropriately for FAT operations with CF card. Specify two different
ports: ctrlport and dataport.

Requires Nothing.

Example CF_Fat Init (PORTD,PORTC)

Cf_Fat_Assign

Prototype sub function Cf Fat Assign(dim byref filename as array[12] of
char, dim create file as byte)as byte

Returns "1" is file is present(or file isn't present but new file is created), or "0" if file isn't present
and no new file is created.

Description Assigns file for FAT operations. If file isn't present, function creates new file with given
filename. filename parameter is name of file (filename must be in format 8.3 UPPER-
CASE). create_file is a parameter for creating new files. if create file if different from 0
then new file is created (if there is no file with given filename).

Requires Ports must be initialized for FAT operations with CF. See Cf Fat Init.

Example Cf Fat Assign ('MIKROELE.TXT',1)

Cf_Fat_Reset

Prototype sub procedure Cf Fat Reset (dim byref size as longint)
Returns Size of file in bytes. Size is stored on address of input variable.
Description Opens assigned file for reading.
Requires Ports must be initialized for FAT operations with CF.
See Cf Fat Init.
File must be assigned.
See Cf Fat Assign.
Exanqﬂe Cf Fat Reset(size)
CTpage T

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

making & simple... ! MIKROBASIC - BASIC CoMPILER FOR MICROCHIP PIE MICROCONTROLLERS
Cf_Fat_Read
Prototype sub procedure Cf Fat Read(dim byref bdata as byte)
Returns Nothing.
Description Reads data from file. bdata is data read from file.
Requires Ports must be initialized for FAT operations with CF.

See Cf Fat Init.

File must be assigned.

See Cf Fat Assign.

File must be open for reading.
See Cf Fat Reset.

Example Cf Fat Read(character)

Cf_Fat_Rewrite

Prototype sub procedure Cf Fat Rewrite

Returns Nothing.

Description Rewrites assigned file.

Requires Ports must be initialized for FAT operations with CF.

See Cf Fat_Init.

File must be assigned.
See Cf Fat Assign.

Example Cf Fat Rewrite

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ 35

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Cf_Fat_Append

Prototype sub procedure Cf Fat Append

Returns Nothing.

Description Opens file for writing. This procedure continues writing from the last byte in file.
Requires Ports must be initialized for FAT operations with CF.

See Cf Fat Init.

File must be assigned.
See Cf Fat Assign.

Example Cf Fat Append

Cf_Fat_Delete

Prototype sub procedure Cf Fat Delete

Returns Nothing.

Description Deletes file from CF.

Requires Ports must be initialized for FAT operations with CF.
See Cf Fat_Init.

File must be assigned.
See Cf Fat Assign.

Example Cf Fat Delete

ﬂ @@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOkS - COMPILERS

mikroBASIC

W d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Cf_Fat_Write

Prototype sub procedure Cf Fat Write(dim byref fdata as array[512] of byte,
dim data len as word)

Returns Nothing.

Description Writes data to CF.fdata parameter is data written to CF. data len number of bytes that is

written to CF.

Requires Ports must be initialized for FAT operations with CF.
See Cf Fat Init.

File must be assigned.
See Cf Fat Assign.

File must be open for writing.
See Cf Fat Rewrite or Cf Fat Append.

Example Cf Fat Write(file contents, 42) ' write data to the assigned file

Cf_Fat_Set_File_Date

Prototype sub procedure Cf Fat Set File Date(dim year as word, dim month,
day, hours, mins, seconds as byte)

Returns Nothing.

Description Sets time attributes of file.You can set file year, month, day. hours, mins, seconds.

Requires Ports must be initialized for FAT operations with CF.

See Cf Fat Init.

File must be assigned.
See Cf Fat Assign.

File must be open for writing.
See Cf Fat Rewrite or Cf Fat Append.

Example Cf Fat Set File Date(2005,9,30,17,41,0)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ 37

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Cf_Fat_Get_File_Date

Prototype sub procedure Cf Fat Get File Date (dim byref year as word, dim
byref month as word, dim byref day as word, dim byref hours as
word, dim byref mins as word)

Returns Nothing.
Description Reads time attributes of file.You can read file year, month, day. hours, mins.
Requires Ports must be initialized for FAT operations with CF.

See Cf Fat_Init.

File must be assigned.
See Cf Fat Assign.

Example Cf Fat Get File Date(year, month, day, hours, mins)

Cf_Fat_Get_File_Size

Prototype sub function Cf Fat Get File Size as longint
Returns Size of file in bytes.

Description This function returns size of file in bytes.

Requires Ports must be initialized for FAT operations with CF.

See Cf Fat Init.

File must be assigned.
See Cf Fat Assign.

Example Cf Fat Get File Size

ﬂ @ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOkS - COMPILERS

mikroBASIC

W d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Cf_Fat_Get_Swap_File

Prototype sub function Cf Fat Get Swap File(dim sectors cnt as longint)as
longint
Returns No. of start sector for the newly created swap file, if swap file was created; otherwise,

the function returns zero.

Description This function is used to create a swap file on the CF media. It accepts as sectors_cnt
argument the number of consecutive sectors that user wants the swap file to have.
During its execution, the function searches for the available consecutive sectors, their
number being specified by the sectors cnt argument. If there is such space on the media,
the swap file named MIKROSWP.SYS is created, and that space is designated (in FAT
tables) to it. The attributes of this file are: system, archive and hidden, in order to dis-
tinct it from other files. If a file named MIKROSWP.SYS already exists on the media,
this function deletes it upon creating the new one.

The purpose of the swap file is to make reading and writing to CF media as fast as pos-
sible, without potentially damaging the FAT system. Swap file can be considered as a
"window" on the media where user can freely write/read the data, in any way (s)he
wants to. Its main purpose in mikroBasic library is to be used for fast data acquisition;
when the time-critical acquisition has finished, the data can be re-written into a "nor-
mal" file, and formatted in the most suitable way.

Requires Ports must be initialized for FAT operations with CF.
See Cf Fat_Init.

Example | '"-————————————- Tries to create a swap file, whose size will be
'at least 100 sectors.
'Tf it succeeds, it sends the No. of start sector over USART

sub procedure C Create Swap File
size = Cf Fat Get Swap File(100)
if (size) then
Usart Write (SAA)
Usart Write (Lo (size))
Usart Write (Hi(size))
Usart Write (Higher (size))
Usart Write (Highest (size))
Usart Write (SAA)
end if
end sub

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ 3@

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W de-

Library Examples

The following example writes 512 bytes at sector n0.590, and then reads the data
and prints on PORTC for a visual check.

program Cf example
dim i as word
dim temp, k as longint

main:
TRISC = 0 ' PORTC is output
Cf Init (PORTB, PORTD) ' Initialize ports
do
nop
loop until Cf Detect = true " Wait until CF card is inserted

Delay ms (500)
Cf Write Init (590, 1) ' Initialize write at sector
address 590
! of 1 sector (512 bytes)

for i = 0 to 511 ' Write 512 bytes to sector (590)
Cf Write Byte(i + 11)
next i

PORTC = SFF
Delay ms (1000)

Cf Read Init (590, 1) " Initialize write at sector address 590
! of 1 sector (512 bytes)
for i = 0 to 511 ' Read 512 bytes from sector (590)
PORTC = Cf Read Byte ' Read byte and display on PORTC
Delay ms (1000)
next i
end.

ﬂ 4@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikro_BASIl:

Mééo&? et simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

HW Connection

i |/ re7h40
1 RB6 g:
1 RBS5[}—
[RB4 3;
[RB3
i U ref
I: — RB1 34
I o e I
vce [-— 0
hEvcc oo RD7:| 30
__%[GND T I RD6[]—22
- osci o RDs[]-2
oscz (J] Ro4 7
Qo N I
[1
;z [|rDO RD3 Zf
[|rD1 RD2
vce
Y A,
RD7 /
RD6 .
RD5
RD4 D
RD3
RD2 J D
RD1 D
RDO Compact Flash
D Card
—
38 14,
13,
£ 12,
—
RB7 = D
RB6 =5
32
RB5 =] D
| 30
RB4 = D
RB3 = 2,
=im
RB2 5
RB1
RBO .
= AN
[]
R25 ~Vce il -_'
10K !

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ 4ﬂ

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

EEPROM Library

EEPROM data memory is available with a number of PICmicros. mikroBasic
includes library for comfortable work with EEPROM.

Library Routines

Eeprom Read
Eeprom Write

Eeprom_Read

Prototype sub function EEprom read(dim Address as word) as byte
Returns Returns byte from specified address.
Description Reads data from specified address. Parameter address is of byte type, which means it

can address only 1024 locations. For PIC18 micros with more EEPROM data locations,
it is programmer’s responsibility to set EEADRH register appropriately.

Requires Requires EEPROM module.

Ensure minimum 20ms delay between successive use of routines Eeprom Write and
Eeprom Read. Although PIC will write the correct value, Eeprom Read might return
an undefined result.

Example take = Eeprom Read ($3F)

ﬂ 42 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

méap? et simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Eeprom_Write

Prototype sub procedure EEprom write(dim Address as word, dim Data as byte)

Description Writes data to specified address. Parameter address is of byte type, which means it can
address only 1024 locations. For PIC18 micros with more EEPROM data locations, it is
programmer’s responsibility to set EEADRH register appropriately.

Be aware that all interrupts will be disabled during execution of Eeprom Write routine
(GIE bit of INTCON register will be cleared). Routine will set this bit on exit.

Requires Requires EEPROM module.

Ensure minimum 20ms delay between successive use of routines Eeprom Write and
Eeprom_ Read. Although PIC will write the correct value, Eeprom Read might return
an undefined result.

Exanqﬂe Eeprom Write ($32)

Library Example

The example writes values at 20 successive locations of EEPROM. Then, it reads the written data
and prints on PORTB for a visual check.

program eeprom_ test
dim i, j as char

main:
TRISB = 0
for i = 0 to 20
EEprom Write(i, 1 + 6)
next i

for i = 0 to 20
PORTB = Eeprom Read (i)

for j = 0 to 200
Delay us(500)
next j
next i

end.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ 43

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Ethernet Library

This library is designed to simplify handling of the underlying hardware
(RTL8019AS). However, certain level of knowledge about the Ethernet and
Ethernet-based protocols (ARP, IP, TCP/IP, UDP/IP, ICMP/IP) is expected from
the user. The Ethernet is a high—speed and versatile protocol, but it is not a simple
one. Once you get used to it, however, you will make your favorite PIC available
to a much broader audience than you could do with the RS232/485 or CAN.

Library Routines

Eth Init

Eth Set Ip Address

Eth Inport

Eth Scan For Event

Eth Get Ip Hdr Len

Eth Load Ip Packet

Eth Get Hdr Chksum

Eth Get Source Ip Address
Eth Get Dest Ip Address
Eth Arp Response

Eth Get Icmp Info

Eth Ping Response

Eth Get Udp Source Port
Eth Get Udp Dest Port
Eth Get Udp Port

Eth Set Udp Port

Eth Send Udp

Eth Load Tcp Header

Eth Get Tcp Hdr Offset
Eth Get Tcp Flags

Eth Set Tcp Data

Eth Tcp Response

ﬂ 44 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Mé{«lﬂ? ctdmt«ﬂée MIKROBASIC - BASIC CoOMPILER FOR MICROCHIP PIC MICROCONTROLLERS
Eth_Init
Prototype sub procedure Eth Init (dim byref addrP, dataP, ctrlP as byte, dim

pinReset, pinIOW, pinIOR as byte)

Description Performs initialization of Ethernet card and library. This includes:

- Setting of control and data ports;

- Initialization of the Ethernet card (also called the Network Interface Card, or NIC);
- Retrieval and local storage of the NIC’s hardware (MAC) address;

- Putting the NIC into the LISTEN mode.

Parameter addrP is a pointer to address port, which handles the addressing lines.
Parameter dataP is pointer to data port. Parameter ct r1P is the control port. Parameter
pinReset is the reset/enable pin for the ethernet card chip (on control port). Parameter
pinIOw is the I/O Write request control pin. Parameter pinIOR is the I/O read request

control pin.
Requires As specified for the entire library.
Example Eth Init (PORTB, PORTD, PORTE, 2, 1, 0)

Eth_Set_Ip_Address

Prototype sub procedure Eth Set Ip Address(dim ipl, ip2, ip3, ip4 as byte)

Description Sets the IP address of the connected and initialized Ethernet network card. The
arguments are the IP address numbers, in IPv4 format (e.g. 127.0.0.1).

Requires This procedure should be called immediately after the NIC initialization (see
Eth Init). You can change your IP address at any time, anywhere in the code.

Example ' Set IP address 192.168.20.25
Eth Set Ip Address (192, 168, 20, 25)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ 45

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Eth_Set_Inport

Prototype sub function Eth Inport(dim address as byte) as byte

Returns One byte from the specified address.

Description Retrieves a byte from the specified address of the Ethernet card chip.

Requires The card (NIC) must be properly initialized. See Eth Init.

Example udp length = udp length or Eth Inport (NIC DATA)

Eth_Scan_For_Event

Prototype sub function Eth Scan For Event (dim byref next ptr as byte) as
word
Returns Type of the ethernet packet received. Two types are distinguished: aARp (MAC-IP

address data request) and 1P (Internet Protocol).

Description Retrieves sender’s MAC (hardware) address and type of the packet received. The
function argument is an (internal) pointer to the next data packet in RTL8019’s buffer,
and is of no particular importance to the end user.

Requires The card (NIC) must be properly initialized. See Eth_Init. Also, the function must be
called in a proper sequence, i.e. right after the card init and IP address/UDP port init.

Example while TRUE
event type = Eth Scan For Event (next ptr) ' Scan for event
select case event type
case ARP
Arp Event () ' Some event handler
case IP
Ip Event () ' Some event handler

end select

Eth Outport (CR, $22)

Eth Outport (BNDRY, next ptr)
wend

ﬂ 4@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Méaﬂ? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Eth_Get_Ip_Hdr_Len

Prototype sub function Eth Get Ip Hdr Len as byte
Returns Header length of the received IP packet.
Description Function returns header length of the received IP packet. Before other data based upon

the IP protocol (TCP, UDP, ICMP) can be analyzed, the sub-protocol data must be prop-
erly loaded from the received IP packet.

Requires The card (NIC) must be properly initialized. See Eth Init. The function must be
called in a proper sequence, i.e. immediately after determining that the packet received
is the IP packet.

Example ' Receive IP Header
opt len = Eth Get Ip Hdr Len() - 20

Eth_Load_Ip_Packet

Prototype sub procedure Eth Load Ip Packet
Description Loads various IP packet data into PIC’s Ethernet variables.
Requires The card (NIC) must be properly initialized. See Eth_Init. Also, a proper sequence of

calls must be obeyed (see the Ip Event function in the supplied Ethernet example).

Example Eth Load Ip Packet ()

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ 47

MIKROBASIC -

BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

mIkI‘IlBAS“:

Eth_Get_Hdr_Chksum

Prototype sub procedure Eth Get Hdr Chksum

Description Loads and returns the header checksum of the received IP packet.

Requires The card (NIC) must be properly initialized. See Eth_Init. Also, a proper sequence of
calls must be obeyed (see the Ip Event function in the supplied Ethernet example).

Example Eth Get Hdr Chksum()

Eth_Get_Source_Ip_Address

Prototype sub procedure Eth Get Source Ip Address

Description Loads and returns the IP address of the sender of the received IP packet.

Requires The card (NIC) must be properly initialized. See Eth Init. Also, a proper sequence of
calls must be obeyed (see the Ip Event function in the supplied Ethernet example).

Example Eth Get Source Ip Address()

Eth_Get_Dest_Ip_Address

Prototype sub procedure Eth Get Dest Ip Address
Description Loads the IP address of the received IP packet for which the packet is designated.
Requires The card (NIC) must be properly initialized. See Eth Init. Also, a proper sequence of
calls must be obeyed (see the Ip Event function in the supplied Ethernet example).
Example Eth Get Dest Ip Address ()
Cpage e

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Eth_Arp_Response

Prototype sub procedure Eth Arp Response

Description An automated ARP response. User should simply call this function once he detects the
ARP event on the NIC.

Requires As specified for the entire library.

Example Eth Arp Response ()

Eth_Get_lcmp_Info

Prototype sub procedure Eth Get Icmp Info

Description Loads ICMP protocol information (from the header of the received ICMP packet) and
stores it to the PIC’s Ethernet variables.

Requires The card (NIC) must be properly initialized. See Eth Init. Also, this function must be
called in a proper sequence, and before the Eth Ping Response.

Example Eth Get Icmp Info()

Eth_Ping_Response

Prototype sub procedure Eth Ping Response

Description An automated ICMP (Ping) response. User should call this function when answerring to
an ICMP/IP event.

Requires As specified for the entire library.

Example Eth Ping Response ()

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Eth_Get_Udp_Source_Port

Prototype sub function Eth Get Udp Source Port as word

Returns Returns the source port (socket) of the received UDP packet.

Description The function returns the source port (socket) of the received UDP packet. After the
reception of valid IP packet is detected and its type is determined to be UDP, the UDP
packet header must be interpreted. UDP source port is the first data in the UDP header.

Requires This function must be called in a proper sequence, i.e. immediately after interpretation
of the IP packet header (at the very beginning of UDP packet header retrieval).

Example udp source port = Eth Get Udp Source Port()

Eth_Get_Udp_Dest_Port

Prototype sub function Eth Get Udp Dest Port as word
Returns Returns the destination port of the received UDP packet.
Description The function returns the destination port of the received UDP packet. The second

information contained in the UDP packet header is the destination port (socket) to which
the packet is targeted.

Requires This function must be called in a proper sequence, i.e. immediately after calling the
Eth Get Udp Source Port function.

Example udp dest port = Eth Get Udp Dest Port()

ﬂ 5@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOkS - COMPILERS

mikroBASIC

W d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Eth_Get_Udp_Port

Prototype sub function Eth Get Udp Port as byte

Returns Returns the UDP port (socket) number that is set for the PIC’s Ethernet card.

Description The function returns the UDP port (socket) number that is set for the PIC's Ethernet
card. After the UDP port is set at the beginning of the session (Eth_Set Udp Port), its
number is later used to test whether the received UDP packet is targeted at the port we
are using.

Requires The network card must be properly initialized (see Eth_Init), and the UDP port
propely set (see Eth_Set Udp Port). This library currently supports working with
only one UDP port (socket) at a time.

Example if udp dest port = Eth Get Udp Port() then
" Respond to action

Eth_Set_Udp_Port

Prototype sub procedure Eth Set Udp Port (dim udp port as word)

Description Sets up the default UDP port, which will handle user requests. The user can decide,
upon receiving the UDP packet, which port was this packet sent to, and whether it will
be handled or rejected.

Requires As specified for the entire library.

Example Eth Set Udp Port (10001)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ 5ﬂ

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Eth_Send_Udp

Prototype sub procedure Eth Send Udp(dim msg as stringf 16])

Description Sends the prepared UDP message (msg), of up to 16 bytes (characters).

Unlike ICMP and TCP, the UDP packets are generally not generated as a response to the
client request. UDP provides no guarantees for message delivery and sender retains no
state on UDP messages once sent onto the network. This is why UDP packets are simply
sent, instead of being a response to someone’s request.

Requires As specified for the entire library. Also, the message to be sent must be formatted as a
null-terminated string. The message length, including the trailing “0”, must not exceed
16 characters.

Exanqﬂe Eth Send Udp (udp_ tx message)

Eth_Load_Tcp_Header

Prototype sub procedure Eth Load Tcp Header
Description Loads various TCP Header data into PIC’s Ethernet variables.
Requires This function must be called in a proper sequence, i.e. immediately after retrieving the

source and destination port (socket) of the TCP message.

Example
tcp source port = Eth Inport (NIC DATA) << 8 ' get src port
tcp source port = tcp source port or Eth Inport (NIC DATA)
tcp dest port = Eth Inport(NIC DATA) << 8 ' get dest port
tcp dest port = tcp dest port or Eth Inport (NIC DATA)
' We only respond to port 80 (HTML requests)
if tcp dest port = 80 then
' retrieve TCP Header data (most of it)
Eth Load Tcp Header ()
r
end if
Cpage e

ﬂ 52 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOkS - COMPILERS

mikroBASIC

W d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Eth_Get_Tcp_Hdr_Offset

Prototype sub function Eth Get Tcp Hdr Offset as byte

Returns Returns the length (or offset) of the TCP packet header in bytes.

Description The function returns the length (or offset) of the TCP packet header in bytes. Upon
receiving a valid TCP packet, its header is to be analyzed in order to respond properly
(e.g. respond to other's request, merge several packets into the message, etc.). The head-
er length is important to know in order to be able to extract the information contained in
1it.

Requires This function must be called after the Eth Load Tcp Header, since it initializes the
private variables used for this function.

Example ' calculate offset (TCP header length)
tcp options = Eth Get Tcp Hdr Offset () - 20

Eth_Get_Tcp_Flags

Prototype sub function Eth Get Tcp Flags as byte

Returns Returns the flags data from the header of the received TCP packet.

Description The function returns the flags data from the header of the received TCP packet. TCP
flags show various information, e.g. SYN (syncronize request), ACK (acknowledge
receipt), and similar. It is upon these flags that, for example, a proper HTTP communi-
cation is established.

Requires This function must be called after the Eth Load Tcp Header, since it initializes the
private variables used for this function.

Example flags = Eth Get Tcp Flags ()

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ 53

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Eth_Set_Tcp_Data

Prototype sub procedure Eth Set Tcp Data(const data as “byte)

Description Prepares data to be sent on HTTP request. This library can handle only HTTP requests,
so sending other TCP-based protocols, such as FTP, will cause an error. Note that
TCP/IP was not designed with 8-bit MCU’s in mind, so be gentle with your HTTP

requests.
Requires As specified for the entire library.
Example ' Let's prepare a simple HTML page in our string:

const httpPagel
"HTTP/1.0 200 OK" + Chr(13) + Chr(10) +
"Content-type: text/html" + Chr(13) + Chr(10) +
"<html>" + Chr(10) + "<body>" + Chr(10) +
"<hl>Hello world!</hl>" + Chr(10) +
"</body>" + Chr(10) + "</html>"

’

Eth_Set Tcp_Data (€httpPagel)

Eth_Tcp_Response

Prototype sub procedure Eth Tcp Response

Description Performs user response to TCP/IP event. User specifies data to be sent, depending on the
request received (HTTP, HTTPD, FTP, etc). This is performed by the function
Eth Set Tcp Data.

Requires Hardware requirements are as specified for the entire library. Prior to using this proce-
dure, user must prepare the data to be sent through TCP; see Eth Set Tcp Data.

Example Eth Tcp Response ()

ﬂ 54 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Méaﬂ? iz simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Library Example

Check the supplied Ethernet example in the Examples folder.

HW Connection

T1:FL1012

8| o
7—% %10

ﬁ%m ’

O1u 01u L 0.1u

T2kv T2Kv

RJ45

Alwbmmﬂm

SO0
8888
w
-2 |eD2
gi GND -
4 |sD1
= Jotu| —= |eoo ——<_RDS|
GND
+5V %«: SD15 : 4-
——1— [SD14 ——
2 |vae RTL8019AS soo| =2 (RD3]
—or—] SD13 SD5| = 20
] | Us 2 E (o2
—2 |sbn1 sp3| =2
—2 . |sp10 so2| =% RD1
—2—] |spe =
—o] |sps spo| = RDO|
— = [iocstes IOCHRDY| =5~ ==
—] |INT7 AEN| =2
—e] |NTE RSTDRV| =2 +5V
——] [|INT5 SMEMWB T
100 A |\NTa SMEMRB :71——‘
ONCOo pranmgnonDnaoSCNRTRONR2ND
EEEER T = 3 Sxs
222255855 50000 8050233 8ddBB8n690 +5V

|
+
2

RBO
[RB1)
[RB2
[RB3)
[RB4

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ 55

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

SPI Ethernet Library

The ENC28J60 is a stand-alone Ethernet controller with an industry standard
Serial Peripheral Interface (SPI™). It is designed to serve as an Ethernet network
interface for any controller equipped with SPI.

The ENC28J60 meets all of the IEEE 802.3 specifications. It incorporates a num-
ber of packet filtering schemes to limit incoming packets. It also provides an inter-
nal DMA module for fast data throughput and hardware assisted IP checksum cal-
culations. Communication with the host controller is implemented via two inter-
rupt pins and the SPI, with data rates of up to 10 Mb/s. Two dedicated pins are
used for LED link and network activity indication.

This library is designed to simplify handling of the underlying hardware
(ENC28J60). It works with any PIC with integrated SPI and more than 4 Kb ROM
memory. 38 to 40 MHz clock is recommended to get from § to 10 Mhz SPI clock,
otherwise PIC should be clocked by ENC clock output due to ENC silicon bug in
SPI hardware. if you try lower PIC clock speed, there might be board hang or miss
some requests. This library is tested with PIC16F877A@10Mhz,
PIC18F452@40Mhz.

Note: For advanced users there is a header in Uses\P16 and Uses\P18 folder
("enc28j60 _libprivate.pbas") with detailed description of all functions which are
implemented in SPI Ethernet Library.

Note: spT_1nit must be called before initializing SPI Ethernet.

Library Routines

SPI Ethernet Init

SPI_Ethernet doPacket
SPI_Ethernet putByte
SPI_Ethernet getByte
SPI_Ethernet UserTCP
SPI_Ethernet UserUDP

ﬂ 5@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOkS - COMPILERS

mikroBASIC

W d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

SPI_Ethernet_lInit

Prototype sub procedure SPI Ethernet Init (dim byref resetPort as byte, dim
resetBit as byte, dim byref CSportPtr as byte, dim CSbit as byte,
dim byref mac as byte[6] , dim byref ip as bytel 4], dim fullDuplex

as byte)
Returns Nothing.
Description Initialize ENC controller. This function is splited into 2 parts to help linker when com-

ing short of memory.

resetPort - pointer to reset pin port

resetBit - reset bit number on resetPort

CSport - pointer to CS pin port

CSbit - CS bit number on CSport

mac - pointer to array of 6 char with MAC address

ip - pointer to array of 4 char with IP address

fullDuplex - either SPI Ethernet HALFDUPLEX for half duplex or
SPI Ethernet FULLDUPLEX for full duplex

Requires SPI_Init must be called before initializing SPI Ethernet.

Example SPI Ethernet Init (PORTC, 0, PORTC, 1, myMacAddr, myIpAddr,
SPI Ethernet FULLDUPLEX)

SPI_Ethernet_doPacket

Prototype sub procedure SPI Ethernet doPacket

Returns Nothing.

Description Process one incoming packet if available.

Requires SPI FEthernet init must have been called before using this function. This function must
be called as often as possible by user.

Example SPI Ethernet doPacket

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ 57

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

SPI_Ethernet_putByte

Prototype sub procedure ENC28J60 putByte(dim v as byte)
Returns Nothing.
Description v - value to store

Store one byte to current EWRPT ENC location.

Requires SPI Ethernet init must have been called before calling this function.

Example SPI Ethernet putByte (0xa0)

SPI_Ethernet_getByte

Prototype dim function SPI Ethernet getByte as byte

Returns Value of byte @ addr.

Description Get next byte from current ERDPT ENC location.

Requires SPI_Ethernet_init must have been called before calling this function.
Example b = SPI Ethernet getByte
“TTpage e

ﬂ 5 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOkS - COMPILERS

mikroBASIC

Mé‘”? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

SPI_Ethernet_UserTCP

Prototype sub function SPI Ethernet UserTCP(dim byref remoteHost as

byte[4] , dim remotePort, localPort, reglLength as word) as word
Returns Returns the length in bytes of the HTTP reply, or 0 if nothing to transmit.
Description This function is called by the library. The user accesses to the HTTP request by succes-

sive calls to SPI_Ethernet getByte the user puts data in the transmit buffer by succes-
sive calls to SPI_Ethernet putByte the function must return the length in bytes of the
HTTP reply, or 0 if nothing to transmit. If you don't need to reply to HTTP requests, just
define this function with a return(0) as single statement.

Requires SPI_Ethernet init must have been called before calling this function.

Example

SPI_Ethernet_UserUDP

Prototype sub function SPI Ethernet UserUDP(dim byref remoteHost as
byte[4] , remotePort, destPort, reglength as word) as word

Returns Returns the length in bytes of the UDP reply, or 0 if nothing to transmit.

Description This function is called by the library. The user accesses to the UDP request by succes-
sive calls to SPI Ethernet getByte. The user puts data in the transmit buffer by succes-
sive calls to SPI_Ethernet putByte. The function must return the length in bytes of the
UDP reply, or 0 if nothing to transmit. If you don't need to reply to UDP requests,just
define this function with a return(0) as single statement.

Requires SPI_Ethernet init must have been called before calling this function.

Example

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ 5@

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Library Example

The following example is a simple demonstration of the SPI Ethernet Library. PIC
is assigned an IP address of 192.168.20.60, and will respond to ping if connected
to a local area network.

program enc ethernet

include "enc utils" ' this is where you should write implementation for UDP and HTTP
include "enc_eth"

’{***********************************

' * RAM variables

r *}
dim myMacAddr as byte| 6] " my MAC address
myIpAddr as byte| 4] " my IP address
main:
ADCON1 = 0x00 " ADC convertors will be used
PORTA = 0
TRISA = Oxff ' set PORTA as input for ADC
PORTB = 0
TRISB = Oxff ' set PORTB as input for buttons
PORTD = 0
TRISD = 0 ' set PORTD as output

httpCounter = 0

myMacAddr[0] = 0x00
myMacAddr[1] = 0x14
myMacAddr[2] = O0xA5
myMacAddr[3] = 0x76
myMacAddr[4] = 0x19
myMacAddr[5] = O0x3F
myIpAddr{ 0] 192
myIpAddr[1] = 168
myIpAddr[2] = 20
myIpAddr[3] = 60
' continues...
- Vo T-

ﬂ @@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikro_BASIl:

Méém? et simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

' continued...

I *

'* starts ENC28J60 with
'* reset bit on RCO

'# CS bit on RCI

'"* my MAC & IP address
'* full duplex

I *
Spi Init ' initialize SPI

SPI Ethernet Init (PORTC, 0, PORTC, 1, myMacAddr, myIpAddr, SPI Ethernet FULLDUPLEX)

while true ' do forever
SPI Ethernet doPacket () ' process incoming Ethernet packets
'{*

' * add your stuff here if needed
' * SPI Ethernet doPacket () must be called as often as possible
' * otherwise packets could be lost

wend
end.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ @ﬂ

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS maéat? de'

N\
I 1]
I 1]
I]
I
i U I
I — 1]
i (@) I
vee i 3 il
I i foe) 1]
1 vee _n 1
i——z{]eno il
3 oo ?,-, !
—
_15[RCO 1
8 Mhz 16 Arei N il
E 24
_|D|— 18 [RCS 23
L L RC3 RC4
=+ [I
I 1]
vcc
\ 4 =
T veces
& ENC28J60)
10uF
1 J 28
VCAP vee [—
A\ —2[GND LEDA]i
vee [P 3 26
~ —{] cLkouT LEDB [}—
N 4]1—3 4] — 25
12 —{|INT osc-vee [}—
L w[— 54— 24
e 1 —{| woL osc2 [}—
a[}— 3B 6 23
5 - 10 so osc1 |—
—Ilz o 38— RC5 74 22
6 9 {]si OSCGND [}
—{]2ry 9 3a[}— RC3 8 4 21 25 MHz
7 b4 8 RC4 {| sck PLL-GND [}
GND | e——— RC1 94 = 20
= {|és PLLvCce [}—
= RCO 0 o e 19
—1 RX-VCC .,|_'1s
¢——{| GND-Rx TX-GND [} R4
12 17 ps
1| TP TROUT+ [
TPIN+ TPOUT- [RS
14 15
RBIAS TX-VCC [— 51
R1 -_—
2K
vces |
R6
L1 51
FERRITE
= BEAD R7
51
12|11| RJ45
K2 A2 qp, 1
<] ot f—2
- |—2
RO+ |7
<] cr :
K1 a1 RP-

ﬂ @2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Méaﬂ? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Flash Memory Library

This library provides routines for accessing microcontroller Flash memory. Note
that prototypes differ for PIC16 and PIC18 families.

Note: Due to P16 family flash specifics, flash library is MCU dependent. There
are three kinds of MCU's that support flash memory operations:

1. Only flash Read operation supported. For this group of MCU's only Flash Read
function is implemented.

2. Read and Write operations are supported (write is executed as erase-and-write).
For this group of MCU's read and write functions are implemented.

3. Read, Write and Erase operations supported. For this group of MCU's read,
write and erase functions are implemented. Further more, flash memory block
has to be erased prior to writting (write operation is not executed as
erase_and write).

Please refer to datasheet before using flash library.

Library Routines

Flash Write
Flash Read
Flash Erase

Flash_Write

Prototype sub procedure Flash Write(dim Address as word, dim byref Data as
word 4]) ' for PICIé6

sub procedure Flash Write(dim Address as longint, dim byref Data
as word 64]) ' for PICI1S8

Description Writes chunk of data to Flash memory. With PIC18, data needs to be exactly 64 bytes in
size. The function erases target memory before writing data to it. This means that if
write was unsuccessful, previous data will be lost.

Example ' Write consecutive values in 64 consecutive locations
for i = 0 to 63

toWritel 1] = 1
next i

Flash Write ($0D00, toWrite)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ @3

mlkl'oBASI(:

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MicrocanTrRovLers .07 heing ¢ @ smple...
Flash_Read
Prototype ' for PICI16
sub function Flash Read(dim address as word) as byte
' for PICI1S8

sub function Flash Read(dim address as longint) as byte

Returns Returns data byte from Flash memory.
Description Reads data from the specified address in Flash memory.
Example Flash Read ($D00)

Flash_Erase

Prototype sub procedure Flash Frase(dim address as word)
Returns Nothing.
Description Erases 32 bytes memory block starting from a given address. Implemented only for

those MCU's whose flash memory does not support erase-and-write operations (refer to
datasheet for details).

Example ' Erase 32 byte memory memory block, starting from address $0D00:
Flash Erase ($0D00)

ﬂ @4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikl'o_BASIc

Mééw iz simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Library Example

The following examples write 64 consecutive values to 64 consecutive locations in flash memory.
Then, the written data is verified, with error indication on PORTB.

' For PICI18
program Flash P18

dim i as byte
addr as longint
dataRd as byte
dataWr as byte[64]

main:
PORTB = 0
TRISB = 0

for i = 0 to 63

dataWr[1] = 1
next i
addr = 0x00000A30 ' valid for P18F452

Flash Write(addr, dataWr)

addr = 0x00000A30
for i = 0 to 63
dataRd = Flash Read (addr)

PORTB = dataRd

addr = addr + 1

Delay ms (200)
next i

end.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ @5

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

12C Library

I2C full master MSSP module is available with a number of PIC MCU models.
mikroBasic provides I2C library which supports the master [?°C mode.

Note: This library supports module on PORTB or PORTC, and will not work with
modules on other ports. Examples for PICmicros with module on other ports can
be found in your mikroBasic installation folder, subfolder “Examples”.

Library Routines

I2C Init

I2C Start

I2C Repeated Start
I2C Is Idle

12C Rd
I2C Wr
I2C Stop
12C_Init
Prototype sub procedure I2C Init (const clock as longint)
Description Initializes I2C with desired clock (refer to device data sheet for correct values in
respect with Fosc). Needs to be called before using other functions of 12C Library.
Requires Library requires MSSP module on PORTB or PORTC.
Example I2C Init (100000)
“TTpage e

ﬂ @@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miIgmBASIl:

making & simple... ! MIKROBASIC - BASIE COMPILER FOR MICROCHIP PIE MICROCONTROLLERS
12C_Start
Prototype sub function I2C Start as byte
Returns If there is no error, function returns 0.
Description Determines if I2C bus is free and issues START signal.
Requires I?’C must be configured before using this function. See I2C_Init.
Example if I2C Start = 0 then

12C_Repeated_Start

Prototype sub procedure I2C Repeated Start
Description Issues repeated START signal.
Requires IC must be configured before using this function. See I2C_Init.
Example I2C Repeated Start
12C_Is_lIdle
Prototype sub function I2C Is Idle as byte
Returns Returns 1 if I2C bus is free, otherwise returns 0.
Description Tests if I?C bus is free.
Requires I2C must be configured before using this function. See I2C_Init.
Example if I2C Is Idle then

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BoOkKkSs -

12C_Rd
Prototype sub function I2C Rd(dim ack as byte) as byte
Returns Returns one byte from the slave.
Description Reads one byte from the slave, and sends not acknowledge signal if parameter ack is 0,
otherwise it sends acknowledge.
Requires START signal needs to be issued in order to use this function. See 12C_Start.
Example tmp = I2C RdA(0) ' Read data and send not acknowledge signal
12C_Wr
Prototype sub function I2C Wr(dim data as byte) as byte
Returns Returns 0 if there were no errors.
Description Sends data byte (parameter data) via I2C bus.
Requires START signal needs to be issued in order to use this function. See I12C_Start.
Example I2C Write (SA3)
12C_Stop
Prototype sub procedure I2C Stop
Description Issues STOP signal.
Requires IC must be configured before using this function. See I2C_Init.
“TTpage e

COMPILERS

mikro_BASIc

Mééw iz simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Library Example

This code demonstrates use of 12C Library procedures and functions. PIC MCU is connected (pins
SCL, SDA) to 24c02 EEPROM. Program sends data to EEPROM (data is written at address 2).
Then, we read data via [2C from EEPROM and send its value to PORTD, to check if the cycle
was successful (figure on the following page shows how to interface 24c02 to PIC).

program Eeprom test

dim EE adr, EE data, k as byte
dim jj as word

main:
I2C Init(100000) ' Initialize full master mode
TRISD = 0 " PORTD 1is output
PORTD = SFF ' Initialize PORTD
I2C start ' Issue I2C start signal
I2C_Wr ($A2) ' Send byte via I2C(command to 24c02)
EE adr = 2
I2C Wr (EE_adr) " Send byte (address for EEPROM)
EE_data = S$SAA
I2C Wr (EE _data) ' Send data(data that will be written)
I2C stop ' Issue I2C stop signal

' Pause while EEPROM writes data
for jj = 0 to 65500

nop

next jj

I2C start ' Issue I2C start signal
I2C_Wr ($A2) Send byte via I2C

EE adr = 2
I2C Wr (EE_adr)
I2C Repeated Start
I2C_Wr ($A3)
k = I2C Rd(1)
I2C stop
PORTD = k
" Endless loop
while true
nop
wend

end.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS

Send byte (address for EEPROM)

Issue I2C signal repeated start
Send byte (request data from EEPROM)
Read the data

Issue I2C stop signal

Show data on PORTD

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W (ZW

HW Connection

Y vce vce
] v v
[
i L[
E ; A0 chc]8—
—21ar we [[
vee I: 1—3[NC SCL]]Z“
E 4—4[GND SDA]i
[5| | 5 L
y FU PD L 24C02

vcc
GND
0scC1
0sc2

¢av4810Id

]

1
O
T

1 ¢
=
©

23

RC3 RC4

S S N I I N[S I N[S S I [S S S S S A A o |

H
ol

ﬂ ?@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOkS - COMPILERS

mikroBASIC

Méaﬂ? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Keypad Library

mikroBasic provides library for working with 4x4 keypad; routines can also be
used with 4x1, 4x2, or 4x3 keypad. Check the connection scheme at the end of the

topic.
Library Routines

Keypad Init
Keypad Read
Keypad Released

Keypad_Init
Proﬂnype sub procedure Keypad Init (dim byref port as word)
Description Initializes port to work with keypad. The procedure needs to be called before using other
routines from Keypad library.
Example Keypad Init (PORTB)

Keypad_Read

Prototype sub function Keypad Read as word

Returns 1..16, depending on the key pressed, or 0 if no key is pressed.

Description Checks if any key is pressed. Function returns 1 to 16, depending on the key pressed, or
0 if no key is pressed.

Requires Port needs to be appropriately initialized; see Keypad Init.

Example kp = Keypad Read

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ 7ﬂ

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Keypad_Released

Prototype sub function Keypad Released as word
Returns 1..16, depending on the key.
Description Call to Keypad_Released is a blocking call: function waits until any key is pressed

and released. When released, function returns 1 to 16, depending on the key.

Requires Port needs to be appropriately initialized; see Keypad Init.
Example kp = Keypad Released
“TTpage e

ﬂ 72 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOkS - COMPILERS

mikro_BASIc

Mééw iz simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Library Example

The following code can be used for testing the keypad. It supports keypads with 1 to 4 rows and 1
to 4 columns. The code returned by the keypad functions (1..16) is transformed into ASCII codes
[0..9,A..F]. In addition, a small single-byte counter displays the total number of keys pressed in
the second LCD row.

program keypad test

dim kp, cnt as byte
dim txt as stringl 5]

main:
cnt = 0
Keypad Init (PORTC)
Lcd Init (PORTB) ' Initialize LCD on PORTC
Lcd Cmd (LCD_CLEAR) ' Clear display
Lcd Cmd (LCD _CURSOR OFF) ' Cursor off

Lcd Out (1, 1, "Key ")
Led Out (2, 1, "Times:")

while TRUE
kp = 0

'--— Wait for key to be pressed

while kp = 0
'-—- un-comment one of the keypad reading functions
kp = Keypad Released
'"kp = Keypad Read

wend

Inc (cnt)

'--- prepare value for output
if kp > 10 then
kp = kp + 54
else
kp = kp + 47
end if

'-—- print it on LCD
Led Chr (1, 10, kp)
WordToStr (cnt, txt)
Lcd Out (2, 10, txt)
wend
end.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ 73

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS maéat? (ZW

HW Connection

-‘V‘I—\
S
SN S N I I [N S S [I N [[

— | osc2

1 -/ RB73:: /O O
(RB6 iy 1 2 3 A
—l] P Pt P
E e v e e
i T a2l 2]e
vce I: v e 35 =] o4 I = T =
(— Re1 [}~ | 7 | 8 | 9 c
[O RBO [o T_.-H T_.-O—t T_.-H
E ; * [0 | # [D
1" VR "o oo oo g
|| :z GND m T T T
osct 'h i' \O KE4YXF:1AD o/
(&)
N

R-SIL 8/9
10K

»
s N s s s O s |

ﬂ ?4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Mééw iz simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

LCD Library (4-bit interface)

mikroBasic provides a library for communicating with commonly used LCD (4-bit
interface). Figures showing HW connection of PIC and LCD are given at the end
of the chapter.

Library Routines

Lcd Config
Led Init
Lcd Out
Lcd Out Cp
Lcd Chr
Lcd Chr Cp
Lcd Cmd

Lcd_Config

Prototype sub procedure Lcd Config(dim byref data port as byte,dim D7, D6,
D5, D4 as byte,dim byref ctrl port as byte,dim RS, WR, EN as
byte)

Description Initializes LCD data port and control port with pin settings you specify.

Example Lcd Config (PORTD, 3,2,1,0, PORTB, 2,3, 4)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ 75

mikroBASIC

MIKROBASIG - BASIC GOMPILER FOR MICROCHIP PIC MICROCANTROLLERS o oo. W o simple...
Lcd_Init
Prototype sub procedure Lcd Init (dim byref port as byte)
Description Initializes LCD at port with default pin settings (see the connection scheme at the end of

the chapter): D7 -> PORT.7, D6 -> PORT.6, D5 -> PORT.5, D4 -> PORT 4,
E ->PORT.3, RS -> PORT.2.

Example Lcd Init (PORTB)
Lcd_Out
Prototype sub procedure Lcd Out(dim row, col as byte, dim byref text as

char| 255])

Description Prints text on LCD at specified row and column (parameter row and col). Both string
variables and literals can be passed as text.

Requires Port with LCD must be initialized. See Lcd _Config or Led Init.

Example Led Out (1, 3, "Hello!™) ' Print "Hello!" at line 1, char 3
Lcd_Out_Cp

Prototype sub procedure Lcd Out Cp(dim byref text as charf 255])

Description Prints text on LCD at current cursor position. Both string variables and literals can be

passed as text.

Requires Port with LCD must be initialized. See Lcd_Config or Led_Init.
Example Lcd Out Cp("Here!™) ' Print "Here!'" at current cursor position
- Vo T-

ﬂ 7@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOkS - COMPILERS

mikroBASIC

’_"f’_é_"_”?_ & slmple... ! MIKROBASIC - BASIE COMPILER FOR MICROCHIP PIE MICROCONTROLLERS
Lcd_Chr
Prototype sub procedure Lcd Chr(dim row, col, character as byte)
Description Prints character on LCD at specified row and column (parameters row and col).

Both variables and literals can be passed as character.

Requires Port with LCD must be initialized. See Lcd_Config or Led_Init.
Example Lcd Chr(2, 3, "i") ' Print "i" at line 2, char 3
Lcd_Chr_Cp
Prototype sub procedure Lcd Chr Cp(dim character as byte)
Description Prints character on LCD at current cursor position. Both variables and literals can be

passed as character.

Requires Port with LCD must be initialized. See Lcd_Config or Led_Init.

Example Lcd Chr Cp("e") ' Print "e" at current cursor position
Lcd_Cmd

Prototype sub procedure Lcd Cmd(dim command as byte)

Description Sends command to LCD. You can pass one of the predefined constants to the function.

The complete list of available commands is shown on the page 140.

Requires Port with LCD must be initialized. See Lcd_Config or Led_Init.

Example Lcd Cmd (LCD_CLEAR) ' Clear LCD display

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ 77

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

LCD Commands

LCD Command Purpose
LCD_FIRST ROW Move cursor to 1st row
LCD_SECOND_ROW Move cursor to 2nd row
LCD_THIRD ROW Move cursor to 3rd row
LCD_FOURTH ROW Move cursor to 4th row
LCD_CLEAR Clear display

Return cursor to home position, returns a shifted display to original posi-

LCD_RETURN_ HOME) . .
- - tion. Display data RAM is unaffected.

LCD CURSOR OFF Turn off cursor
LCD _UNDERLINE ON Underline cursor on
LCD_BLINK CURSOR ON Blink cursor on

LCD_MOVE_CURSOR_LEFT Move cursor left without changing display data RAM

LCD_MOVE_CURSOR RIGHT | Move cursor right without changing display data RAM

LCD_TURN_ON Turn LCD display on
LCD_TURN OFF Turn LCD display off
LCD SHIFT LEFT Shift display left without changing display data RAM
LCD SHIFT RIGHT Shift display right without changing display data RAM
Cpage e

ﬂ 7 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOkS - COMPILERS

making it simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Library Example (default pin settings)

program Lcd default test
dim text as char| 20]

main:
TRISB = 0 ' PORTB is output
Lcd Init (PORTB) ' Initialize LCD on PORTB
Lcd Cmd (Lcd CURSOR OFF) " Turn off cursor
text = "mikroElektronika"
Lcd Out (1, 1, text) ' Print text at LCD
end.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ 7@

mikroBASIC

making ct simple...

) ,_I—“l
| | | o N o 1 o Y e I s Y e I e Y e Y o |

—

[%}
(%]
>

Ll

Cararara

zay Lay
€ay oay
7oy £3¥
o)} 2oy
90¥ [Ko}Y}
10¥ 00¥
yay 2oso
say 10S0
90y SSA

ZUn 8

| NN N N S S_— m_—

i

1
Lay aan >
SSA zay w yueunsnipy | |54
aan EN]| isequod
ogy 03y [] F
L8y svi [] 29A
zay v []
cay eva []
vay v []
say [
ogy ova []
19y H1OW

M

Hardware Connection

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

COMPILERS

BOooks -

DEVELOPMENT TOOLS -

MIKROELEKTRONIKA

page

10

mikroBASIC

Méaﬂ? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

LCD Library (8-bit interface)

mikroBasic provides a library for communicating with commonly used 8-bit inter-
face LCD (with Hitachi HD44780 controller). Figures showing HW connection of
PIC and LCD are given at the end of the chapter.

Library Routines

Lcd8 Init
Lcd8 Out
Lcd8 Out Cp
Lcd8 Chr
Lcd8 Chr Cp
Lcd8 Cmd

Lcd8_Init

Prototype sub procedure Lcd8 Init(dim byref ctrlport, dataport as byte)

Description Initializes LCD at Control port (ctrlport) and Data port (dataport) with default pin set-
tings (see the connection scheme at the end of the chapter):

E -> ctrlport.3, RS -> ctrlport.2, R/W -> ctrlport.0, D7 -> dataport.7, D6 -> dataport.6,
D5 -> dataport.5, D4 -> dataport.4, D3 -> dataport.3, D2 -> dataport.2, D1 -> dataport.1,
DO -> dataport.0

Example Lcd8 Init (PORTB, PORTC)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ ﬂ

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

mlkmBASIl:

Lcd8_Out
Prototype sub procedure Lcd8 Out (dim row, col as byte, dim byref text as
char{ 255])
Description Prints text on LCD at specified row and column (parameter row and col). Both string
variables and literals can be passed as text.
Requires Ports with LCD must be initialized. See Lcd8_Config or Lcd8 Init.
Example Lcd8 Out(l, 3, "Hello!") ' Print "Hello!" at line 1, char 3

Lcd8_Out_Cp

Prototype sub procedure Lcd8 Out Cp(dim byref text as char{ 255])

Description Prints text on LCD at current cursor position. Both string variables and literals can be
passed as text.

Requires Ports with LCD must be initialized. See Lcd8_Config or Lcd8 Init.

Example Lcd8 Out Cp ("Here!™) " Print "Here!" at current cursor position

Lcd8_Chr

Prototype void Lcd8 Chr (char row, char col, char character);

Description Prints character on LCD at specified row and column (parameters row and col).
Both variables and literals can be passed as character.

Requires Ports with LCD must be initialized. See Lcd8 Config or Led8 Init.

Example Lcd8 Out (2, 3, "iM) ' Print "i" at 1line 2, char 3

CTpage T

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

making & simple... ! MIKROBASIC - BASIC CoMPILER FOR MICROCHIP PIE MICROCONTROLLERS
Lcd8_Chr_Cp
Prototype sub procedure Lcd8 Chr Cp(dim character as byte)
Description Prints character on LCD at current cursor position. Both variables and literals can be

passed as character.

Requires Ports with LCD must be initialized. See Lcd8_Config or Lcd8 Init.

Example Lcd8 Chr Cp("e") " Print "e" at current cursor position
Lcd8_Cmd

Prototype sub procedure Lcd8 Cmd(dim command as byte)

Description Sends command to LCD. You can pass one of the predefined constants to the function.

The complete list of available commands is on the page 140.

Requires Ports with LCD must be initialized. See Lcd8_Config or Lcd8 Init.

Example Lcd8 Cmd (LCD_CLEAR) ' Clear LCD display

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ 3

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

mikroBASIC

making

Library Example (default pin settings)

program Lcd8 default test
dim text as char| 20]

main:
TRISB = 0 " PORTB is output
TRISC = 0 " PORTC is output
LCd8_Init(PORTB, PORTC) " Initialize LCD at PORTB and PORTC
Lcd8 Cmd (LCD_CURSOR _OFF) " Turn off cursor
text = "mikroElektronika"
Lcd8 Out (1, 1, text) ' Print text at LCD

end.

CTpage e

ﬂ 4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS -

BOooks -

COMPILERS

I

©
a

’EJ'!
LI | 1 s s e |

0
[=]

©

a
e |

5

~

Ll

- BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

(%]
(%)
>

MIKROBASIC
5)
4
o ¥ e |

w

—

zay 1ay “_I_
a

£ay oay
[

o [2}) ”_

SOy zoy ”_

90¥ Al yne T ~

10¥ 00y =

yay 29SO
say 1980
9ay SSA
Lay aan
SSA z3y
aan (=N
ogy (EN]
[X: 1Y) Svy

P M
yuawysnipy | |ed

ysenuon

| W S S S— — — S— — — — - - \.ﬁ:

zay vy JOA
€ay evy
vay (A 4-]
Sy 32-]
98y ovy
L8¥) A0

Hardware Connection

mikroBASIC

page

18

COMPILERS

BOOKS -

DEVELOPMENT TOOLS -

MIKROELEKTRONIKA

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

GLCD Library

mikroBasic provides a library for drawing and writing on Graphic LCD. These
routines work with commonly used GLCD 128x64, and work only with the PIC18
family.

Library Routines

Basic routines:

Glcd Init

Glcd _Set Side
Glcd Set Page
Glcd Set X

Glcd Read Data
Glcd Write Data

Advanced routines:

Glcd Fill

Glcd Dot

Glcd Line
Glcd V Line
Glcd H Line
Glcd Rectangle
Glcd Box

Glcd Circle
Glcd Set Font
Glcd Write Char
Glcd Write Text
Glcd Image

ﬂ @ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Mé{«lﬂ? ctawkﬁle oo MIKROBASIC - BASIC CoOMPILER FOR MICROCHIP PIC MICROCONTROLLERS
Glcd_Init
Prototype sub procedure Glcd Init(dim byref ctrlport as byte, dim csl, cs2,

rs, rw, rst, en as byte, dim byref dataport as byte)

Description Initializes GLCD at lower byte of data port with pin settings you specify. Parameters
csl, cs2, rs, rw, rst, and en can be pins of any available port.

This procedure needs to be called befored using other routines of GLCD library.

Example Gled Init (PORTB, 2, 0, 3, 5, 7, 1, PORTC)

Glcd_Set_Side

Prototype sub procedure Glcd Set Side(dim x as byte)

Description Selects side of GLCD, left or right. Parameter x specifies the side: values from 0 to 63
specify the left side, and values higher than 64 specify the right side. Use the functions
Glcd Set Side, Glcd Set X, and Glcd_Set Page to specify an exact position on
GLCD. Then, you can use Glcd _Write Data or Glcd Read Data on that location.

Requires GLCD needs to be initialized. See G1cd_Init.

Example Glcd Set Side(0)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ 7

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

mIkI‘IlBAS“:

Glcd_Set_Page

Prototype sub procedure Glcd Set Page (dim page as byte)
Description Selects page of GLCD, technically a line on display; parameter page can be 0..7.
Requires GLCD needs to be initialized. See G1cd_Init.
Example Glcd _Set Page(5)
Glcd_Set_X
Prototype sub procedure Glcd Set X(dim x as byte)
Description Positions to x dots from the left border of GLCD within the given page.
Requires GLCD needs to be initialized. See Glcd_Init.
Example Glcd Set X (25)

Glcd_Read_Data

Prototype sub function Glcd Read Data as byte
Returns One word from the GLCD memory.
Description Reads data from from the current location of GLCD memory. Use the functions
Glcd _Set Side, Glcd Set X, and Glcd Set Page to specify an exact position on
GLCD. Then you can use Glcd _Write Data or Glcd Read Data on that location.
Requires Reads data from from the current location of GLCD memory.
Example tmp = Glcd Read Data()
CTpage T

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mlkroBASIc

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Glcd_Write_Data

Prototype sub procedure Glcd Write Data(dim data as byte)
Description Writes data to the current location in GLCD memory and moves to the next location.
Requires GLCD needs to be initialized. See G1cd_Init.
Example Glcd Write Data(data)
Gled_Fill
Prototype sub procedure Glcd Fill (dim pattern as byte)
Description Fills the GLCD memory with byte pattern. To clear the GLCD screen, use
Glcd Fill (0); to fill the screen completely, use Glcd Fill (SFF).
Requires GLCD needs to be initialized. See Glcd_Init.
Example Glcd Fill(0) ' Clear screen
Glcd_Dot
Prototype sub procedure Glcd Dot (dim x, y, color as byte)
Description Draws a dot on the GLCD at coordinates (x, vy).Parameter color determines the dot
state: O clears dot, 1 puts a dot, and 2 inverts dot state.
Requires GLCD needs to be initialized. See G1cd_Init.
Example Glcd Dot (0, 0, 2) ' Invert the dot in the upper left corner

MIKROELEKTRONIKA: DEVELOPMENT TOOLS -

BOOKS - COMPILERS

mikroBASIC

MIKROBASIC - BASIE COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W f.’.% o
Glcd_Line
Prototype sub procedure Glcd Line(dim x1, yl, x2, y2, color as byte)
Description Draws a line on the GLCD from (x1, y1) to (x2, y2).Parameter color determines

the dot state: 0 draws an empty line (clear dots), 1 draws a full line (put dots), and 2
draws a “smart” line (invert each dot).

Requires GLCD needs to be initialized. See Glcd_Init.

Example Glcd Line (0, 63, 50, 0, 2)

Glcd_V_Line

Prototype sub procedure Glcd V Line(dim yl, y2, x, color as byte)

Description Similar to G1cd Line, draws a vertical line on the GLCD from (x, yl1) to
(x, y2).

Requires GLCD needs to be initialized. See Glcd Init.

Example Glcd V_Line(0, 63, 0, 1)

Glcd_H_Line

Prototype sub procedure Glcd H Line(dim x1, x2, y, color as byte)
Description Similar to G1cd_Line, draws a horizontal line on the GLCD from (x1, vy) to
(x2, v).
Requires GLCD needs to be initialized. See Glcd_Init.
Example Gled H Line(0, 127, 0, 1)
“TTpage e

ﬂ @@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Mé‘”? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Glcd_Rectangle

Prototype sub procedure Glcd Rectangle(dim x1, yl, x2, y2, color as byte)

Description Draws a rectangle on the GLCD. Parameters (x1, y1) set the upper left corner,

(x2, y2) set the bottom right corner. Parameter color defines the border: 0 draws an
empty border (clear dots), 1 draws a solid border (put dots), and 2 draws a “smart” bor-
der (invert each dot).

Requires GLCD needs to be initialized. See Glcd_Init.
Example Glcd Rectangle (10, 0, 30, 35, 1)
Glcd_Box
Prototype sub procedure Glcd Box(dim x1, yl, x2, y2, color as byte)

Description Draws a box on the GLCD. Parameters (x1, y1) set the upper left corner, (x2, y2)
set the bottom right corner. Parameter color defines the fill: 0 draws a white box (clear
dots), 1 draws a full box (put dots), and 2 draws an inverted box (invert each dot).

Requires GLCD needs to be initialized. See Glcd Init.

Example Glcd Box (10, 0, 30, 35, 1)

Glcd_Circle

Prototype sub procedure Glcd Circle(dim x, y, radius, color as integer)

Description Draws a circle on the GLCD, centered at (x, y) with radius. Parameter color defines
the circle line: 0 draws an empty line (clear dots), 1 draws a solid line (put dots), and 2
draws a “smart” line (invert each dot).

Requires GLCD needs to be initialized. See G1cd_Init.

Example Glcd Circle (63, 31, 25)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ @ﬂ

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Glcd_Set_Font

Prototype sub procedure Glcd Set Font (dim font address as longint, dim
font width, font height as byte, dim font offset as word)

Description Sets the font for text display routines, Glcd Write Char and Glcd Write Text.
Font needs to be formatted as an array of byte. Parameter font address specifies the
address of the font; you can pass a font name with the @ operator. Parameters

font width and font height specify the width and height of characters in dots. Font
width should not exceed 128 dots, and font height should not exceed 8 dots. Parameter
font offset determines the ASCII character from which the supplied font starts.
Demo fonts supplied with the library have an offset of 32, which means that they start
with space.

If no font is specified, Glcd Write Char and Glcd Write Text will use the default
5x8 font supplied with the library. You can create your own fonts by following the
guidelines given in the file “GLCD_Fonts.ppas”. This file contains the default fonts for
GLCD, and is located in your installation folder, “Extra Examples” > “GLCD”.

Requires GLCD needs to be initialized. See Glcd Init.

Example ' Use the custom 5x7 font "myfont" which starts with space (32):
Glcd Set Font (@myfont, 5, 7, 32)

Glcd_Write_Char

Prototype sub procedure Glcd Write Char (dim character, x, page, color as
byte)

Description Prints character at page (one of 8 GLCD lines, 0..7), x dots away from the left border
of display. Parameter color defines the “fill”: 0 writes a “white” letter (clear dots), 1
writes a solid letter (put dots), and 2 writes a “smart” letter (invert each dot).

Use routine Glcd_Set Font to specify font, or the default 5x7 font (included with the
library) will be used.

Requires GLCD needs to be initialized, see Glcd_Init. Use the Glcd Set Font to specify the
font for display; if no font is specified, the default 5x8 font supplied with the library will
be used.
Example Glcd Write Char("Cc", 0, 0, 1)
Cpage e

ﬂ @2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

méap? et simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Glcd_Write_Text

Prototype sub procedure Glcd Write Text (dim text as string{ 20] , dim x,
page, color as byte)

Description Prints text at page (one of 8 GLCD lines, 0..7), x dots away from the left border of
display. Parameter color defines the “fill”: O prints a “white” letters (clear dots), 1
prints solid letters (put dots), and 2 prints “smart” letters (invert each dot).

Use routine Glcd_Set Font to specify font, or the default 5x7 font (included with the

library) will be used.

Requires GLCD needs to be initialized, see Glcd_Init. Use the Glcd Set Font to specify the
font for display; if no font is specified, the default 5x8 font supplied with the library will
be used.

Example Glcd Write Text ("Hello world!", 0, 0, 1)

Glcd_Image

Prototype sub procedure Glcd Image(dim image as byte[1024])

Description Displays bitmap image on the GLCD. Parameter image should be formatted as an array
of 1024 bytes. Use the mikroBasic’s integrated Bitmap-to-LCD editor (menu option
Tools » Graphic LCD Editor) to convert image to a constant array suitable for display on
GLCD.

Requires GLCD needs to be initialized. See Glcd_Init.

Example Glcd Image (my image)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ @3

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W de-

Library Example
The following drawing demo tests advanced routines of GLCD library.

program Glcd Test

main:
Glcd_Init(PORTB, 2, 0, 3, 5, 7, 1, PORTD)

' Set font for displaying text
Glcd Set Font (R@FontSystem5x8, 5, 8, 32)

do
' Draw circles
Glcd Fill(0) ' Clear screen
Glcd Write Text ("Circles", 0, 0, 1)
j =4

while j < 31
Glcd Circle (63, 31, 3, 2)
=3 + 4

wend

Delay ms (4000)

' Draw boxes

Glcd Fill(0) ' Clear screen
Glcd Write Text ("Rectangles", 0, 0, 1)
j =0

while j < 31
Gled Box(j, 0, j + 20, j + 25, 2)
=3 + 4

wend

Delay ms (4000)

' Draw Lines

Glcd Fill(0) ' Clear screen
Glcd Write Text ("Lines", 0, 0, 1)
for j = 0 to 15

k = J%4 + 3

Glcd Line(0, 0, 127, k, 2)
next J

Delay ms (4000)
loop until FALSE

end.

ﬂ @4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikro_BASIl:

Mééw et simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Hardware Connection

L

K| Wl (&) [=]N=1N=1N"=] [=RN=)
0 m mm@MmQa@a Qo o »nwn o [= = IS N SR R & R = =]
¥ ¢ o ¢ ¥ ¥ ¥ o S > K ¥ ¥ ¥ ¥ ¥ @ ¢ o o
% < o g OO

o - N ™ n o =« N o ™ N M O
Q Wwwwaoowonwonooooaa
|—||—||—||—||—||—||—||—||—||—||—||—||—-||-|-||—||—||—||—lj-lj-l
(=3 -
a)n

-
(|
8 Mhz

1}
o
> -
L
-
-
-
b
-
-k
ks
e
.
-
-
-
Y
1) -
op— -
> -
-
-
=
H
" BE
b s o
> =1
5% =
o<
Y
| S—
2%

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ @5

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

T6963C Graphic LCD Library

mikroBasic provides a library for drawing and writing on Toshiba T6963C
Graphic LCD (changeable size).

Library Routines

T6963C Init

T6963C writeData
T6963C writeCommand
T6963C_setPtr
T6963C waitReady
T6963C fill

T6963C _dot

T6963C write char
T6963C write text
T6963C line
T6963C_rectangle
T6963C box

T6963C circle
T6963C_image
T6963C_sprite
T6963C set cursor
T6963C clearBit
T6963C_setBit
T6963C negBit
T6963C displayGrPanel
T6963C displayTxtPanel
T6963C_setGrPanel
T6963C_ setTxtPanel
T6963C panelFill
T6963C grFill
T6963C txtFill
T6963C cursor height
T6963C _graphics
T6963C text
T6963C_cursor
T6963C cursor blink
T6963C Init 240x128
T6963C Init 240x64

ﬂ @@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

méap? et simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

T6963C_init

Prototype sub procedure T6963C init (dim width, height, fntW as word, dim
byref data as word, dim byref cntrl as word, dim wr, rd, cd, rst
as word)

Description Initalizes the Graphic Lcd controller. This function must be called before all T6963C
Library Routines.

width - Number of horizontal (x) pixels in the display.

height - Number of vertical (y) pixels in the display.

fntW - Font width, number of pixels in a text character, must be set accordingly to the
hardware.

data - Address of the port on which the Data Bus is connected.

cntrl - Address of the port on which the Control Bus is connected.

wr - !WR line bit number in the *cntrl port.

rd - IRD line bit number in the *cntrl port.

cd - !CD line bit number in the *cntrl port.

rst - IRST line bit number in the *cntrl port.

Display RAM :

The library doesn't know the amount of available RAM.

The library cuts the RAM into panels : a complete panel is one graphics panel followed
by a text panel, The programer has to know his hardware to know how much panel he

has.

Requires Nothing.

Examp]e T6963C init (240, 128, 8, PORTD, PORTB, 3, 2, 1, 5)
r [*

*

init display for 240 pixel width and 128 pixel height
8 bits character width

data bus on PORTF

control bus on PORTD

bit 3 is !WR

bit 2 is !RD

bit 1 is !CD

bit 5 is RST

%% ok % ok % % %

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ @7

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

T6963C_writeData
Prototype sub procedure T6963C writeData(dim data as byte)
Description Routine that writes data to T6963C controller.
Requires Ports must be initialized. See T6963C_init.
Exanqﬂe T6963C_writeData (AddrL)

T6963C_writ

eCommand

Prototype sub procedure T6963C writeCommand(dim data as byte)
Description Routine that writes command to T6963C controller.

Requires Ports must be initialized. See T6963C_init.

Example T6963C_writeCommand (T6963C_CURSOR POINTER SET)

T6963C_setPtr

Prototype sub procedure T6963C setPtr(dim p as word, dim c as byte)
Description This routine sets the memory pointer p for command c.

Requires Ports must be initialized. See T6963C_init.

Example T6963C setPtr(T6963C grHomeAddr + start,

T6963C ADDRESS POINTER SET)

T6963C_waitReady

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BoOkKkSs -

Prototype sub procedure T6963C waitReady
Description This routine pools the status byte, and loops until ready.
Requires Ports must be initialized. See T6963C_init.
Example T6963C waitReady
CTpage T

COMPILERS

mikroBASIC

Mé‘”? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

T6963C_fill

Prototype sub procedure T6963C fill(dim v as byte, dim start, len as word)
Description This routine fills length with bytes to controller memory from start address.
Requires Ports must be initialized. See T6963C_init.
Example T6963C_fill (0x33,0x00FF, 0x000F)

T6963C_dot
Prototype sub procedure T6963C dot(dim x, y as integer, dim color as byte)
Description This sets current text work panel. It writes string str row x line y. mode =

T6963C_ROM_MODE_[OR|EXOR|AND].

Requires Ports must be initialized. See T6963C_init.

Example T6963C dot (x0, y0, pcolor)

T6963C_write_char

Prototype sub procedure T6963C write char(dim c, x, y, mode as byte)

Description This routine sets current text work panel.
It writes char ¢ row x line y.
mode = T6963C_ ROM_MODE [OR|EXOR|AND]

Requires Ports must be initialized. See T6963C_init.

Example T6963C write char('A',22,23,AND)

T6963C_write_text

Prototype sub procedure T6963C write text (dim byref str as bytel 10] , dim x,
y, mode as byte)

Description This sets current text work panel.
It writes string str row x line y.
mode = T6963C ROM_MODE [OR|EXOR|AND]

Requires Ports must be initialized. See T6963C_init.

Example T6963C write text ("GLCD LIBRARY DEMO, WELCOME !", 0, 0,
T6963C_ROM MODE XOR)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS ﬂ @@

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

T6963C_line

Proﬂnype sub procedure T6963C line(dim x0, y0, x1, yl as integer, dim
pcolor as byte)

Description This routine current graphic work panel.
It's draw a line from (x0, y0) to (x1, y1).
peolor = T6963C [WHITE[BLACK]

Requires Ports must be initialized. See T6963C_init.

Example T6963C line (0, 0, 239, 127, T6963C WHITE)

T6963C_rectangle

MIKROELEKTRONIKA: DEVELOPMENT TOOLS -

BOooks -

Prototype sub procedure T6963C rectangle(dim x0, y0, x1, yl as integer, dim
pcolor as byte)

Description It sets current graphic work panel.
It draws the border of the rectangle (x0, y0)-(x1, y1).
pcolor = T6963C [WHITE[BLACK].

Requires Ports must be initialized. See T6963C_init.

Example T6963C rectangle (20, 20, 219, 107, T6963C WHITE)

T6963C_box

Prototype sub procedure T6963C box(dim x0, yO0, x1, yl as integer, dim pcol-
or as byte)

Description This routine sets current graphic work panel.
It draws a solid box in the rectangle (x0, y0)-(x1, y1).
pcolor = T6963C [WHITE[BLACK].

Requires Ports must be initialized. See T6963C_init.

Example T6963C box (0, 119, 239, 127, T6963C WHITE)

CTpage T

COMPILERS

mikroBASIC

Mé‘”? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

T6963C_circle

Prototype sub procedure T6963C circle(dim x, y as integer, dim r as
longint, dim pcolor as word)

Description This routine sets current graphic work panel.
It draws a circle, center is (X, y), diameter is r.
pcolor = T6963C [WHITE[BLACK]

Requires Ports must be initialized. See T6963C_init.

Example T6963C circle (120, 64, 110, T6963C WHITE)

T6963C_image

Prototype sub procedure T6963C_image (const pic as “byte)

Description This routine sets current graphic work panel :

It fills graphic area with picture pointer by MCU.

MCU must fit the display geometry.

For example : for a 240x128 display, MCU must be an array of (240/8)*128 = 3840

bytes .
Requires Ports must be initialized. See T6963C_init.
Example T6963C_image (my image)

T6963C_sprite

Prototype sub procedure T6963C sprite(dim px, py as byte, const pic as
“byte, dim sx, sy as byte)

Description This routine sets current graphic work panel.

It fills graphic rectangle area (px, py)-(px + sx, py + sy) witch picture pointed by MCU.
Sx and sy must be the size of the picture.

MCU must be an array of sx*sy bytes.

Requires Ports must be initialized. See T6963C_init.

Example T6963C sprite(76, 4, einstein, 88, 119) ' draw a sprite

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 2@@

mikroBASIC

MIKROBASIG - BASIC GOMPILER FOR MICROCHIP PIC MICROCANTROLLERS o oo. W o simple...
T6963C_set_cursor
Prototype sub procedure T6963C set cursor(dim x, y as byte)
Description This routine sets cursor row x line y.
Requires Ports must be initialized. See T6963C_init.
Example T6963C_set cursor (cposx, cCposy)
T6963C_clearBit
Prototype sub procedure T6963C clearBit (dim b as byte)
Description Clear control bit.
Requires Ports must be initialized. See T6963C_init.
Example T6963C clearBit (b)
T6963C_setBit
Prototype sub procedure T6963C setBit (dim b as byte)
Description Set control bit.
Requires Ports must be initialized. See T6963C_init.
Example T6963C_setBit (b)
T6963C_negBit
Prototype sub procedure T6963C negBit (b as byte)
Description Neg control bit.
Requires Ports must be initialized. See T6963C_init.
Example T6963C_negBit (b)
CTpage T
MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mIkI'OBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

T6963C_displayGrPanel

Prototype sub procedure T6963C displayGrPanel (dim n as word)
Description Display graphic panel number n.

Requires GLCD needs to be initialized, see T6963C_init.

Example T6963C displayGrPanel (n)

T6963C_displayTxtPanel

Prototype sub procedure T6963C displayTxtPanel (dim n as word)
Description Display text panel number n.

Requires GLCD needs to be initialized, see T6963C_init.

Example T6963C displayTxtPanel (n)

T6963C_setGrPanel

Prototype sub procedure T6963C setGrPanel (dim n as word)
Description Compute graphic start address for panel number n.

Requires Ports must be initialized. See T6963C_init.

Example T6963C setGrPanel (n)

T6963C_setTxtPanel

Prototype sub procedure T6963C setTxtPanel (dim n as word)
Description Compute text start address for panel number n.

Requires Ports must be initialized. See T6963C_init.

Example T6963C setTxtPanel (n)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS

mikroBASIC

MIKROBASIG - BASIC GOMPILER FOR MICROCHIP PIC MICROCANTROLLERS o oo. W o simple...
T6963C_panelFill
Prototype sub procedure T6963C panelFill(dim v as word)
Description Fill full #n panel with v bitmap (0 to clear).
Requires Ports must be initialized. See T6963C_init.
Example T6963C panelFill (v)
T6963C_grFill
Prototype sub procedure T6963C grFill (dim v as word)
Description Fill graphic #n panel with v bitmap (0 to clear).
Requires Ports must be initialized. See T6963C_init.
Example T6963C_grFill (v)
T6963C_txtFill
Prototype sub procedure T6963C txtFill(dim v as word)
Description Fill text #n panel with char v + 32 (0 to clear).
Requires Ports must be initialized. See T6963C_init.
Example T6963C txtFill (v)
T6963C_cursor_height
Prototype sub procedure T6963C cursor height (dim n as word)
Description Set cursor size.
Requires Ports must be initialized. See T6963C_init.
Example T6963C_cursor height (n)
CTpage T
MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mlkroBASIc

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

T6963C_graphics

Prototype sub procedure T6963C graphics(dim n as word)
Description Set graphics on/off.

Requires GLCD needs to be initialized, see T6963C_init.
Example T6963C graphics (1)

T6963C_text

Prototype sub procedure T6963C text (dim n as word)
Description Set text on/off.

Requires GLCD needs to be initialized, see T6963C_init.
Example T6963C_text (1)

T6963C_cursor

Prototype sub procedure T6963C cursor (dim n as word)
Description Set cursor on/off.

Requires Ports must be initialized. See T6963C_init.

Example T6963C cursor (1)

T6963C_cursor_blink

Prototype sub procedure T6963C cursor blink(dim n as word)
Description Set cursor blink on/off.

Requires Ports must be initialized. See T6963C_init.

Example T6963C cursor blink(0)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

T6963C_lInit

mlkl'oBASI(:

240128

Prototype sub procedure T6963C Init 240x128
Description Initialize T6963C based GLCD (240x128 pixels) with default settings for mE GLCD's.
Example T6963C Init 240x128

T6963C_|Init_

240x64

Prototype sub procedure T6963C Init 240x64
Description Initialize T6963C based GLCD (240x64 pixels) with default settings for mE GLCD's.
Example T6963C Init 240x64

Library Example

The following drawing demo tests advanced routines of T6963C GLCD library.

program T6963C

include " Lib T6963c"
include "bitmap"
include "bitmap2"

dim panel as byte ' current panel
i as word ' general purpose register
curs as byte " cursor visibility
Cposx,
cposy as word ' cursor x-y position
main:
TRISC = OxFFFF
TRISB = 0x0000
PORTD = 0
TRISD = 0

T6963C init (240, 128, 8, PORTD, PORTB, 3, 2, 1, 5)
12 {*
* enable both graphics and text display at the same time
I *}
T6963C graphics (1)
T6963C_text (1)

//continues. ..

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BoOkKkSs -

COMPILERS

mikro_BASIl:

making it simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS
//continued...
panel =0
i =0
curs =0
cposy =0
cposx =0
I {)(—
! * text messages
I *}

T6963C_write text (" GLCD LIBRARY DEMO, WELCOME !"™, 0, O,
T6963C_ROM MODE_XOR)

T6963C_write text (" EINSTEIN WOULD HAVE LIKED mE", 0, 15,
T6963C_ROM MODE_XOR)

r {*
! * cursor

2 *}

T6963C cursor height (8) ' 8 pixel height
T6963C set cursor (0, 0) ' move cursor to top left
T6963C cursor (0) ' cursor off

r {,(—
! * draw rectangles

2 *}

T6963C rectangle
T6963C rectangle
T6963C rectangle
T6963C rectangle

0, 0, 239, 127, T6963C WHITE)

20, 20, 219, 107, T6963C WHITE)
40, 40, 199, 87, T6963C WHITE)
60, 60, 179, 67, T6963C WHITE)

I { *
! * draw a cross

2 *}

T6963C line(0, 0, 239, 127, T6963C WHITE)
T6963C line(0, 127, 239, 0, T6963C WHITE)

r {,(—
! * draw solid boxes

2 *}

T6963C box (0, 0, 239, 8, T6963C WHITE)
T6963C box (0, 119, 239, 127, T6963C WHITE)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 2@?

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS Wﬂ? de'

//continued. ..

r {*
! * draw circles

2 *}

T6963C circle (120, 64, 10, T6963C WHITE)
T6963C circle (120, 64, 30, T6963C WHITE)
T6963C circle (120, 64, 50, T6963C WHITE)
T6963C circle (120, 64, 70, T6963C WHITE)
T6963C circle (120, 64, 90, T6963C WHITE)
T6963C circle (120, 64, 110, T6963C WHITE)
T6963C circle (120, 64, 130, T6963C WHITE)

T6963C sprite(76, 4, einstein, 88, 119)
draw a sprite

T6963C setGrPanel (1) ' select other graphic panel

T6963C image (mikroPascal logo glcd bmp)
fill the graphic screen with a picture

while true
r {*
* if RCO is pressed, toggle the display between positive
and negative mode
r *}
if (PORTC.0 <> 0) then
'PORTC.1 =PORTC.1 xor 1
Delay ms (300)
end if

r {*
* if RC1 is pressed, toggle the display between graphic
panel 0 and graphic 1
I *}
if (PORTC.1 <> 0) then
panel =panel + 1
panel =panel and 1
T6963C displayGrPanel (panel)
Delay ms(300)
end if

//continues...

2@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

making it simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

//continued. ..

{*
* if RC2 is pressed, display only graphic panel
r *}
if (PORTC.2 <> 0) then
T6963C graphics (1)
T6963C_ text (0)

Delay ms (300)
end if

{*

* if RC3 1is pressed, display only text panel
r *}

if (PORTC.3 <> 0) then

T6963C graphics (0)
T6963C text (1)
Delay ms(300)

end if
r {*
! * if RC4 is pressed, display text and graphic panels
r *}
if (PORTC.4 <> 0) then
T6963C graphics (1)
T6963C_text (1)
Delay ms (300)
end if
//continues...

page
MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS Wﬂ? de-

//continued. ..

r {*

2 *}
if (PORTC.5

* if RC5 is pressed, change cursor

<> 0) then

curs =curs + 1
if(curs = 3) then

curs
end if
select

case

case

case

=0

case curs
0
T6963C cursor (0)

1
T6963C cursor (1)
T6963C cursor blink(1l)

2
T6963C cursor (1)
T6963C cursor blink(0)

end select
Delay ms (300)

end if
r {*

2 *}

cposx =cposx + 1

* move cursor, even 1f not visible

if (cposx = T6963C txtCols) then

cposx =0

cposy =cposy + 1
if (cposy = (T6963C grHeight div
T6963C CHARACTER HEIGHT)) then

cposy =0
end if
end if

T6963C set cursor (cposx, cCposy)

Delay ms (100)
wend
end.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikrn_BASIl:

Méém? et simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Hardware Connection

d

I i
I i
I i
i]
] 28
vce E 2 %
I i
.Lf,_[ol T
P oscr N mosf
—[m
8 Mhz N
o
=
Contrast
Adjustment
P1 - |
10K
L 5
vccC
vccC
R1
50

FEFFEFFFFFEEFFFFIFIEFIETF

Toshiba T6963C Graphic LCD (240x128)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 2 ﬂ ﬂ

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Manchester Code Library

mikroBasic provides a library for handling Manchester coded signals. Manchester
code is a code in which data and clock signals are combined to form a single self-
synchronizing data stream; each encoded bit contains a transition at the midpoint
of a bit period, the direction of transition determines whether the bitisa 0 or a 1;
second half is the true bit value and the first half is the complement of the true bit
value (as shown in the figure below).

Manchester RF_Send_Byte format

St1|St2|Ctr|B7 |B6|B5|B4 | B3| B2|B1|B0

Bi-phase coding

1 0

2.4ms Example of transmission

Notes: Manchester receive routines are blocking calls (Man Receive Config,
Man Receive Init,Man Receive). This means that PIC will wait until the
task is performed (e.g. byte is received, synchronization achieved, etc). Routines
for receiving are limited to a baud rate scope from 340 ~ 560 bps.

Library Routines

Man Receive Config
Man Receive Init
Man Receive

Man_ Send Config
Man Send Init

Man Send

Man Synchro

2 ﬂ 2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Mé‘”? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Man_Receive_Config

Prototype sub procedure Man Receive Config(dim byref port as byte, dim
rxpin as byte)

Description The procedure prepares PIC for receiving signal. You need to specify the port and
rxpin (0-7) of input signal. In case of multiple errors on reception, you should call
Man Receive Init once again to enable synchronization.

Example Man Receive Config(PORTD, 6)

Man_Receive_Init

Prototype sub procedure Man Receive Init(dim byref port as byte)

Description The procedure prepares PIC for receiving signal. You need to specify the port; rxpin
is pin 6 by default. In case of multiple errors on reception, you should call
Man Receive Init once again to enable synchronization.

Example Man Receive Init (PORTD)

Man_Receive

Prototype sub function Man Receive (dim byref error as byte) as byte
Returns Returns one byte from signal.
Description procedure extracts one byte from signal. If signal format does not match the expected,

error flag will be set to 255.

Requires To use this function, you must first prepare the PIC for receiving. See
Man Receive Config or Man Receive Init.

Example temp = Man Receive (error)
if error = true then ... ' error handling

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 2 ﬂ 3

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Man_Send_Config

Prototype sub procedure Man Send Config(dim byref port as byte, dim txpin
as byte)
Description The function prepares PIC for sending signal. You need to specify port and txpin

(0-7) for outgoing signal. Baud rate is const 500 bps.

Example Man Send Config (PORTD, O0)

Man_Send_Init

Prototype sub procedure Man Send Init (dim byref port as byte)

Description The function prepares PIC for sending signal. You need to specify port for outgoing
signal; txpin is pin 0 by default. Baud rate is const 500 bps.

Example Man Send Init (PORTD)
Man_Send
Prototype sub procedure Man Send(dim data as byte)
Description Sends one byte (data).
Requires To use this function, you must first prepare the PIC for sending. See

Man Send Config or Man Send Init.

Example Man Send (msg)

2 ﬂ 4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIc

Mééw iz simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Man_Synchro

Prototype sub function Man Synchro as byte

Returns Half of the manchester bit length, given in multiples of 10us.

Description This function returns half of the manchester bit length. The length is given in multiples
of 10us. It is assumed that one bit lasts no more than 255*10us = 2550 us.

Requires To use this function, you must first prepare the PIC for sending. See
Man Send Config or Man Send Init.

Example man_len = Man Synchro

Library Example

The following example transmits message in Manchester code. Message is delimited by markers
$0B and $OE.

program RF TX
dim i as byte
dim msg as stringl 20]

main:
msg = "mikroElektronika"
PORTB = 0 ' Initialize port
TRISB = %00001110
ClearBit (INTCON, GIE) ' Disable interrupts
Man_ Send Init (PORTB) ' Initialize Manchester sender
while TRUE
Man Send ($0B) ' Send start marker
Delay ms (100) ' Wait for a while
for i = 1 to Strlen (msg)
Man_ Send (msg[1]) ' Send char
Delay ms (90)
next 1
Man Send (SO0E) ' Send end marker
Delay ms(1000)
wend
end.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 2 ﬂ 5

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W de-

The following code receives messages sent by the previous example, and prints it on LCD. Each
error in the received string will be indicated by a quotation mark.

program RRX
dim errorl, ErrorCount, temp as byte

main:
ErrorCount = 0
TRISB =0
CMCON = 7
" VRCON = 0 " Uncomment the line for PICl6
Lcd Init (PORTB) ' Initialize LCD on PORTB
Led Cmd (LCD_CLEAR)
Man Receive Config (PORTA, 3) ' Configure and synchronize receiver

while true do
Led Cmd (Led FIRST ROW)

while true do ' Wait for the start marker
temp = Man Receive (errorl)
if temp = $0B then
break
end if ' We got the starting sequence
if errorl then ' Exit so we do not loop forever
break
end if
wend
do
temp = Man Receive (errorl) ' Attempt byte receive
if errorl = true then
Lcd Chr Cp(63) ' ASCII for '?'

Inc (ExrrorCount)

if ErrorCount > 20 then
Man Receive Init (PORTA)
' alternative:
" temp = Man Synchro

ErrorCount = 0
end if
else
if temp <> $O0E then " Don't print the end marker on LCD
Lcd Chr Cp (temp)
end if
Delay ms (20)
end if
loop until temp = $O0E
wend
end
CTpage e

2 ﬂ @ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Méap? 664“41#56 MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Hardware Connection

J

Transmitter RF E %

module i i

{ I

vce E 'U %

{ — I

i (@) I

Antenna [- I

{ I

vcc 11; vee % 1

_——1]enp I

T %[2301 h I

—| osc2 m I

8 Mhz E N %
VCC

ignbili i

x,)

A RT4 n —ERW %
GND

||}—

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 2 ﬂ ?

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Receiver RF
module

Antenna

RR4

Receiver RF
module

o o Y o Y e |

<
(2}
(2}

’_|:‘-‘
jury
o e s |

-
N

]

ak

8 Mhz

1
O
<

il

N
o

il
s N s s s O O |

vcc
GND
0OscC1
0sc2

RD1

d

¢av4810Id

S S N I S I N[S N S S I [S S S S S S A |

mlkroBASI(:

2 ﬂ MIKROELEKTRONIKA: DEVELOPMENT TOOLS -

Books - COMPILERS

mikroBASIC

Méaﬂ? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Multi Media Card Library

The Multi Media Card (MMC) is a flash memory card standard. MMC cards are
currently available in sizes up to and including 1 GB, and are used in cell phones,
mp3 players, digital cameras, and PDA’s.

mikroBasic provides a library for accessing data on Multi Media Card via SPI
communication.This library also supports SD(Secure Digital) memory cards.

Secure Digital (SD) is a flash memory card standard, based on the older Multi
Media Card (MMC) format. SD cards are currently available in sizes of up to and
including 2 GB, and are used in cell phones, mp3 players, digital cameras.

Notes:

- Library works with PIC18 family only;

- Library functions create and read files from the root directory only;

- Library functions populate both FAT1 and FAT?2 tables when writing to files, but
the file data is being read from the FAT1 table only; i.e. there is no recovery if
FAT1 table is corrupted.

- Spi_Init Advanced (MASTER OSC_DIV16, DATA SAMPLE MIDDLE,

CLK_IDLE LOW, LOW 2 HIGH) must be called before initializing Mmc_Tnit and
Mmc Fat Init.

Library Routines

Mmc Init

Mmc Read Sector
Mmc Write Sector
Mmc Read Cid
Mmc Read Csd

Mmc Fat Init

Mmc Fat Assign

Mmc Fat Reset

Mmc Fat Rewrite

Mmc Fat Append

Mmc Fat Read

Mmc Fat Write

Mmc Fat Set File Date
Mmc Fat Get File Date
Mmc Fat Get File Size
Mmc Fat Get Swap File

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 2 ﬂ @

mikroBASIC

MIKROBASIG - BASIC BOMPILER FOR MICROCHIP PIC MICROCONTROLLERS | _______ making it simple...
Mmc_Init
Prototype sub function Mmc Init (dim byref port as byte, dim pin as byte) as
byte
Returns Returns 0 if MMC card is present and successfully initialized, otherwise returns 1.
Description Initializes hardware SPI communication; parameters port and pin designate the CS

line used in the communication (parameter pin should be 0..7). The function returns 0
if MMC card is present and successfully initialized, otherwise returns 1. Mmc_Init
needs to be called before using other functions of this library.

Requiress Spi Init Advanced (MASTER OSC DIV16, DATA SAMPLE MIDDLE,
CLK IDLE LOW, LOW 2 HIGH) must be called before initializing Mmc Init.

Example error = Mmc Init (PORTC, 2) ' Init with CS line at RC2

Mmc_Read_Sector

Prototype sub function Mmc Read Sector (dim sector as longint, dim byref
data as byte] 512]) as byte

Returns Returns 0 if read was successful, or 1 if an error occurred.

Description Function reads one sector (512 bytes) from MMC card at sector address sector. Read

data is stored in the array data. Function returns 0 if read was successful, or 1 if an
error occurred.

Requires Library needs to be initialized, see Mmc_Init.
Example error = Mmc Read Sector (sector, data)
CTpage T

22@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

W d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Mmc_Write_Sector

Prototype sub function Mmc Write Sector (dim sector as longint, dim byref
data as byte[512]) as byte

Returns Returns 0 if write was successful; returns 1 if there was an error in sending write com-
mand; returns 2 if there was an error in writing.

Description Function writes 512 bytes of data to MMC card at sector address sector. Function
returns O if write was successful, or 1 if there was an error in sending write command,
or 2 if there was an error in writing.

Requires Library needs to be initialized, see Mmc_Init.

Example error = Mmc Write Sector (sector, data)

Mmc_Read_Cid

Prototype sub function Mmc Read Cid(dim byref data for registers as
byte[512]) as byte

Returns Returns 0 if read was successful, or 1 if an error occurred.

Description Function reads CID register and returns 16 bytes of content into

data for registers.

Requires Library needs to be initialized, see Mmc_Init.

Example error = Mmc Read Cid(data)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 22 ﬂ

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Mmc_Read_Csd

Prototype sub function Mmc Read Csd(dim byref data for registers as
byte[512]) as byte

Returns Returns 0 if read was successful, or 1 if an error occurred.

Description Function reads CSD register and returns 16 bytes of content into

data for registers.

Requires Library needs to be initialized, see Mmc_Init.

Example error = Mmc Read Csd(data)

Mmc_Fat_Init

Prototype sub function Mmc Fat Init (dim byref mmcport as byte,
dim mmcpin as byte) as byte

Returns Returns non-zero value if MMC card is present and successfully initialized, otherwise
returns 0.

Description Initializes hardware SPI communication; designated CS line for communication is given

by parameters mmcport and mmcpin. The function returns a non-zero value if MMC
card is present and successfully initialized, otherwise it returns 0.

This function needs to be called before using other functions of MMC FAT library.

Requires Spi_Init Advanced (MASTER OSC DIV16, DATA SAMPLE MIDDLE,
CLK_IDLE LOW, LOW 2 HIGH) must be called before initializing Mmc_Fat Init.

Example success = Mmc Fat Init (PORTC, 2)

222 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIc

Mééw iz simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Mmc_Fat_Assign

Prototype sub function Mmc Fat Assign(dim byref filename as charf 11],
dim create file as byte) as byte

Returns The function returns non-zero value if the file that is specified by filename was been
found or newly created, otherwise it returns 0.

Description This function designates (“assigns”) the file we’ll be working with. The function looks
for the file specified by the £ilename in the root directory. If the file is found, routine
will initialize it by getting its start sector, size, etc. If the file is not found, an empty file
will be created with the given name, if allowed.

Whether the new file will be created or not is controlled by the parameter
create file - setting it to zero will prevent creation of new file, while giving it any

non-zero value will do the opposite.

The filename must be 8 + 3 characters in uppercase.

Requires Library needs to be initialized; see Mmc_Fat Init.

Example ' Assign the file "EXAMPLE1.TXT" in the root directory of MMC.
' If the file is not found, routine will create one.

' In this case, function return value will allways be non-zero
Mmc Fat Assign ("EXAMPLE1TXT", 1)

' Assign the file "EXAMPLEZ2.TXT" in the root directory of MMC.
' If the file is not found, routine will NOT create new one.
file found = Mmc_ Fat Assign ("EXAMPLE2TXT", O0)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 223

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

mIkI‘IlBAS“:

Mmc_Fat_Reset

Prototype sub procedure Mmc Fat Reset (dim byref size as longint)

Description Procedure resets the file pointer (moves it to the start of the file) of the assigned file, so
that the file can be read. Parameter size stores the size of the assigned file, in bytes.

Requires The file must be assigned, see Mmc_Fat Assign.

Example Mmc Fat Reset (size)

Mmc_Fat_Rewrite

Prototype sub procedure Mmc Fat Rewrite

Description Procedure resets the file pointer and clears the assigned file, so that new data can be
written into the file.

Requires The file must be assigned, see Mmc Fat Assign.

Example Mmc Fat Rewrite

Mmc_Fat_Append

Prototype sub procedure Mmc Fat Append
Description The procedure moves the file pointer to the end of the assigned file, so that data can be
appended to the file.
Requires The file must be assigned, see Mmc_Fat Assign.
Example Mmc Fat Append
Cpage e

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Mmc_Fat_Read

Prototype sub procedure Mmc Fat Read(dim byref data as byte)

Description Procedure reads the byte at which the file pointer points to and stores data into parame-
ter data. The file pointer automatically increments with each call of Mmc Fat Read.

Requires The file must be assigned, see Mmc_Fat Assign. Also, file pointer must be initialized,
seée Mmc_Fat Reset

Example Mmc Fat Read(mydata)

Mmc_Fat_Write

Prototype sub procedure Mmc Fat Write (dim byref fdata as charf[512], dim
datalen as word)

Description Procedure writes a chunk of bytes (fdata) to the currently assigned file, at the position
of the file pointer.

Requires The file must be assigned, see Mmc_Fat Assign. Also, file pointer must be initialized;
see Mmc_Fat Append or Mmc Fat Rewrite.

Example Mmc Fat Write (txt,255)
Mmc Fat Write(“Hello world”,255)

Mmc_Fat_Set_File_Date

Prototype sub procedure Mmc Fat Set File Date(dim year as word, dim month,
day, hours, min, sec as byte)

Description Writes system timestamp to a file. Use this routine before each writing to file; other-
wise, the file will be appended an unknown timestamp.

Requires File pointer must be initialized; see Mmc_Fat Assign and Mmc Fat Reset.

Example ' April 1st 2005, 18:07:00
Mmc_ Fat Set File Date (2005, 4, 1, 18, 7, 0)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS -

BOOKS - COMPILERS

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W de-

Mmc_Fat_Get_File_Date

Prototype sub procedure Mmc Fat Get File Date(dim byref year as word,
dim byref month, day, hours, min, sec as byte)

Description Retrieves date and time for the currently selected file. Seconds are not being retrieved
since they are written in 2-sec increments.

Requires The file must be assigned, see Mmc_Fat Assign.

Example ' get Date/time of file
dim yr as word
dim mnth, dat, hrs, mins as byte

file Name = "MYFILEABTXT"
Mmc Fat Assign(file Name)
Mmc Fat Get File Date(yr, mnth, dat, hrs, mins)

Mmc_Fat_Get_File_Size

Prototype sub function Mmc Fat Get File Size as longint
Returns The size of active file (in bytes).
Description Retrieves size for currently selected file.
Requires The file must be assigned, see Mmc_Fat Assign.
Example ' get file size
dim yr as word
dim mnth, dat, hrs, mins as byte
file name = "MYFILEXXTXT"
Mmc Fat Assign(file name)
mmc_size = Mmc Fat Get File Size()

22@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

W d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Mmc_Fat_Get_Swap_File

Prototype sub function Cf Fat Get Swap File(dim sectors cnt as longint)as
longint
Returns No. of start sector for the newly created swap file, if swap file was created; otherwise,

the function returns zero.

Description This function is used to create a swap file on the MMC/SD media. It accepts as sec-
tors_cnt argument the number of consecutive sectors that user wants the swap file to
have. During its execution, the function searches for the available consecutive sectors,
their number being specified by the sectors cnt argument. If there is such space on the
media, the swap file named MIKROSWP.SYS is created, and that space is designated
(in FAT tables) to it. The attributes of this file are: system, archive and hidden, in order
to distinct it from other files. If a file named MIKROSWP.SYS already exists on the
media, this function deletes it upon creating the new one.

The purpose of the swap file is to make reading and writing to MMC/SD media as fast
as possible, by using the Mmc_Read Sector and Mmc_Write Sector functions directly,
without potentially damaging the FAT system. Swap file can be considered as a "win-
dow" on the media where user can freely write/read the data, in any way (s)he wants to.
Its main purpose in mikroBasic library is to be used for fast data acquisition; when the
time-critical acquisition has finished, the data can be re-written into a "normal" file, and
formatted in the most suitable way.

Requires Ports must be initialized for FAT operations with MMC.
See Mmc_Fat Init.

Example | '-————-———---—- Tries to create a swap file, whose size will be
'at least 100 sectors.
'If it succeeds, it sends the No. of start sector over USART

sub procedure M Create Swap File
size = Mmc Fat Get Swap File (100)
if (size) then
Usart Write
Usart Write
Usart Write
Usart Write
Usart Write
Usart Write
end if
end sub

SAR)

Lo (size))
Hi(size))
Higher (size))
Highest (size))
SAR)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 227

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W de-

Library Example

The following code tests MMC library routines. First, we fill the buffer with 512 “M” characters
and write it to sector 56; then, we repeat the sequence with character “E” at sector 56. Finally, we
read the sectors 55 and 56 to check if the write was successful.

program mmc_test

dim tmp as byte

dim i as word

dim data as byte] 512]

main:
Usart Init(9600)

' Initialize SPI
Spi Init Advanced (MASTER OSC DIV16, DATA SAMPLE MIDDLE, CLK IDLE LOW, LOW 2 HIGH)

tmp = Mmc_ Init (PORTC, 2) ' Initialize ports

for i = 0 to 512 ' Fill the buffer with the "M" char
datal 1] = "M"

next i

tmp = Mmc Write Sector (55, data) ' Write it to MMC card, sector 55

for i = 0 to 512 ' Fill the buffer with the "E" char
datal 1] = "E"

next i

tmp = Mmc Write Sector (56, data) ' Write it to MMC card, sector 56

'*% Verify: **
tmp = Mmc Read Sector (55, data) ' Read from sector 55
if tmp = 0 then ' Send 512 bytes from buffer to USART

for i = 0 to 512
Usart Write(datal i])

next i
end if
tmp = Mmc Read Sector (56, data) ' Read from sector 56
if tmp = 0 then ' Send 512 bytes from buffer to USART

for i = 0 to 512
Usart Write(datal i])
next i
end if

22 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

making it simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Library Example

The next program tests MMC FAT routines. First, we create 5 different files in the root of MMC
card, and fill with some information. Then, we read the files and send them via USART for a
check.

program MMC FAT Test

const FAT ERROR as stringf 20] = "FAT16 not found"
dim filename as string] 14]

dim tmp, character, j as byte

dim size, i as longint

dim aux as stringf 5]

dim msg as string] 100]

main:
Usart Init (19200) ' Set up USART for the read of the files
' Initialize SPI
Spi_Init Advanced(MASTER OSC DIV16, DATA SAMPLE MIDDLE, CLK IDLE LOW, LOW 2 HIGH)

tmp = Mmc Fat Init (PORTC, 2) ' Try to locate the FAT

if tmp <> 0 then

for tmp = 0 to Strlen(FAT_ERROR) -1
Usart Write (FAT ERROR[tmp])
next tmp
end if
J =1

"** Write test, 5 files **

for 7 =1 to 5 ' We want 5 files on the MMC card
filename = "MYFILEOXTXT" ' File names, e.g. "MYFILEOI.TXT"
filename[7] = j + 48 ' Set number 1, 2, 3, 4, or 5
Mmc Fat Assign(filename, 1) ' Create the file, if not found
Mmc Fat Rewrite() ' Clear the file and prepare for writing

' Form the text to be written

aux =
aux[0] = j + 48
msg = "This is a test file, no." + aux
Mmc Fat Write (msg) ' Write data to the assigned file
next j
' continues

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 22@

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS maéat? (ZW:-'

' .. continued
"** Append test **

' Now let's add more data to the same files
for 7 =1 to 5

filename = "MYFILEOXTXT"

filename[7] = j + 48

Mmc Fat Assign(filename, 1) ' Find the file and "assign" it
Mmc Fat Append() ' Prepare for appending

' Form a text to be written
" n

aux =
aux[0] = j + 48

msg = "Append test, try " + aux

Mmc Set File Date(2005,5,3,12,47,12) ' Test the date function

Mmc Fat Write (msg) ' Write data to the assigned file

'*% Read test **
Mmc Fat Reset (size) ' Take the size of the file
' Send whole file to USART, char by char
for i = 1 to size
Mmc Fat Read(character)
Usart Write(character)
next i

next Jj

end.

@@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Méém? et simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Hardware Connection

d

0 1
0 Il
0 1l
i %
E U %
vce —
v [O I SPI-MISO
E —_— % MMC-CS#
" m :| SPI-MOSI
o E i H]
R13 R15 R17
== 4[8 - J[z:z: 01 % 2K2 2K2|:| 2K2 Y
HoH | N I
i I Res [} = MMC/SD
—{|Rres RC4 I T T ' Dout CARD
E % 3K3Q3K3Q 3K3

Back view

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 2@@

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

OneWire Library

OneWire library provides routines for communication via OneWire bus, for exam-
ple with DS1820 digital thermometer. This is a Master/Slave protocol, and all the
cabling required is a single wire. Because of the hardware configuration it uses
(single pullup and open collector drivers), it allows for the slaves even to get their
power supply from that line.

Some basic characteristics of this protocol are:

- single master system,

- low cost,

- low transfer rates (up to 16 kbps),

- fairly long distances (up to 300 meters),
- small data transfer packages.

Each OneWire device also has a unique 64-bit registration number (8-bit device
type, 48-bit serial number and 8-bit CRC), so multiple slaves can co-exist on the
same bus.

Note that oscillator frequency Fosc needs to be at least 4MHz in order to use the
routines with Dallas digital thermometers.

Library Routines

Ow_Reset
Ow_Read
Ow _Write

232 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

making & smple... ! MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS
Ow_Reset
Prototype sub function Ow Reset (dim byref port as byte, pin as byte) as
byte
Returns Returns 0 if DS1820 is present, 1 if not present.
Description Issues OneWire reset signal for DS1820. Parameters port and pin specify the location
of DS1820.
Requires Works with Dallas DS1820 temperature sensor only.
Example Ow_Reset (PORTA, 5) ' reset DS1820 connected to the RA5 pin
Ow_Read
Prototype sub function Ow_Read(dim byref port as byte, dim pin as byte) as
byte
Returns Data read from an external device over the OneWire bus.
Description Reads one byte of data via the OneWire bus.
Example tmp = Ow_Read (PORTA, 5)
Ow_Write
Prototype sub procedure Ow Write (dim byref port as byte, dim pin, par as
byte)
Description Writes one byte of data (argument par) via OneWire bus.
Examp]e Ow _Write (PORTA, 5, $CC)
e page

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 233

mikroBASIC

MIKROBASIGC - BASIC COMPILER FOR MICROGHIP PIC MICROCONTROLLERS _________________ making & simple. ..
Library Example
The example reads the temperature from DS1820 sensor connected to RAS. Temperature value is
continually displayed on LCD.

program onewire

dim i, jl, j2 as byte
text as string| 6]
tmp sign as byte

main:
text = "Temp:"
adconl = 255 ' configure RA5 pin as digital I/O
PORTA = 255 ' initialize porte to 255
PORTD = 0 ' initialize portb to 255
TRISA = 255 ' designate porte as Iinput
TRISD = 0 ' designate portb as output

Lcd_Init (PORTD)
lcd cmd (LCD_CURSOR_OFF)
lcd out (1, 1, text)

led chr (2, 12, 223) ' 'degree' character
led chr(2, 13, "C")
while TRUE
ow_reset (PORTA, 5) ' onewire reset signal
ow _write (PORTA, 5, $CC) ' issue command to DS1820
(

ow _write (PORTA, 5, $44) ' issue command to DS1820
delay us (120)
i = ow_reset (PORTA, 5)

ow _write (PORTA, 5, $CC) ' issue command to DS1820
ow _write (PORTA, 5, S$BE) ' issue command to DS1820
jl = ow _read(PORTA, 5) ' get result
j2 = ow_read(PORTA, 5)' get result (assuming the temperature 1is positive)
if j2 = SFF then

tmp sign = "-" ' temperature sign

jl= jl1 or SFF ' complement of two

1= j1 + $01
else

tmp sign = "+"
end if
j2 = (31 and $01) * 5 ' Get decimal value
J1 = 41 >> 1 ' Get temp value
ByteToStr (jl, text) ' whole number

lcd chr(2, 7, tmp sign)
lcd chr(2, 8, text[1])
lcd chr (2, 9, text[2])
lcd chr(2, 10, 46) rrot
ByteToStr (j2, text) ' decimal
lcd chr(2, 11, text[2])
Delay ms (500)
wend 'endless loop

2@4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Méap? 654“41#56 MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Hardware Connection

125 C

d

~
Jl_ll_ll_ll_ll_ll_l
2
o

¢G¥4810Id

-50 C vcc

vcC

<
0
(1]

R10
10K

rr

vcc
GND
0sC1
0sc2

L

-
>

il
I_H_H_H_II_H_H-LI

8 Mhz

1
1 O
I||_ It T

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 2@5

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

PS/2 Library

mikroBasic provides a library for communicating with common PS/2 keyboard.
The library does not utilize interrupts for data retrieval, and requires oscillator
clock to be 6MHz and above.

Please note:

- The pins to which a PS/2 keyboard is attached should be connected to pull-up
resistors.

- Although PS/2 is a two-way communication bus, this library does not provide
PIC-to-keyboard communication; e.g. the Caps Lock LED will not turn on if you
press the Caps Lock key.

Library Routines

Ps2 Init
Ps2 Config
Ps2 Key Read

Ps2_Init

Prototype sub procedure Ps2 Init (dim byref port as byte)

Description Initializes port for work with PS/2 keyboard, with default pin settings. Port pin 0 is Data
line, and port pin 1 is Clock line.

You need to call either Ps2_Init or Ps2_Config before using other routines of PS/2

library.
Requires Both Data and Clock lines need to be in pull-up mode.
Example Ps2 Init (PORTB)

2@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Mé‘&? utum«ﬂée MIKROBASIC - BASIC COMPILER FOR MIEROCHIP PIC MICROCONTROLLERS
Ps2_Config
Prototype sub procedure Ps2 Config(dim byref port as word, dim clock as

word, dim data as word)

Description Initializes port for work with PS/2 keyboard, with custom pin settings. Parameters clock
and data specify pins of port for Clock line and Data line, respectively. Clock and Data
need to be in range 0..7 and cannot point to the same pin.

You need to call either Ps2 Init or Ps2_Config before using other routines of PS/2

library.
Requires Both Data and Clock lines need to be in pull-up mode.
Example Ps2 Config(PORTB, 2, 3)

Ps2_Key_ Read

Prototype sub function Ps2 Key Read(dim byref value, special, pressed as
byte) as byte

Returns Returns 1 if reading of a key from the keyboard was successful, otherwise returns 0.

Description The procedure retrieves information about key pressed.

Parameter value holds the value of the key pressed. For characters, numerals, punctua-
tion marks, and space, value will store the appropriate ASCII value. Procedure “recog-
nizes” the function of Shift and Caps Lock, and behaves appropriately.

Parameter special is a flag for special function keys (F1, Enter, Esc, etc). If key
pressed is one of these, special will be set to 1, otherwise 0.

Parameter pressed is set to 1 if the key is pressed, and 0 if released.

Requires PS/2 keyboard needs to be initialized; see Ps2_ Init.
Example ' Press Enter to continue:
do
if Ps2 Key Read(val, spec, press) = 1 then
if (val = 13) and (spec = 1) then
break
end if
end if

loop until FALSE

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 237

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Library Example

This simple example reads values of keys pressed on PS/2 keyboard and sends them via USART.

program ps2 test
dim keydata, special, down as byte

main:
CMCON = $07 ' Disable analog comparators (comment this for P18)
INTCON = 0 ' Disable all interrupts
Ps2 Init (PORTA) ' Init PS/2 Keyboard on PORTA
Delay ms (100) ' Wait for keyboard to finish
do
if Ps2 Key Read(keydata, special, down) = 1 then
if (down = 1) and (keydata = 16) then ' Backspace
' ...do something with a backspace...
else
if (down = 1) and (keydata = 13) then ' Enter
Usart Write(13)
else
if (down = 1) and (special = 0) and (keydata <> 1) then
Usart Write (keydata)
end if
end if
end if
end if
Delay ms(10) ' debounce
loop until FALSE
end.
CTpage e

2@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Méaﬂ? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

PWM Library

CCP module is available with a number of PICmicros. mikroBasic provides
library which simplifies using PWM HW Module.

Note: Certain PICmicros with two or more CCP modules, such as P18F8520,
require you to specify the module you want to use. Simply append the number 1
or 2 to a Pwm. For example, pwm2 start Also, for the sake of backward com-
pabitility with previous compiler versions and easier code management, MCU's
with multiple PWM modules have PWM library which is identical to PWMI1 (i.e.
you can use pwWM_Init instead of PwM1_ Init to initialize CCP1).

Library Routines

Pwm Init
Pwm_ Change Duty

Pwm_ Start
Pwm_ Stop
Pwm_lInit
Prototype sub procedure Pwm Init (dim freq as longint)

Description Initializes the PWM module with duty ratio 0. Parameter freq is a desired PWM fre-
quency in Hz (refer to device data sheet for correct values in respect with Fosc).

Pwm_Init needs to be called before using other functions from PWM Library.

Requires You need a CCP module in order to use this library. Check mikroBasic installation fold-
er, subfolder “Examples”, for alternate solutions.

Example Pwm_ Init (5000) ' Initialize PWM module at 5KHz

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 23@

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Pwm_Change_Duty

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BoOkKkSs -

Prototype sub procedure Pwm Change Duty(dim duty ratio as byte)

Description Changes PWM duty ratio. Parameter duty ratio takes values from 0 to 255, where 0
is 0%, 127 is 50%, and 255 is 100% duty ratio. Other specific values for duty ratio can
be calculated as (Percent*255)/100.

Requires You need a CCP module on PORTC to use this library. To use this function, module
needs to be initalized — see Pwm_Init.

Example Pwm_Change Duty(192) ' Set duty ratio to 75%

Pwm_Start

Prototype sub procedure Pwm Start

Description Starts PWM.

Requires You need a CCP module on PORTC to use this library. To use this function, module
needs to be initalized — see Pwm_Init.

Examp]e Pwm Start

Pwm_Stop

Prototype sub procedure Pwm Stop

Description Stops PWM.

Requires You need a CCP module on PORTC to use this library. To use this function, module
needs to be initalized — see Pwm_Init.

Example Pwm_Stop

CTpage T

COMPILERS

making it simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Library Example

The example changes PWM duty ratio on pin RC2 continually. If LED is connected to RC2, you
can observe the gradual change of emitted light.

program Pwm Test
dim j as byte

main:
3 =0
PORTC = SFF " Initialize PORTC
Pwm Init (5000) ' Initialize PWM module, freq = 5kHz.
Pwm_Start ' Start PWM

while true
for i = 0 to 20
Delay us(500)
Inc(3j)
Pwm_Change Duty (Jj) " Change duty ratio
wend
end.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 24ﬂ

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS maéat? (ZW

Hardware Connection

d

<
(2}
(1)

s N s s s s O Y s v |

vce
12
GND
- 13
S, 1] osct
8Mhz I osc2
O

|||—-
-
3

RC2

¢Gv4810Id

rr —r—

300R

N\

z@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Méaﬂ? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

RS-485 Library

RS-485 is a multipoint communication which allows multiple devices to be con-
nected to a single signal cable. mikroBasic provides a set of library routines to
provide you comfortable work with RS-485 system using Master/Slave architec-
ture. Master and Slave devices interchange packets of information, each of these
packets containing synchronization bytes, CRC byte, address byte, and the data.
Each Slave has its unique address and receives only the packets addressed to it.
Slave can never initiate communication. It is programmer’s responsibility to
ensure that only one device transmits via 485 bus at a time.

RS-485 routines require USART module on PORTC. Pins of USART need to be
attached to RS-485 interface transceiver, such as LTC485 or similar. Pins of trans-
ceiver (Receiver Output Enable and Driver Outputs Enable) should be connected
to PORTC, pin 2 (check the figure at end of the chapter).

Note: Address 50 is the common address for all Slaves (packets containing
address 50 will be received by all Slaves). The only exceptions are Slaves with
addresses 150 and 169, which require their particular address to be specified in the
packet.

Note: Usart Init must be called before initializing RS485.

Library Routines

RS485Master Init
RS485Master Receive
RS485Master Send
RS485Slave Init
RS485Slave Receive
RS485Slave Send

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 243

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

RS485Master_Init

Prototype sub procedure RS485Master Init(dim byref port as byte, dim pin as
byte)

Description Initializes PIC MCU as Master in RS-485 communication.

Requires USART HW module needs to be initialized. See USART Init.

Example RS485Master Init (PORTC, 2)

RS485Master_Receive

Prototype sub procedure RS485Master Receive (dim byref data as byte[5])

Description Receives any message sent by Slaves. Messages are multi-byte, so this procedure must
be called for each byte received (see the example at the end of the chapter). Upon
receiving a message, buffer is filled with the following values:

datal 0..2] is the message,

datal 3] is number of message bytes received, 1-3,

datal 4] is set to 255 when message is received,

datal 5] is set to 255 if error has occurred,

datal 6] is the address of the Slave which sent the message.

Function automatically adjusts datal 4] and datal 5] upon every received message.
These flags need to be cleared from the program.

Requires MCU must be initialized as Master in RS-485 communication in order to be assigned an
address. See RS485Master Init.

Example RS485Master Receive (msg)

z@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

méap? et simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

RS485Master_Send

Prototype sub procedure RS485Master Send(dim byref data as byte[2], dim
datalen, address as byte)

Description Sends data from buffer to Slave(s) specified by address via RS-485; datalenis a
number of bytes in message (1 <= datalen <= 3).

Requires MCU must be initialized as Master in RS-485 communication in order to be assigned an
address. See RS485Master Init.

It is programmer’s responsibility to ensure (by protocol) that only one device sends data
via 485 bus at a time.

Example RS485Master Send(msg, 3, $12)

RS485Slave_Init

Prototype sub procedure Rs485Slave Init (dim byref port as byte, dim pin,
address as byte)

Description Initializes MCU as Slave with a specified address in RS-485 communication. Slave
address can take any value between 0 and 255, except 50, which is common address
for all slaves.

Requires USART HW module needs to be initialized. See Usart Init.

Example RS485Slave Init (PORTC, 2, 160) ' Initialize MCU as Slave with
address 160

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 245

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

RS485Slave_Receive

Prototype sub procedure RS485Slave Receive (dim byref data as bytel 5])

Description Receives message addressed to it. Messages are multi-byte, so this procedure must be
called for each byte received (see the example at the end of the chapter). Upon receiving
a message, buffer is filled with the following values:

[0..2] is the message,
[3] is number of message bytes received, 1-3,
datal 4] is set to 255 when message is received,
[5] is set to 255 if error has occurred,
[6] is the address of the Slave which sent the message.

Function automatically adjusts datal 4] and datal 5] upon every received message.
These flags need to be cleared from the program.

Requires MCU must be initialized as Slave in RS-485 communication in order to be assigned an
address. See RS485Slave Init.

Example RS485Slave Read (msg)

RS485Slave_Send

Prototype sub procedure RS485Slave Write(dim byref data as byte[2], dim
datalen as byte)

Description Sends data from buffer to Master via RS-485; datalen is a number of bytes in mes-
sage (1 <= datalen <= 3).

Requires MCU must be initialized as Slave in RS-485 communication in order to be assigned an
address. See RS485Slave Init.

It is programmer’s responsibility to ensure (by protocol) that only one device sends data
via 485 bus at a time.

Example RS485Slave Send(msg, 2)

24@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikro_BASIc

Mééw iz simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Library Example

The example demonstrates working with PIC as Slave nod in RS-485 communication. PIC
receives only packets addressed to it (address 160 in our example), and general messsages with
target address 50. The received data is forwarded to PORTB, and sent back to Master.

program rs485 test
dim i, j as byte
dim dat as byte[8] ' Message buffer

sub procedure interrupt
if TestBit (RCSTA, OERR) = 1 then
PORTD = $81
end if
RS485Slave Read (dat)
end sub

main:
TRISB = 0
TRISD = 0
Usart init (9600) ' Initialize USART module
RS485Slave Init (PORTC, 2, 160) ' Initialize MCU as Slave, address 160
SetBit (PIE1, RCIE) ' Enable interrupt on byte received
SetBit (INTCON, PEIE) ! via USART (RS-485)
ClearBit (PIE2, TXIE)
SetBit (INTCON, GIE)

PORTB = 0

PORTD = 0

dat[4] = 0 ' Clear "msg received" flag
dat[5] = 0 ' Clear error flag

while true

if dat[5] = TRUE then ' If there is error, set PORTD to SAA
PORTD = S$AA

end if

if dat[4] = TRUE then ' If message received:
dat[4] = 0 ' Clear message received flag
J = dat[3] ' Number of data bytes received
for i = 1 to j

PORTB = dat[i - 1] ' Output received data bytes

next 1
dat[0] = dat[0] + 1 ' Increment received dat[0]
RS4855lave Write(dat, 1) ! Send it back to Master

end if

wend

end.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 247

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W étW oo

Hardware Connection

i ~
Shielded pair 1 i
no longer than 300m E %
[1
/ d U !
117 1 Q o0
— vee] = il
_ [1
lY%[vcc % %
| |—| GND
'V —li[osm S i
——1osc2 (1 0 56
1 - 8 [N R7l5
—1{| ro Vee 8 Mhz 17[RC6
—E§E RE B ; g _ERCZ %
il A]5 ='_L== i i
DI GND }:I = i il
LTC485 —
VCC»
GZDR[]
1 N 8
—[RO Vce]—4
2 7
RE B [}
_EE DE A]6
4[DI GND]i
620R
LTC485 '_[,:'
470F +I|
S]j T
C1+ Vce
v+ g GND
cl- T1 0UT(]
c2+ ; RAIN[——— pC
c2- Riout[]
V- CN), Ttin[]
T2out N T2in[}
R2in R2out] |
RTS
47uF GND -
T _EE!-E
RX \
_> « »

24 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Mééw iz simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Software 12C Library

mikroBasic provides routines which implement software 12C. These routines are
hardware independent and can be used with any MCU. Software I2C enables you
to use MCU as Master in 12C communication. Multi-master mode is not support-
ed.

Note: This library implements time-based activities, so interrupts need to be dis-
abled when using Soft I*C.

Library Routines

Soft I2C Config
Soft I2C Start
Soft I2C Read
Soft I2C Write
Soft I2C Stop

Soft_I2C_Config

Prototype sub procedure Soft I2C Config(dim byref port as byte, dim SDA,
SCL as byte)

Description Configures software 1?C. Parameter port specifies port of MCU on which SDA and scCL
pins are located. Parameters SCL and SDA need to be in range 0—7 and cannot point at
the same pin.

Soft_I2C Config needs to be called before using other functions from Soft I12C
Library.

Example Soft I2C Config (PORTB, 1, 2)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 24@

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Soft_I2C_Start

Prototype sub procedure Soft I2C Start

Description Issues START signal. Needs to be called prior to sending and receiving data.
Requires Soft I*C must be configured before using this function. See Soft I2C Config.
Example Soft I2C Start

Soft_12C_Read

Prototype sub function Soft I2C Read(dim ack as byte) as byte
Returns Returns one byte from the slave.
Description Reads one byte from the slave, and sends not acknowledge signal if parameter ack is 0,

otherwise it sends acknowledge.

Requires START signal needs to be issued in order to use this function. See Soft I2C Start.
Example tmp = Soft I2C Read(0) ' Read data, send not-acknowledge signal
CTpage T

25@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

méap? et simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Soft_I12C_Write

Prototype sub function Soft I2C Write(dim data as byte) as byte

Returns Returns 0 if there were no errors.

Description Sends data byte (parameter data) via I?C bus.

Requires START signal needs to be issued in order to use this function. See Soft I2C_ Start.
Example Soft I2C Write ($A3)

Soft_12C_Stop

Prototype sub procedure Soft I2C Stop

Description Issues STOP signal.

Requires START signal needs to be issued in order to use this function. See Soft I2C Start.

Example Soft I2C_Stop

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 25ﬂ

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W de-

Library Example

The example demonstrates use of Software [°C Library. PIC MCU is connected (SCL, SDA pins)
to 24C02 EEPROM. Program sends data to EEPROM (data is written at address 2). Then, we read
data via I’C from EEPROM and send its value to PORTC, to check if the cycle was successful.
Check the hardware connection scheme at hardware 12C Library.

program soft i2c test

dim ee adr, ee data as byte
dim jj as word

main:
Soft I2C Config(PORTD, 3, 4) ' Initialize full master mode
TRISC = 0 " PORTC 1is output
PORTC = S$FF ' Initialize PORTC
Soft I2C Start() ' Issue I2C signal: start
Soft_IZC_Write($A2) ' Send byte via I2C (command to 24c02)
ee adr = 2
Soft I2C Write (ee_ adr) ' Send byte (address for EEPROM)
ee data = $AA
Soft I2C Write (ee data) ' Send data to be written
Soft I2C Stop() ' Issue I2C signal: stop
for jj = 0 to 65500 ' Pause while EEPROM writes data

nop

next jj
Soft I2C Start() ' Issue I2C start signal
Soft I2C Write ($A2) ' Send byte via I2C
ee adr = 2
Soft I2C Write (ee_ adr) ' Send byte (address for EEPROM)
Soft I2C Start() ' Issue I2C signal: repeated start
Soft_IZC_Write($A3) ' Send byte (request data from EEPROM)
ee data = Soft I2C Read(0) ' Read the data
Soft I2C Stop () ' Issue I2C signal: stop
PORTC = ee data ' Display data on PORTC

noend: goto noend
end.

252 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Méaﬂ? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Software SPI Library

mikroBasic provides library which implement software SPI. These routines are
hardware independent and can be used with any MCU. You can easily communi-
cate with other devices via SPI: A/D converters, D/A converters, MAX7219,
LTC1290, etc.

The library configures SPI to master mode, clock = 50kHz, data sampled at the
middle of interval, clock idle state low and data transmitted at low to high edge.

Note: These functions implement time-based activities, so interrupts need to be
disabled when using the library.

Library Routines

Soft Spi Config
Soft Spi Read
Soft Spi Write

Soft_Spi_Config

Prototype sub procedure Soft Spi Config(dim byref port as byte, dim SDI,
SDO, SCK as byte)

Description Configures and initializes software SPI. Parameter port specifies port of MCU on which
SDI, SDO, and SCK pins will be located. Parameters SDI, SDO, and SCK need to be in
range 0—7 and cannot point at the same pin.

Soft_Spi_Config needs to be called before using other functions from Soft SPI
Library.

Example This will set SPI to master mode, clock = 50kHz, data sampled at the middle of interval,
clock idle state low and data transmitted at low to high edge. SDI pin is RB1, SDO pin
is RB2 and SCK pin is RB3:

Soft Spi Config(PORTB, 1, 2, 3)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 253

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Soft_Spi_Read

Prototype sub function Soft Spi Read(dim buffer as byte) as byte

Returns Returns the received data.

Description Provides clock by sending buffer and receives data.

Requires Soft SPI must be initialized and communication established before using this function.
See soft Spi Config.

Example tmp = Soft Spi Read(buffer)

Soft_Spi_Write

Prototype sub procedure Soft Spi Write(dim data as byte)
Description Immediately transmits data.
Requires Soft SPI must be initialized and communication established before using this function.

See Soft Spi Config.

Example Soft Spi Write (1)

254 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

making it simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Library Example

The example demonstrates using Software SPI library. Assumed HW configuration is: max7219
(chip select pin) is connected to RD1, and SDO, SDI, SCK pins are connected to corresponding
pins of max7219. Hardware connection is given on page 186.

program soft spi test
include "m7219"

dim i as byte

main:
' Standard configuration
Soft Spi Config(PORTD, 4, 5, 3)
TRISC = TRISC and S$FD

max7219 init ' Initialize max7219

SetBit (PORTD, 1) ' Select max7219

Soft Spi Write (1) ' Send address (1) to max7219
Soft Spi Write(7) ' Send data (7) to max7219
ClearBit (PORTD, 1) ' Deselect max7219

end.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 255

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Software UART Library

mikroBasic provides library which implements software UART. These routines are
hardware independent and can be used with any MCU. You can easily communi-
cate with other devices via RS232 protocol — simply use the functions listed
below.

Note: This library implements time-based activities, so interrupts need to be dis-
abled when using Soft UART.

Library Routines

Soft Uart Init
Soft Uart Read
Soft Uart Write

Soft_Uart_lInit

Prototype sub procedure Soft Uart Init(dim byref port as byte, dim rx, tx,
baud rate, inverted as byte)

Description Initalizes software UART. Parameter port specifies port of MCU on which RX and TX
pins are located; parameters rx and tx need to be in range 0—7 and cannot point at the
same pin; baud_rate is the desired baud rate. Maximum baud rate depends on PIC’s
clock and working conditions.

Parameter inverted, if set to non-zero value, indicates inverted logic on output.

Soft Uart Init needs to be called before using other functions from Soft UART
Library.

Example This will initialize software UART and establish the communication at 9600 bps:

Soft Uart Init (PORTB, 1, 2, 9600, 0)

25@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

W d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Soft_Uart_Read

Prototype sub function Soft Uart Read(dim byref error as byte) as byte
Returns Returns a received byte.
Description Function receives a byte via software UART. Parameter error will be zero if the

transfer was successful. This is a non-blocking function call, so you should test the
error manually (check the example below).

Requires Soft UART must be initialized and communication established before using this func-
tion. See Soft Uart Init.

Exanqﬂe ' Here's a loop which holds until data is received:
error = 1
do
data = Soft Uart Read(error)
loop until error = 0

Soft_Uart_Write

Prototype sub procedure Soft Uart Write(dim data as byte)
Description Function transmits a byte (data) via UART.
Requires Soft UART must be initialized and communication established before using this func-

tion. See Soft Uart Init.

Be aware that during transmission, software UART is incapable of receiving data — data
transfer protocol must be set in such a way to prevent loss of information.

Exanqﬂe Soft Uart Write ($0A)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 257

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Library Example

The example demonstrates simple data exchange via software UART. When PIC MCU receives
data, it immediately sends the same data back. If PIC is connected to the PC (see the figure
below), you can test the example from mikroBasic terminal for RS232 communication, menu
choice Tools > Terminal.

program soft uart test
dim received byte, er as byte

main:
Soft Uart Init (PORTB, 1, 2, 2400, 0) ' Initialize soft UART
er = 1
while true
do
received byte = Soft Uart Read(er) ' Read received data
loop until er = 0
Soft Uart Write(received byte) ' Send data via UART
wend
end.
- Vo T-

25 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

méap? et simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Sound Library

mikroBasic provides a Sound Library which allows you to use sound signalization
in your applications. You need a simple piezo speaker (or other hardware) on des-
ignated port.

Library Routines

Sound_Init

Sound Play
Sound_lInit
Prototype sub procedure Sound Init (dim byref port as byte, dim pin as byte)
Description Prepares hardware for output at specified port and pin. Parameter pin needs to be

within range 0-7.

Example Sound Init (PORTB, 2) ' Initialize sound at RBZ2
Sound_Play
Prototype sub procedure Sound Play(dim period div 10 as byte, dim

num of periods as word)

Description Plays the sound at the specified port and pin (see Sound_Init). Parameter
period_div_10 is a sound period given in MCU cycles divided by ten, and generated
sound lasts for a specified number of periods (num_of periods).

Requires To hear the sound, you need a piezo speaker (or other hardware) on designated port.
Also, you must call Sound_Init to prepare hardware for output.

Example To play sound of 1KHz: T = 1/f = 1ms = 1000 cycles @ 4MHz. This gives us our first
parameter: 1000/10 = 100. Play 150 periods like this:

Sound Play (100, 150)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 25@

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W de-

Library Example

The example is a simple demonstration of how to use sound library for playing tones on a piezo
speaker. The code can be used with any MCU that has PORTB and ADC on PORTA. Sound fre-
quencies in this example are generated by reading the value from ADC and using the lower byte of
the result as base for T (f= 1/T).

program sound test
dim adcvalue as integer

main:
PORTB =0 ' Clear PORTB
TRISB = 0 ' PORTB is output
INTCON = 0 ' Disable all interrupts
ADCON1 = $82 ' Configure VDD as Vref, and analog channels
TRISA = SFF ' PORTA is input
Sound_ Init (PORTB, 2) ' Initialize sound at RB2
while true ' Play in loop:
adcvalue = ADC Read(2) ! Get lower byte from ADC
Sound Play(adcvalue, 200) ! Play the sound
wend
end.
CTpage e

2@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Méaﬂ? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

SPI Library

SPI module is available with a number of PIC MCU models. mikroBasic provides
a library for initializing Slave mode and comfortable work with Master mode. PIC
can easily communicate with other devices via SPI: A/D converters, D/A convert-
ers, MAX7219, LTC1290, etc. You need PIC MCU with hardware integrated SPI
(for example, PIC16F877).

Note: This library supports module on PORTB or PORTC, and will not work with

modules on other ports. Examples for PICmicros with module on other ports can
be found in your mikroBasic installation folder, subfolder “Examples”.

Library Routines

Spi Init
Spi Init Advanced
Spi Read
Spi Write
Spi_lInit
Prototype sub procedure Spi Init
Description Configures and initializes SPI with default settings. Spi Init Advanced or
Spi_Init needs to be called before using other functions from SPI Library.
Default settings are: Master mode, clock Fosc/4, clock idle state low, data transmitted on
low to high edge, and input data sampled at the middle of interval.
For custom configuration, use Spi_Init Advanced.
Requires You need PIC MCU with hardware integrated SPI.
Example Spi_Init

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 2@@

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W de-

Spi_Init_Advanced

Prototype sub procedure Spi Init Advanced(dim master, data sample,
clock idle, transmit edge as byte)

Description Configures and initializes SPI. Spi_Init Advanced or Spi_Init needs to be called
before using other functions of SPI Library.

Parameter mast slav determines the work mode for SPI; can have the values:

MASTER_OSC_DIV4 ' Master clock=Fosc/4
MASTER OSC _DIV16 ' Master clock=Fosc/16

MASTER OSC_DIV64 ' Master clock=Fosc/64

MASTER TMR2 ' Master clock source TMR2
SLAVE SS ENABLE ' Master Slave select enabled
SLAVE SS DIS ' Master Slave select disabled

The data_sample determines when data is sampled; can have the values:

DATA SAMPLE MIDDLE ' Input data sampled in middle of interval
DATA SAMPLE END ' Input data sampled at the end of interval

Parameter clock idle determines idle state for clock; can have the following values:

CLK_IDLE HIGH ' Clock idle HIGH
CLK_IDLE LOW ' Clock idle LOW

Parameter transmit edge can have the following values:

LOW 2 HIGH ' Data transmit on low to high edge
HIGH 2 LOW ' Data transmit on high to low edge
Requires You need PIC MCU with hardware integrated SPI.
Example This will set SPI to master mode, clock = Fosc/4, data sampled at the middle of interval,

clock idle state low and data transmitted at low to high edge:

Spi_Init Advanced (MASTER OSC_DIV4, DATA SAMPLE MIDDLE,
CLK_IDLE LOW, LOW 2 HIGH)

2@2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

making & smple... ! MIKROBASIC - BASIE COMPILER FOR MICROCHIP PIE MICROCONTROLLERS
Spi_Read
Prototype sub function Spi Read(dim buffer as byte) as byte
Returns Returns the received data.
Description Provides clock by sending buffer and receives data at the end of period.
Requires SPI must be initialized and communication established before using this function. See
Spi Init Advanced or Spi Init.
Example take = Spi Read (buffer)

Spi_Write

Prototype sub procedure Spi Write(dim data as byte) as byte

Description Writes byte data to SSPBUF, and immediately starts the transmission.

Requires SPI must be initialized and communication established before using this function. See
Spi Init Advancedor Spi Init.

Example Spi Write (1)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 2@3

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W de-

Library Example

The code demonstrates how to use SPI library procedures and functions. Assumed configuration
is: max7219 (chip select pin) connected to RC1, and SDO, SDI, SCK pins are connected to corre-
sponding pins of max7219.

program spi test
include "m7219"

main:
Spi Init ' Standard configuration
TRISC = TRISC and S$SFD
max7219 init ' Initialize max7219
ClearBit (PORTC, 1) ' Select max7219
Spi Write(1) ' Send address (1) to max7219
Spi Write(7) ' Send data (7) to max7219
SetBit (PORTC, 1) ' Deselect max7219

end.

- Vo T-

2@4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Méaﬂ? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

USART Library

USART hardware module is available with a number of PICmicros. mikroBasic
USART Library provides comfortable work with the Asynchronous (full duplex)
mode.You can easily communicate with other devices via RS232 protocol (for
example with PC, see the figure at the end of the topic — RS232 HW connection).
You need a PIC MCU with hardware integrated USART, for example PIC16F877.
Then, simply use the functions listed below.

Note: USART library functions support module on PORTB, PORTC, or PORTG,
and will not work with modules on other ports. Examples for PICmicros with
module on other ports can be found in “Examples” in mikroBasic installation fold-
er.

Library Routines

Usart Init
Usart Data Ready
Usart Read
Usart Write

Note: Certain PICmicros with two USART modules, such as P18F8520, require
you to specify the module you want to use. Simply append the number 1 or 2 to a
function name. For example, Usart Write2.

Usart_Init

Prototype sub procedure Usart Init(dim baud rate as longint)

Description Initializes hardware USART module with the desired baud rate. Refer to the device data
sheet for baud rates allowed for specific Fosc. If you specify the unsupported baud rate,
compiler will report an error.

Usart_Init needs to be called before using other functions from USART Library.

Requires You need PIC MCU with hardware USART.

Example Usart Init (2400) ' Establish communication at 2400 bps

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 2@5

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Usart_Data_Ready

Prototype sub function Usart Data Ready as byte

Returns Function returns 1 if data is ready or 0 if there is no data.

Description Use the function to test if data in receive buffer is ready for reading.

Requires USART HW module must be initialized and communication established before using

this function. See Usart Init.

Example " If data is ready, read it:

if Usart Data Ready = 1 then

receive = Usart Read

end if
Usart_Read
Prototype sub function Usart Read as byte
Returns Returns the received byte. If byte is not received, returns 0.
Description Function receives a byte via USART. Use the function Usart Data Ready to test if

data is ready first.

Requires USART HW module must be initialized and communication established before using
this function. See Usart Init.

Example ' If data is ready, read 1it:
if Usart Data Ready = 1 then
receive = Usart Read
end if
S page

2@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Mééw iz simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Usart_Write

Prototype sub procedure Usart Write(dim data as byte)

Description Function transmits a byte (data) via USART.

Requires USART HW module must be initialized and communication established before using
this function. See Usart Init.

Example Usart Write ($S1E) ' send chunk via USART

Library Example

The example demonstrates simple data exchange via USART. When PIC receives the data, it
immediately sends it back. If PIC is connected to the PC (see the figure below), you can test the
example from mikroBasic terminal for RS232 communication, menu choice Tools > Terminal.

program rs232 com test
dim received byte as byte

main:
Usart Init (2400) ' Initialize USART module
while true
if Usart Data Ready = 1 then ' If data is received
received byte = Usart Read ' Read received data
Usart Write (received byte) ' Send data via USART
end if
wend
end.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 2@7

MIKROBASIC -

Hardware Connection

BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

mlkroBASIc

M T
RS-232 oS CcN3
CON O/(g Q0 (g 5 O SUB-D 9p
. . CONNECT Receive
. . MCU TO PC data (Rx)
SERIAL >
CABLE
. . CONNECT p -
Y ! Send
l P : l PC TO MCU Data (Tx)
' o
RS-232 O, g CN3
goﬁ O 1 i’ ?OO o : O| suso 9
vce I i
L i]
lms E %
100nF =
I d U :
g O 0
vce [] - 1
I 1]
U6 - " lvec (=} %
13 12 ———]
_s[R1IN R1 OUT]Q— Rx = 13 [g:g D i
411[R2IN ngOUT] m &M —josc2 ¢y]26
o >T1ou1]— z E N gg;;ll?
41[T2IN x T20UT]:7 HOH i
E9 I_3[C1+ N C2+ 5 EN i 1 =l I 1
10uF c1- G2y 10uF =+ 0 B
W 2 i i
E10 EI Y ON V+:’TI]——|E12
10uF, & vee 10uF
- vce —
B o -
MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS -

COMPILERS

mikroBASIC

Méaﬂ? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

USB HID Library

Universal Serial Bus (USB) provides a serial bus standard for connecting a wide
variety of devices, including computers, cell phones, game consoles, PDAs, etc.

mikroBasic includes a library for working with human interface devices via
Universal Serial Bus. A human interface device or HID is a type of computer
device that interacts directly with and takes input from humans, such as the key-
board, mouse, graphics tablet, and the like.

Each project based on the USB HID library should include a descriptor source file
which contains vendor id and name, product id and name, report length, and other
relevant information. To create a descriptor file, use the integrated USB HID ter-
minal of mikroBasic (Tools > USB HID Terminal). The default name for descrip-
tor file is USBdsc.pbas, but you may rename it. The provided code in the
“Examples” folder works at 48MHz, and the flags should not be modified without
consulting the appropriate datasheet first.

Library Routines

Hid Enable
Hid Read
Hid Write
Hid Disable

Hid_Enable

Prototype sub procedure Hid Enable (dim readbuff, writebuff as word)

Description Enables USB HID communication. Parameters readbuff and writebuff are the addresses
of Read Buffer and the Write Buffer, respectively, which are used for HID communica-
tion. You can pass buffer names with the @ operator.

This function needs to be called before using other routines of USB HID Library.

Exanqﬂe Hid Enable (@rd, @wr)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 2@@

mikroBASIC

MIKROBASIG - BASIC GOMPILER FOR MICROCHIP PIC MICROCANTROLLERS o oo. W o simple...
Hid_Read
Prototype sub function Hid Read as byte
Returns Number of characters in Read Buffer received from Host.
Description Receives message from host and stores it in the Read Buffer. Function returns the num-

ber of characters received in Read Buffer.

Requires USB HID needs to be enabled before using this function. See Hid Enable.
Example length = Hid Read
Hid_Write
Prototype sub procedure Hid Write(dim writebuff as word, dim len as byte
Description Function sends data from Write Buffer writebuff to host. Write Buffer is the address

of the parameter used in initialization; see Hid Enable. You can pass a buffer name
with the @ operator. Parameter 1en should specify a length of the data to be

transmitted.
Requires USB HID needs to be enabled before using this function. See Hid Enable.
Example Hid Write (@wr, len)
Hid_Disable
Prototype sub procedure Hid Disable
Description Disables USB HID communication.
Example Hid Disable

27@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

making it simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Library Example

The following example continually sends sequence of numbers 0..255 to the PC via Universal
Serial Bus.

program hid test

dim k as byte
dim userRD buffer as byte[64]
dim userWR buffer as byte[64]

sub procedure interrupt
asm
CALL Hid InterruptProc
nop
end asm
end sub

sub procedure Init Main
' Disable all interrupts
' Disable GIE, PEIE, TMROIE, INTOIE,RBIE
INTCON = 0
INTCON2 = $F5
INTCON3 = $CO0
' Disable Priority Levels on interrupts
RCON.IPEN = 0

PIE1 = O
PIE2 = O
PIR1 = 0
PIR2 = 0

' Configure all ports with analog function as digital
ADCON1 = ADCON1 or S$OF

TRISA = 0
TRISB = 0
TRISC = SFF
TRISD = SFF
TRISE = $07

LATA =
LATB =
LATC =
LATD =
LATE =

O O O O o

' continues

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 27ﬂ

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS maéat? (ZW:-'

' .. continued

' Clear user RAM

' Banks [00 .. 07] (8 x 256 = 2048 Bytes)
asm
LFSR FSRO, $000
MOVLW 508
CLRF POSTINCO, O
CPFSEQ FSROH, O
BRA S - 2
end asm
' Timer 0
TOCON = $07;
TMROH = (65536 - 156) >> 8
TMROL = (65536 - 156) and SFF
INTCON.TOIE =1 ' Enable TOIE
TOCON.TMROON = 1
end sub

'** Main Program **

main:
Init Main()
Hid Enable (QuserRD buffer, QRuserWR buffer)

do
for k = 0 to 255
" Prepare send buffer
userWR buffer[0] = k

' Send the number via USB
Hid Write (GuserWR buffer, 1)
next k
loop until FALSE

Hid Disable
end.

@?2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Méa@ 664“41#56 MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

HW Connection

[mcLr - RB7
[|RA0 RB6
[ra1 RB5
[Ira2 RB4
[Iras RB3
[ras RB2
[Iras RB1
[]reo RBO
[] re1 VDD
vce

[] re2 vss

VDD RD7

- |
N =
<
(7]
(%]

|
~
w

RD6
RDS5
RD4
RCO RC7
RC6
RC2 RC5
T—————[Vusb RC4
RDO RD3
RD1 RD2

2 2
Q O
N S

<
(2]
(2}

8 Mhz

VvCC

> USB

GND

|

I

I
¥ o B |

2

o

-

100nF

| NN SN SN S) N N S N N S S N N N N S S S S— - |

4F~ %
oo
'\h n
[

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 27@

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Util Library

Util library contains miscellaneous routines useful for project development.

Button

Prototype sub function Button (dim byref port as byte, dim pin, time,
active state as byte) as byte

Returns Returns 0 or 255.

Description Function eliminates the influence of contact flickering upon pressing a button (debounc-
ing).

Parameter port specifies the location of the button; parameter pin is the pin number on
designated port and goes from 0..7; parameter time is a debounce period in millisec-
onds; parameter active state can be either 0 or 1, and it determines if the button is
active upon logical zero or logical one.

Example Example reads RBO, to which the button is connected; on transition from 1 to 0 (release
of button), PORTD is inverted:

while true
if Button (PORTB, 0, 1, 1) then
oldstate = 255
end if
if oldstate and Button (PORTB, 0, 1, 0) then
PORTD = not (PORTD)
oldstate = 0
end if
wend

274 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIc

Mééw iz simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Conversions Library

mikroBasic Conversions Library provides routines for converting numerals to
strings, and routines for BCD/decimal conversions.

You can get text representation of numerical value by passing it to one of the fol-
lowing routines:

Library Routines

ByteToStr
ShortToStr
WordToStr
WordToStrWithZeros
IntToStr
LongintToStr
FloatToStr

Following functions convert decimal values to BCD (Binary Coded Decimal) and
vice versa:

Bcd2Dec
Dec2Bcd
Bcd2Decl6
Dec2Bcdl6

ByteToStr

Prototype sub procedure ByteToStr (dim number as byte, dim byref output as
string] 3])

Description Procedure creates an output string out of a small unsigned number (numerical value
less than $100). Output string has fixed width of 3 characters; remaining positions on
the left (if any) are filled with blanks.

Example dim t as word

dim txt as string] 3]

r

t = 24

ByteToStr (t, txt) ' txt is " 24" (one blank here)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 275

mIkI‘IlBAS“:

MIKROBASIC - BASIG GCOMPILER FOR MIGROCHIP PIC MICROCONTROLLERS 7 making & umple...
ShortToStr
Prototype sub procedure ShortToStr (dim number as short, dim byref output as
string 4])
Description Procedure creates an output string out of a small signed number (numerical value less

than $100). Output string has fixed width of 4 characters; remaining positions on the left
(if any) are filled with blanks.

Example dim t as short
dim txt as stringl 4]

[

t = -24

ShortToStr (t, txt) ' txt is " -24" (one blank here)
WordToStr

Prototype sub procedure WordToStr (dim number as word, dim byref output as
string] 5])

Description Procedure creates an output string out of an unsigned number (numerical value of
word type). Output string has fixed width of 5 characters; remaining positions on the
left (if any) are filled with blanks.

Example dim t as word
dim txt as string] 5]

t = 437
WordToStr (t, txt) ' txt is " 437" (two blanks here)
WordToStrWithZeros

Prototype sub procedure WordToStrWithZeros (dim number as word, dim byref
output as stringf 5])

Description Procedure creates an output string out of an unsigned number (numerical value of word
type). Output string has fixed width of 5 characters; remaining positions on the left (if
any) are filled with zeros.

Requires The output string should have the exact length as specified in the procedure prototype (5
characters).

Example dim t as word
dim txt as string] 5]

t = 437
WordToStr (t, txt) ' txt is " 437" (two blanks here)
CTpage T

27@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Mé(#? ez simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS
IntToStr
Prototype sub procedure IntToStr (dim number as integer, dim byref output as
stringl 6])
Description Procedure creates an output string out of a signed number (numerical value of

integer type). Output string has fixed width of 6 characters; remaining positions on
the left (if any) are filled with blanks.

Example dim j as integer
dim txt as string| 6]

r

j = -4220

IntToStr (j, txt) ' txt 1is " -4220" (one blank here)
LongintToStr
Prototype sub procedure LongintToStr (dim number as longint,

dim byref output as string] 11])

Description Procedure creates an output string out of a large signed number (numerical value of
longint type). Output string has fixed width of 11 characters; remaining positions on
the left (if any) are filled with blanks.

Example dim jj as longint
dim txt as string{ 11]

r

49 = -3700000

LongintToStr (jj, txt)
' txt is " -3700000" (three blanks here)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 277

mikroBASIC

MIKROBASIC - BASIG GCOMPILER FOR MIGROCHIP PIC MICROCONTROLLERS 7 making & umple...
FloatToStr
Prototype sub procedure FloatToStr (dim input as float, dim byref output as
stringl 17])
Description Procedure creates string out of the input parameter, which should be a floating point

number in the longint range (£2147483648). Parameter output accepts the created
string. The result is given in format "integer. fraction", left aligned.

Note: Procedure won’t return the correct result if input exceeds the 1ongint range!
You’ll need to create a custom routine if you want to handle such large numbers.

The integer part has flexible width of up to 11 characters (10 digits + sign). If the
actual integer part is shorter than that, string will wrap to the integer’s length. The
fraction part is always 5 characters long. If the actual fraction is shorter than 5 digits,
remaining chars on the right will be filled with zeroes; if the fraction exceeds 5 digits,
the fraction part will be trimmed.

Requires If you want to use the FloatToStr for printing on LCD, ensure that your program
clears/refreshes the display with each printing of a string. Otherwise, LCD will display
the remnants (rightmost digits) of the previous string, if it was longer than the presently
displayed one.

Example // An example which prints value of a float variable on LCD:
dim input as float
dim output as stringf 17]

main:

input = -3.1415

FloatToStr (input, output)

Lcd Out Cp (output) ' Print "-3.14150" on LCD

27 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

miIgmBASIl:

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

StrTolnt
Prototype sub function StrToInt (dim byref input as stringf 6]) as integer
Returns Integer variable.
Description Converts a string to integer.
Requires The string is assumed to be a correct representation of a number.
Example Here’s an example which prints value of a 1ongint variable on LCD:
dim ii as integer
main:
ii = StrToInt('-1234")
StrToWord
Prototype sub function StrToWord(dim byref input as string] 5]) as word
Returns Word variable.
Description Converts a string to word.
Requires input string with length of max 5 chars.
The string is assumed to be a correct representation of a number.
Example Here’s an example which prints value of a word variable on LCD:
dim ww as word
main:
ww = StrToword ('65432")
Bcd2Dec
Prototype sub function Bcd2Dec (dim bcdnum as byte) as byte
Returns Returns converted decimal value.
Description Converts 8-bit BCD numeral bcdnum to its decimal equivalent.
Example dim a, b as byte
a = $52
b = Bcd2Dec (a) " b equals 52

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

MIKROELEKTRONIKA: DEVELOPMENT TOOLS -

BOooks -

Dec2Bcd
Prototype sub function Dec2Bcd(dim decnum as byte) as byte
Returns Returns converted BCD value.
Description Converts 8-bit decimal value decnum to BCD.
Example dim a, b as byte
a = 52
b = Dec2Bcd (a) ' b equals $52
Bcd2Dec16
Prototype sub function Bcd2Decl6 (dim bcdnum as byte) as byte
Returns Returns converted decimal value.
Description Converts 16-bit BCD numeral bcdnum to its decimal equivalent.
Example dim a, b as word
a = 1234
b = Bcd2Declo6 (a) " b equals 4660
Dec2Bcd16
Prototype sub function Dec2Bcdl6 (dim decnum as byte) as byte
Returns Returns converted BCD value.
Description Converts 16-bit decimal value decnum to BCD.
Example dim a, b as word
a = 4660
b = Dec2Bcdlé6 (a) ' b equals 1234
- Vo T-

COMPILERS

mikroBASIC

Mééw iz simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Delays Library

mikroBasic provides a basic utility routines for creating software delay. You can
create more advanced and flexible versions based on this library.

Note: Routines do not provide an entirely accurate delay as it depends on clock
specified in Project settings.

Delay_us
Prototype sub procedure Delay us(const time in us as word)
Description Creates a software delay in duration of time in us microseconds (a constant). Range
of applicable constants depends on the oscillator frequency.
Example Delay us(10) ' Ten microseconds pause
Delay_ms
Prototype sub procedure Delay ms(const time in ms as word)
Description Creates a software delay in duration of time in ms milliseconds (a constant). Range of
applicable constants depends on the oscillator frequency.
Example Delay ms (1000) ' One second pause

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 2@

mikroBASIC

MIKROBASIG - BASIC GOMPILER FOR MICROCHIP PIC MICROCANTROLLERS o oo. making & slmple...
Vdelay_ms
Prototype sub procedure Vdelay ms(dim time in ms as word)
Description Creates a software delay in duration of time in ms milliseconds (a variable).

Generated delay is not as precise as the delay created by Delay ms.

Example pause = 1000
Vdelay ms (pause) ' ~ one second pause
Delay_Cyc
Prototype sub procedure Delay Cyc(dim cycles div _by 10 as byte)

Description Creates a delay based on MCU clock. Delay lasts for 10 times the input parameter in
MCU cycles. Input parameter needs to be in range 3 .. 255.

Note that Delay Cyc is library function rather than a built-in routine; it is presented in
this topic for the sake of convenience.

Example Delay Cyc(10) ' Hundred MCU cycles pause

22 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikro_BASIl:

Méém? et simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Math Library

Math Library implements a number of common mathematical functions.

Library Routines

Acos
Asin
Atan
Atan?2
Ceil
Cos
CosE3
Cosh
Exp
Fabs
Floor
Frexp
Fmod
Ldexp
Log
Logl0
Modf
Pow
Sin
SinE3
Sinh
Sgrt
Tan
Tanh

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 2@

mikroBASIC

MIKROBASIC - BASIE COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W _‘f_w e
Acos
Prototype sub function Acos(dim x as float) as float
Description Function returns the arc cosine of parameter x; that is, the value whose cosine is x.

Input parameter x must be between -1 and 1 (inclusive). The return value is in radians,
between 0 and pi (inclusive).

Asin
Prototype sub function Asin(dim x as float) as float
Description Function returns the arc sine of parameter x; that is, the value whose sine is x. Input
parameter x must be between -1 and 1 (inclusive). The return value is in radians,
between -pi/2 and pi/2 (inclusive).
Atan
Prototype sub function Atan(dim x as float) as float
Description Function computes the arc tangent of parameter x; that is, the value whose tangent is x.
The return value is in radians, between -pi/2 and pi/2 (inclusive).
Atan2
Prototype sub function Atan2(dim x, y as float) as float
Description This is the two argument arc tangent function. It is similar to computing the arc tangent
of y/x, except that the signs of both arguments are used to determine the quadrant of
the result, and x is permitted to be zero. The return value is in radians, between -pi and
pi (inclusive).
CTpage T

z@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

W @ simple...] MIKROBASIC - BASIC CoMPILER FOR MICROCHIP PIE MICROCONTROLLERS
Ceil
Prototype sub function Ceil (dim x as float) as float
Description Function returns value of parameter x rounded up to the next whole number.
Cos
Prototype sub function Cos(dim x as float) as float
Description Function returns the cosine of x in radians. The return value is from -1 to 1.
CosE3
Prototype sub function CosE3(dim x as word) as integer
Description Function takes parameter x which represents angle in degrees, and returns its cosine

multiplied by 1000 and rounded up to the nearest integer:
result := round up(cos(x)*1000)

The function is implemented as a lookup table; maximum error obtained is +1.

Cosh
Prototype sub function Cosh(dim x as float) as float
Description Function returns the hyperbolic cosine of x, defined mathematically as (eX+e™¥) /2. If
the value of x is too large (if overflow occurs), the function fails.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 25

mikroBASIC

MIKROBASIG - BASIC GOMPILER FOR MICROCHIP PIC MICROCANTROLLERS o oo. W o simple...
Exp
Prototype sub function Exp(dim x as float) as float
Description Function returns the value of e — the base of natural logarithms — raised to the power
of x (i.e. e¥).
Fabs
Prototype sub function Fabs(dim x as float) as float
Description Function returns the absolute (i.e. positive) value of x.
Floor
Prototype sub function Floor (dim x as float) as float
Description Function returns value of parameter x rounded down to the nearest integer.
Fmod
Prototype sub function Fmod(dim x, y as float) as float
Description Function computes the floating point remainder of x/y. Function returns the value

x - i * y for some integer i such that, if y is nonzero, the result has the same sign as
x and magnitude less then the magnitude of y. If v is zero, the fmod function returns
ZeTo.

2@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

M & slmple... ! MIKROBASIC - BASIE COMPILER FOR MICROCHIP PIE MICROCONTROLLERS
Frexp
Prototype sub function Frexp(dim num as float, dim n as “integer) as float
Description Function splits a floating-point value num into a normalized fraction and an integral

power of 2. Return value is the normalized fraction, and the integer exponent is stored in
the object pointed to by n.

Ldexp
Prototype sub function Ldexp(dim num as float, dim n as integer) as float
Description Function returns the result of multiplying the floating-point number num by 2 raised to
the power n (i.e. returns x * 20),
Log
Prototype sub function Log(dim x as float) as float
Description Function returns the natural logarithm of x (i.e. log, (x)).
Log10
Prototype sub function LoglO(dim x as float) as float
Description Function returns the base-10 logarithm of x (i.e. logyq (x)).

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 27

mikroBASIC

MIKROBASIC - BASIG GCOMPILER FOR MIGROCHIP PIC MICROGONTROLLERS W ff.% i
Modf
Prototype sub function Modf (dim num as float, dim whole as “float) as float
Description Function returns the signed fractional component of num, placing its whole number
component into the variable pointed to by whole.

Pow
Prototype sub function Pow(dim x, y as float) as float
Description Function returns the value of x raised to the power of y (i.e. x¥). If the x is negative,
function will automatically cast the y into longint.
Sin
Prototype sub function Sin(dim x as float) as float
Description Function returns the sine of x in radians. The return value is from -1 to 1.
SinE3
Prototype sub function SinE3(dim x as word) as integer
Description Function takes parameter x which represents angle in degrees, and returns its sine multi-
plied by 1000 and rounded up to the nearest integer:
result := round up(sin(x)*1000)
The function is implemented as a lookup table; maximum error obtained is +1.
CTpage T

2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

’_"f’_é_‘_”?_ & slmple... ! MIKROBASIC - BASIE COMPILER FOR MICROCHIP PIE MICROCONTROLLERS
Sinh
Prototype sub function Sinh(dim x as float) as float
Description Function returns the hyperbolic sine of x, defined mathematically as (eX-e~%) /2. If the
value of x is too large (if overflow occurs), the function fails.

Sqrt
Prototype sub function Sqgrt(dim x as float) as float
Description Function returns the non negative square root of num.
Tan
Prototype sub function Tan(dim x as float) as float
Description Function returns the tangent of x in radians. The return value spans the allowed range of
floating point in mikroPascal.
Tanh
Prototype sub function Tanh(dim x as float) as float
Description Function returns the hyperbolic tangent of x, defined mathematically as
sinh (x) /cosh (x).

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 2@

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS maéat? (ZW

String Library

The String Library provides a number of routines for string handling.

Library Routines

Memchr
Memcmp
Memcpy
Memmove
Memset
Strcat
Strchr
Strcmp
Strcpy
Strcspn
Strlen
Strncat
Strncmp
Strncpy
Strpbrk
Strrchr
Strspn
Strstr
strAppendSuf
strAppendPre

@@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

making ct simple... MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS
Memchr
Prototype sub function Memchr (dim p as word, dim ch as char, dim n as word)
as word
Description Function locates the first occurrence of byte ch in the initial n bytes of memory area

starting at the address p. Function returns the offset of this occurrence from the memory
address p or SFFFF if the character was not found.

For parameter p you can use either a numerical value (literal/variable/constant) indicat-
ing memory address or a dereferenced value of an object, for example @mystring or

@PORTB.
Memcmp
Prototype sub function Memcmp (dim pl, p2, n as word) as integer
Description Function returns a positive, negative, or zero value indicating the relationship of first n

bytes of memory areas starting at addresses p1 and p2.

The Memcmp function compares two memory areas starting at addresses p1 and p2 for n
bytes and returns a value indicating their relationship as follows:

Value Meaning

<0 pl "less than" p2
=0 pl "equal to" p2
>0 pl "greater than" p2

The value returned by function is determined by the difference between the values of the
first pair of bytes that differ in the strings being compared.

For parameters p1 and p2 you can use either a numerical value (literal/variable/con-
stant) indicating memory address or a dereferenced value of an object, for example
@mystring or @PORTB.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 2@@

mikroBASIC

MIKROBASIG - BASIC GOMPILER FOR MICROCHIP PIC MICROCANTROLLERS o oo. making & slmple...
Memcpy
Prototype sub procedure Memcpy(dim pl, p2, n as word)
Description Function copies n bytes from the memory area starting at the address p2 to the memory

area starting at p1. If these memory buffers overlap, the memcpy function cannot guar-
antee that bytes are copied before being overwritten. If these buffers do overlap, use the
Memmove function.

For parameters p1 and p2 you can use either a numerical value (literal/variable/con-
stant) indicating memory address or a dereferenced value of an object, for example
@mystring or @PORTB.

Memmove

Prototype sub procedure Memmove (dim pl, p2, n as word)

Description Function copies n bytes from the memory area starting at the address p2 to the memory
area starting at p1. If these memory buffers overlap, the Memmove function ensures that
bytes in p2 are copied to p1 before being overwritten.

For parameters p1 and p2 you can use either a numerical value (literal/variable/con-
stant) indicating memory address or a dereferenced value of an object, for example
@mystring or @PORTB.

Memset

Prototype sub procedure Memset (dim p as word, dim ch as char, dim n as
word)

Description Function fills the first n bytes in the memory area starting at the address p with the
value of byte ch.

For parameter p you can use either a numerical value (literal/variable/constant) indicat-
ing memory address or a dereferenced value of an object, for example @mystring or
@PORTB.
CTpage T

2@2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

making & smple...) MIKROBASIC - BASIC CoMPILER FOR MICROCHIP PIE MICROCONTROLLERS
Strcat
Prototype sub procedure Strcat (dim byref sl, s2 as stringf 100])
Description Function appends the value of string s2 to string s1 and terminates s1 with a null char-
acter.
Strchr
Prototype sub function Strchr (dim byref s as stringf 100], dim ch as char)
as byte
Description Function searches the string s for the first occurrence of the character ch. The null char-

acter terminating s is not included in the search.

Function returns the position (index) of the first character ch found in s; if no matching
character was found, function returns SFF.

Strcmp
Prototype sub function Strcmp (dim byref sl, s2 as stringl 100]) as byte
Description Function lexicographically compares the contents of strings s1 and s2 and returns a

value indicating their relationship:

Value Meaning

<0 sl "less than" s2
=0 sl "equalto" s2
>0 sl "greater than" s2

The value returned by function is determined by the difference between the values of the
first pair of bytes that differ in the strings being compared.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 2@3

mikroBASIC

MIKROBASIC - BASIG GCOMPILER FOR MIGROCHIP PIC MICROGONTROLLERS W 98 simple. ..
Strcpy
Prototype sub procedure Strcpy(dim byref sl, s2 as stringf 100])
Description Function copies the value of string s2 to the string s1 and appends a null character to
the end of s1.

Strcspn
Prototype sub function Strcspn(dim byref sl, s2 as stringl 100]) as byte
Description The strcspn function computes the length of the maximum initial segment of the string
pointed to by s1 which consists entirely of characters not from the string pointed to by
s2.Function returns the length of the segment.
Strlen
Prototype sub function Strlen(dim byref s as stringl 100]) as byte
Description Function returns the length, in bytes, of the string s. The length does not include the null
terminating character.
“TTpage e

2@4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

was é_"_‘ vg & dmple...] MIKROBASIE - BASIC COMPILER FOR MICROCHIP PIE MICROCONTROLLERS
Strncat
Prototype sub procedure Strncat (dim byref sl, s2 as string] 100],

dim n as byte)

Description Function appends at most n characters from the string s2 to the string s1 and terminates
s1 with a null character. If s2 is shorter than n characters, s2 is copied up to and
including the null terminating character.

Strncmp

Prototype sub function Strncmp (dim byref sl, s2 as stringf 100],
dim n as byte) as integer

Description Function lexicographically compares the first n bytes of the strings s1 and s2 and
returns a value indicating their relationship:

Value Meaning
<0 s1 "less than" s2
=0 s1 "equal to" s2
>0 s1 "greater than" s2
The value returned by function is determined by the difference between the values of the
first pair of bytes that differ in the strings being compared (within first n bytes).
Strncpy
Prototype sub procedure Strncpy(dim byref sl, s2 as string] 100],
dim n as byte)

Description Function copies at most n characters from the string s2 to the string s1. If s2 contains
fewer characters than n, s1 is padded out with null characters up to the total length of n
characters.

5 page

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 2@5

mlkmBASIl:

MIKROBASIG - BASIC GOMPILER FOR MICROCHIP PIC MICROCONTROLLERS ...l making i simple. ..
Strpbrk
Prototype sub procedure Strpbrk(dim byref sl, s2 as stringf 100])
Description Function searches s1 for the first occurrence of any character from the string s2. The
null terminator is not included in the search. Function returns an index of the matching
character in s1. If s1 contains no characters from s2, function returns $FF.
Strrchr
Prototype sub procedure Strrchr(dim byref s as stringf 100] , dim ch as byte)
Description Function searches the string s for the last occurrence of the character ch. The null char-
acter terminating s is not included in the search. Function returns an index of the last
ch found in s; if no matching character was found, function returns $FF.
Strspn
Prototype sub function Strspn(dim byref sl, s2 as string] 100]) as byte
Description The strspn function computes the length of the maximum initial segment of the string
pointed to by s1 which consists entirely of the characters from the string pointed to by
s2.Function returns the length of the segment.
CTpage T

Books - COMPILERS

2@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS -

mikroBASIC

W & slmple... ! MIKROBASIC - BASIE COMPILER FOR MICROCHIP PIE MICROCONTROLLERS
Strstr
Prototype sub function Strstr(dim byref sl, s2 as stringf 100]) as byte
Description Function locates the first occurrence of the string s2 in the string s1 (excluding the ter-

minating null character). Function returns a number indicating the position of the first
occurrence of s2 in s1; if no string was found, function returns $¥F. If s2 is a null
string, the function returns 0.

strAppendSuf

Prototype sub procedure strAppendSuf (dim byref sl as string{ 100] , dim let-
ter as char)

Description Adds suffix(letter) to string (s1).

Example txt ="123"
strAppendSuf{txt, "4");
"txt= "1234"
strAppendPre
Prototype sub procedure strAppendPre(dim letter as char, dim byref sl as

string{ 100])

Description Adds prefix(letter) to string (s1).

Example txt ="123"
strAppendPre("0", txt)
"txt="0123"

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 2@7

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

SPI Graphic LCD Library

mikroBasic provides a library for operating the Graphic LCD 128x64 via SPIL.
These routines work with the common GLCD 128x64 (samsung ks0108).

Note: Be sure to designate port with GLCD as output, before using any of the fol-
lowing library procedures or functions.

Note: spi Tnit must be called before initializing SPI GLCD.

Library Routines

Basic routines:

Spi Glcd Init

Spi _Glcd Set Side
Spi_Glcd Set Page
Spi Glcd Set X
Spi_Glcd Read Data
Spi Glcd Write Data

Advanced routines:

Spi Glcd Fill

Spi_ Glcd Dot

Spi Glcd Line

Spi Glcd V Line

Spi Glcd H Line
Spi_Glcd Rectangle
Spi Glcd Box

Spi Glcd Circle
Spi_Glcd Set Font
Spi Glcd Write Char
Spi Glcd Write Text
Spi_Glcd Image

2@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

W d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Spi_Glcd_Init

Prototype sub procedure Spi Glcd Init (dim byref RstPort as byte, dim RstPin
as byte, dim byref CSPort as byte, dim CSPin, DeviceAddress as
byte)

Description Initializes Graphic LCD 128x64 via SPI. RstPort and RstPin - Sets pin connected on
reset pin of spi expander. CSPort and CSPin - Sets pin connected on CS pin of spi
expander. device address - address of spi expander (hardware setting of A0, Al and
A2 pins (connected on VCC or GND) on spi expander).

Requires Spi_Init must be called before initializing SPI GLCD.
This procedure needs to be called before using other routines of SPI GLCD library.

Example Spi Glcd Init (PORTC, 0, PORTC, 1, O0)

Spi_Glcd_Set_Side

Prototype sub procedure Spi Glcd Set Side(dim x as byte)

Description Selects side of GLCD, left or right. Parameter x specifies the side: values from 0 to 63
specify the left side, and values higher than 64 specify the right side. Use the functions
Spi_Glcd Set Side, Spi_Glcd Set X, and Spi Glcd Set Page to specify an
exact position on GLCD. Then, you can use Spi Glcd Write Data or
Spi_Glcd Read Data on that location.

Requires GLCD needs to be initialized. See Spi_Glcd Init.

Example Spi Glcd Select Side(0)
Spi Glcd Select Side(10)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 2@@

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

mIkI‘IlBAS“:

Spi_Glcd_Set_Page

Prototype sub procedure Spi Glcd Set Page (dim page as byte)

Description Selects page of GLCD, technically a line on display; parameter page can be 0..7.
Requires GLCD needs to be initialized. See Spi Glcd Init.

Example Spi Glcd Set Page (5)

Spi_Glcd_Set_X

Prototype sub procedure Spi Glcd Set X(dim x as byte)

Description Positions to x dots from the left border of GLCD within the given page.
Requires GLCD needs to be initialized. See Spi Glcd Init.

Example Spi Glcd Set X (25)

Spi_Glcd_Read_Data

Prototype sub function Spi Glcd Read Data as byte

Returns One word from the GLCD memory.

Description Reads data from from the current location of GLCD memory. Use the functions
Spi_Glcd_Set Side, Spi_Glcd Set X, and Spi_ Glcd_Set Page to specify an
exact position on GLCD. Then, you can use Spi_Glcd Write Data or
Spi_Glcd_Read Data on that location.

Requires Reads data from from the current location of GLCD memory.

Example tmp = Spi Glcd Read Data

Cpage e

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BoOkKkSs -

COMPILERS

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Spi_Glcd_Write_Data

Prototype sub procedure Spi Glcd Write Data(dim data as byte)

Description Writes data to the current location in GLCD memory and moves to the next location.
Requires GLCD needs to be initialized. See Spi Glcd Init.

Example Spi Glcd Write Data (data)

Spi_Glcd_Fill

Prototype sub procedure Spi Glcd Fill (dim pattern as byte)

Description Fills the GLCD memory with byte pattern. To clear the GLCD screen, use
Spi_Glcd Fill (0); to fill the screen completely, use Spi Glcd Fill (SFF).

Requires GLCD needs to be initialized. See Spi Glcd Init.

Example Spi Glecd Fill(0) ' Clear screen

Spi_Glcd_Dot

Prototype sub procedure Spi Glcd Dot (dim x, y, color as byte)

Description Draws a dot on the GLCD at coordinates (x, vy).Parameter color determines the dot
state: O clears dot, 1 puts a dot, and 2 inverts dot state.

Requires GLCD needs to be initialized. See Spi_Glcd Init.

Example Spi Glcd Dot (0, 0, 2)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Spi_Glcd_Line

Prototype sub procedure Spi Glcd Line(dim x1, yl, x2, y2, color as byte)

Description Draws a line on the GLCD from (x1, y1) to (x2, y2).Parameter color determines
the dot state: 0 draws an empty line (clear dots), 1 draws a full line (put dots), and 2
draws a “smart” line (invert each dot).

Requires GLCD needs to be initialized. See Spi Glcd Init.

Example Spi Glcd Line(0, 63, 50, 0, 2)

Spi_Glcd_V_Line

Prototype sub procedure Spi Glcd V Line(dim yl, y2, x, color as byte)

Description Similar to GLcd Line, draws a vertical line on the GLCD from (x, y1) to
(x, y2).

Requires GLCD needs to be initialized. See Spi Glcd Init.

Example Spi Gled V Line(0, 63, 0, 1)

Spi_Glcd_H_Line

Prototype sub procedure Spi Glcd H Line(dim x1, x2, y, color as byte)
Description Similar to GLcd Line, draws a horizontal line on the GLCD from (x1, y) to
(%2, y).
Requires GLCD needs to be initialized. See Spi_Glcd Init.
Example Spi Gled H Line(0, 127, 0, 1)
Cpage e

@@2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Mé‘”? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Spi_Glcd_Rectangle

Prototype sub procedure Spi Glcd Rectangle(dim x1, yl, x2, y2, color as
byte)
Description Draws a rectangle on the GLCD. Parameters (x1, y1) set the upper left corner,

(x2, y2) set the bottom right corner. Parameter color defines the border: 0 draws an
empty border (clear dots), 1 draws a solid border (put dots), and 2 draws a “smart” bor-
der (invert each dot).

Requires GLCD needs to be initialized. See Spi_Glcd Init.

Example Spi Glcd Rectangle (10, 0, 30, 35, 1)

Spi_Glcd_Box

Prototype sub procedure Spi Glcd Box(dim x1, yl, x2, y2, color as byte)

Description Draws a box on the GLCD. Parameters (x1, y1) set the upper left corner, (x2, y2)
set the bottom right corner. Parameter color defines the fill: 0 draws a white box (clear
dots), 1 draws a full box (put dots), and 2 draws an inverted box (invert each dot).

Requires GLCD needs to be initialized. See Spi Glcd Init.

Example Spi Glecd Box (10, 0, 30, 35, 1)

Spi_Glcd_Circle

Prototype sub procedure Spi Glcd Circle(dim x, y, radius, color as integer)

Description Draws a circle on the GLCD, centered at (x, y) with radius. Parameter color defines the
circle line: 0 draws an empty line (clear dots), 1 draws a solid line (put dots), and 2
draws a “smart” line (invert each dot).

Requires GLCD needs to be initialized. See Spi Glcd Init.

Example Spi Glcd Circle(63, 31, 25, 1)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS @@3

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Spi_Glcd_Set_Font

Prototype sub procedure Spi Glcd Set Font (dim font address as longint, dim
font width, font height as byte, dim offset as word)

Description Sets the font for text display routines, Spi Glcd Write Char and

Spi Glcd Write Text. Font needs to be formatted as an array of byte. Parameter
font address specifies the address of the font; you can pass a font name with the @
operator. Parameters font width and font height specify the width and height of
characters in dots. Font width should not exceed 128 dots, and font height should not
exceed 8 dots. Parameter font offset determines the ASCII character from which the
supplied font starts. Demo fonts supplied with the library have an offset of 32, which
means that they start with space.

If no font is specified, Spi Glcd Write Char and Spi Glcd Write Text will use
the default 5x8 font supplied with the library. You can create your own fonts by follow-
ing the guidelines given in the file “GLCD_Fonts.dpas”. This file contains the default
fonts for GLCD, and is located in your installation folder, “Extra Examples” > “GLCD”.

Requires GLCD needs to be initialized. See Spi Glcd Init.

Example ' Use the custom 5x7 font "myfont" which starts with space (32):
Spi Glcd Set Font (@myfont, 5, 7, 32)

Spi_Glcd_Write_Char

Prototype sub procedure Spi Glcd Write Char(dim character, x, page, color
as byte)

Description Prints character at page (one of 8 GLCD lines, 0..7), x dots away from the left border of
display. Parameter color defines the “fill”: 0 writes a “white” letter (clear dots), 1 writes
a solid letter (put dots), and 2 writes a “smart” letter (invert each dot).

Use routine Spi_Glcd Set Font to specify font, or the default 5x7 font (included
with the library) will be used.

Requires GLCD needs to be initialized, see Spi_Glcd Init. Use the Spi Glcd Set Font to
specify the font for display; if no font is specified, the default 5x8 font supplied with the
library will be used.
Example Spi Glcd Write Char('C', 0, 0, 1)
Cpage e

@@4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

W d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Spi_Glcd_Write_Text

Prototype sub procedure Spi Glcd Write Text (dim text as string{ 20] , dim x,
page, color as byte)

Description Prints text at page (one of 8 GLCD lines, 0..7), x dots away from the left border of
display. Parameter color defines the “fill”: O prints a “white” letters (clear dots), 1
prints solid letters (put dots), and 2 prints “smart” letters (invert each dot).

Use routine Spi Glcd_Set Font to specify font, or the default 5x7 font (included
with the library) will be used.

Requires GLCD needs to be initialized, see Spi_Glcd Init. Use the Spi Glcd Set Font to
specify the font for display; if no font is specified, the default 5x8 font supplied with the
library will be used.

Example Spi Glcd Write Text('Hello world!', 0, 0, 1)

Spi_Glcd_Image

Prototype sub procedure Spi Glcd Image (dim image as byte[1024])

Description Displays bitmap image on the GLCD. Parameter image should be formatted as an array
of 1024 bytes. Use the mikroPascal’s integrated Bitmap-to-LCD editor (menu option
Tools > Graphic LCD Editor) to convert image to a constant array suitable for display

on GLCD.
Requires GLCD needs to be initialized. See Spi Glcd Init.
Example Spi Glcd Image (my image)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS @@5

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Library Example

The example demonstrates how to communicate to KS0108 GLCD via SPI module, using serial to
parallel convertor MCP23S17.

program SerialGLCD

include " Lib SerialGlcd"
include "images"

dim
ii as byte
someText as string] 20]

sub procedure delay2S
delay ms (2000)
end sub

main:

delay?2S

Spi Init ' initialize SPI

Spi Glcd Init (PORTC, 2, PORTC, 1, 0)

Spi Glcd Fill (0xAA)

delay?2S

while TRUE
Spi Glecd Fill (0x00)
Spi_Glcd Image (truck bmp)
delay?2S

Spi_Gled Fill (0x00)

for ii = 1 to 40

Spi Glcd Dot (ii, ii, 1)
next ii
delay?2S

Spi Glcd Fill(0x00)

Spi Glcd Line(120, 1, 5,60, 1)
delay?2S

Spi Glcd Line(12, 42, 5,60, 1)
delay?2S

Spi_ Glcd Rectangle (12, 20, 93,57, 1)
delay?2S

//continues. .

@@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikro_BASIl:

Méém? et simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Spi Gled Line (120, 12, 12,60, 1)
delay?2S

Spi_Glcd H Line(5, 15, 6, 1)

Spi Glcd Line(0, 12, 120, 60, 1)
Spi Gled V Line(7, 63, 127, 1)
delay?2S

for ii = 1 to 10
Spi Glcd Circle(63, 32, 3*ii, 1)
next ii

delay?2S

Spi Gled Box (12, 20, 70, 57, 2)

delay?2S

Spi Glcd Fill (0x00)
Spi_Glcd Set Font (@System3x6, 3, 6, 32)
someText = "SMALL FONT: 3X6"

Spi Glcd Write Text (someText, 20, 5, 1)

Spi Glcd Set Font (@FontSystemb5x8, 5, 8, 32)

someText = "Large Font 5x8"
Spi Glcd Write Text (someText, 3, 4, 1)
delay?2S

wend

end.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS @@?

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W qu:

Hardware Connection MCP23517

%
DO 11 gpeo GPA7]i [i
p1_24 GPB1 GPAG |—27 I I
D2 34 26 RST 1l 1
GPB2 GPAS5]7
D3 4 S5 E [1
GPB3 GPA4[] [J
D4 5 524 RW
Y oPAs) 23 RS [-U— !
GPB5 GPA2 [}] I
D6 7 S22 cs2 i O il
GPB6 GPA1 [}
D7 8 S 21 cst vee [-_— J
m 5L ee7 GPao [1- i i
g ol veo INTA]? " Avee (o) il
12
l RC1 114 VSS _INTB 518 RCO 1| 13 1 GND I
a1l 8 RESET [} pe aLjosct .h I
i ——————{|osc2 (&) | 1
Res 13y 5K A2 i 16 — 1 Mlkeo N il
RC4 14 S Al 15 | 8 Mhz i[km il
so Ao [1—t = i res 124
J ES = i[RC3 RC4[] 2
r— 2 H
= I i
[1
Vee
Contrast
Adjustment
vee vccC
P1 Vo Y
5K

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

méap? et simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Port Expander Library

The SPI Expander Library facilitates working with MCP23S17, Microchip’s SPI
port expander. The chip connects to the PIC according to the scheme presented
below.

Note: PIC need to have a hardware SPI module.

Note: spT_1nit must be called before initializing Port Expander.

Library Routines

Expander Init
PortExpanderSelect
PortExpanderUnSelect
Expander Read Byte

Expander Write Byte
Expander Set Mode
Expander Read Array
Expander Write Array
Expander Read PortA
Expander Read PortB
Expander Read ArrayPortA
Expander Read ArrayPortB
Expander Write PortA
Expander Write PortB
Expander Set DirectionPortA
Expander Set DirectionPortB
Expander Set PullUpsPortA
Expander Set PullUpsPortB

Expander_Init

Prototype sub procedure Expander Init (dim byref RstPort as byte, dim RstPin
as byte, dim byref CSPort as byte, dim CSPin, ModuleAddress as
byte)

Description Establishes SPI communication with the expander and initializes the expander. RstPort

and RstPin - Sets pin connected on reset pin of spi expander. CSPort and CSPin - Sets
pin connected on CS pin of spi expander. moduleaddress - address of spi expander
(hardware setting of A0, A1 and A2 pins (connected on VCC or GND) on spi expander).

Requires SPI_Init must be called before initializing Port Expander.
This procedure needs to be called before using other routines of PORT Expander library.

Example Expander Init (PORTC, 0, PORTC, 1, 0)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS @@@

mIkI‘IlBAS“:

MIKROBASIC - BASIE CaMPILER FOR MIGROCHIP PIC MICROCONTROLLERS 7 making & cimple...
PortExpanderSelect
Prototype sub procedure PortExpanderSelect
Description Selects current port expander.
Requires PORT Expander must be initialized. See Expander Init.
Exanqﬂe PortExpanderSelect

PortExpanderUnSelect

Prototype sub procedure PortExpanderUnSelect

Description Un-Selects current port expader.

Requires PORT Expander must be initialized. See Expander Init.
Exanqﬂe PortExpanderUnSelect

Expander_Read_Byte

Prototype sub function Expander Read Byte(dim ModuleAddress, RegAddress as
byte) as byte

Returns Byte read from port expander.

Description Function reads byte from port expander on ModuleAddress and port on RegAddress.
Requires PORT Expander must be initialized. See Expander Init.

Example Expander Read Byte (0,1)

Expander_Write_Byte

Prototype sub procedure Expander Write Byte(dim ModuleAddress, RegAddress,
Data as byte)
Returns Nothing.
Description This routine writes data to port expander on ModuleAddress and port on
RegAddress.
Requires PORT Expander must be initialized. See Expander Init.
Example Expander Write Byte (0,1, SFF)
“TTpage e

3@ @ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOkS - COMPILERS

mikroBASIC

’_"f’_é_‘_”?_ @ simple...] MIKROBASIC - BASIC CoMPILER FOR MICROCHIP PIE MICROCONTROLLERS
Expander_Set_Mode
Prototype sub procedure Expander Set Mode (dim ModuleAddress, Mode as byte)
Returns Nothing.
Description Sets port expander mode on ModuleAddress.
Requires PORT Expander must be initialized. See Expander Init.
Exanqﬂe Expander Set Mode (1,0)

Expander_Read_ArrayPortA

Prototype sub procedure Expander Read ArrayPortA(dim ModuleAddress, NoBytes
as byte, dim byref DestArray as byte[100])

Returns Nothing.

Description This routine reads array of bytes (DestArray) from port expander on ModuleAddress
and portA. NoBytes represents number of read bytes.

Requires PORT Expander must be initialized. See Expander Init.

Exanqﬂe Expander Read PortA(0,1,data)

Expander_Read_Array

Prototype sub procedure Expander Read Array(dim ModuleAddress,
StartAddress, NoBytes as byte, dim byref DestArray as bytel 100])
Returns Nothing.
Description This routine reads array of bytes (DestArray) from port expander on ModuleAddress
and StartAddress. NoBytes represents number of read bytes.
Requires PORT Expander must be initialized. See Expander Init.
Exanqﬂe Expander Read Array(l,1,5,data)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

mIkI‘IlBAS“:

Expander_Write_Array

Prototype sub procedure Expander Write Array(dim ModuleAddress,
StartAddress, NoBytes as byte, dim byref SourceArray as
byte[100])

Returns Nothing.

Description This routine writes array of bytes (DestArray) to port expander on ModuleAddress
and StartAddress. NoBytes represents number of read bytes.

Requires PORT Expander must be initialized. See Expander Init.

Example Expander Write Array(l,1,5,data)

Expander_Read_PortA

Prototype sub function Expander Read PortA(dim Address as byte) as byte
Returns Read byte.

Description This routine reads byte from port expander on Address and PortA.

Requires PORT Expander must be initialized. See Expander Init.

Exanqﬂe Expander Read PortA(1l)

Expander_Read_Array

Prototype sub procedure Expander Read Array(dim ModuleAddress,
StartAddress, NoBytes as byte, dim byref DestArray as bytel 100])
Returns Read byte.
Description This routine reads byte from port expander on Address and PortB.
Requires PORT Expander must be initialized. See Expander Init.
Exanqﬂe Expander Read Array(l,1,5,data)
CTpage T

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BoOkKkSs -

COMPILERS

mlkroBASIc

making & simple.. MIKROBASIC - BASIC CaMPILER FOR MIGROCHIP PIE MICROCONTROLLERS
Expander_Read_ArrayPortB
Prototype sub procedure Expander Read ArrayPortB(dim ModuleAddress, NoBytes
as byte, dim byref DestArray as bytel 100])
Returns Nothing.
Description This routine reads array of bytes (DestArray) from port expander on ModuleAddress
and portB. NoBytes represents number of read bytes.
Requires PORT Expander must be initialized. See Expander Init.
Example Expander Read PortB(0,8,data)

Expander_Write_PortA

Prototype sub procedure Expander Write PortA(dim ModuleAddress, Data as
byte)

Returns Nothing.

Description This routine writes byte to port expander on ModuleAddress and portA.

Requires PORT Expander must be initialized. See Expander Init.

Example Expander write PortA (3, S$FF)

Expander_Write_PortB

Prototype sub procedure Expander Write PortB(dim ModuleAddress, Data as
byte)

Returns Nothing.

Description This routine writes byte to port expander on ModuleAddress and portB.

Requires PORT Expander must be initialized. See Expander Init.

Example Expander write PortB (2, SFF)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

mIkI‘IlBAS“:

Expander_Set_DirectionPortA

Prototype sub procedure Expander Set DirectionPortA(dim ModuleAddress, Data
as byte)

Description Set port expander PortA pin as input or output.

Requires PORT Expander must be initialized. See Expander Init.

Example Expander Set DirectionPortA (0, $FF)

Expander_Set_DirectionPortB

Prototype sub procedure Expander Set DirectionPortB(dim ModuleAddress, Data
as byte)

Description Set port expander PortB pin as input or output.

Requires PORT Expander must be initialized. See Expander Init.

Example Expander Set DirectionPortB (0, $FF)

Expander_Set_PullUpsPortA

Prototype sub procedure Expander Set PullUpsPortA(dim ModuleAddress, Data
as byte)

Description This routine sets port expander PortA pin as pullup or pulldown.

Requires PORT Expander must be initialized. See Expander Init.

Example Expander Set PullUpsPortA(0, SFF)

Expander_Set_PullUpsPortB

Prototype sub procedure Expander Set PullUpsPortB(dim ModuleAddress, Data
as byte)
Description This routine sets port expander PortB pin as pullup or pulldown.
Requires PORT Expander must be initialized. See Expander Init.
Example Expander Set PullUpsPortB (0, SFF)
CTpage T

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikl'o_BASIc

Méé&? iz simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Library Example

The example demonstrates how to communicate to port expander MCP23S17.

program PortExpander

dim i as byte

main:
ADCON1 = ADCON1l or 0xO0f
TRISB = 0x00
PORTB = OxFF

Delay ms (200)
Spi Init ' initialize SPI

Expander Init (PORTC, 0, PORTC, 1, 0)
initialize port expander

Expander Set DirectionPortA (0, O0)
set expander's porta to be output

Expander Set DirectionPortB (0, 0xFF)
set expander's porta to be input

Expander Set PullUpsPortB (0, O0xFF)
set pull ups to all of the expander's portb pins

i =20

while 1
Expander Write PortA(0, 1)
" write 1 to expander's porta
i =1i+1
PORTB = Expander Read PortB(0)
' read expander's portb and write it to PIC's PORTB
Delay ms (20)

wend

end.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS @ﬂ 5

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS maéat? étdm

Hardware Connection

MCP23S17 -,
1[GPBO ~ GPA7 (] s []
2[GPB1 GPA6]27— E %
3[GPB2 GPA5]267 i i
:E GPB3 GPA4 |7:j i i
G oree ePm[l——— i O il
—|7 GPB5 GPA2 |722 (] —— J
———{|ores opat]217 vee E 0 %
o o lerer ePao[lo— i ; i
S MY T |L|_12E S |
| GND
% Cs RESET [] :: Reo :%[osc1 o i
m[SCK A2]T 415[2(3222 01 %
c414[S Atll 15 | 8 Mhz — % Mrer N il
= il O [Res 12
= < , T i[RC3 RC4]23
- [Il
I Il
M=y g g2

4 4

5 % g 6 5 % g 6

7 8 7 8

9 % % 10 9] % g 10

L =1 L =1
vce PORTB — vce PORTA —

3ﬂ @ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Méaﬂ? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

SPI LCD Library (4-bit interface)

mikroBasic provides a library for communicating with commonly used LCD (4-bit
interface) via SPI interface. Figures showing HW connection of PIC and SPI LCD
are given at the end of the chapter.

Note: Spi_Init must be called before initializing SPI LCD.

Library Routines

Spi Lcd Config
Spi Lcd Init
Spi Lcd Out
Spi Lcd Out Cp
Spi Lcd Chr
Spi Lcd Chr Cp
Spi Lcd Cmd

Spi_Lcd_Config

Prototype sub procedure Spi Lcd Config(dim DeviceAddress as byte, dim byref
rstport as byte, dim rstpin as byte, dim byref csport as byte,
dim cspin as byte)

Description Initializes LCD via SPI interface with pin settings (Reset pin and Chip Select pin) you

specify.
Requires Spi_Init must be called before initializing SPI LCD.
Example Spi_Lcd Config(0,PORTB, 1, PORTB, 0)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS @ﬂ 7

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Prototype sub procedure Spi Lcd Init

Description Initializes LCD at port with default pin settings (see the connection scheme at the end
of the chapter).

Requires Spi_Init must be called before initializing SPI LCD.

Example Spi Lecd Init

Spi_Lcd_Out

Prototype sub procedure Spi Lcd Out (dim row, column as byte, dim byref text
as stringf 20])

Description Prints text on LCD at specified row and column (parameters row and col). Both string
variables and literals can be passed as text.

Requires Port with LCD must be initialized. See Spi Lcd Configor Spi Led Init.

Example Spi Lcd Out(l, 3, "Hello!"M)

Spi_Lcd_Out_Cp

Prototype sub procedure Spi Lcd Out CP(dim byref text as stringl 40])

Description Prints text on LCD at current cursor position. Both string variables and literals can be
passed as text.

Requires Port with LCD must be initialized. See Spi Lcd Configor Spi Led Init.
Example Spi Lcd Out Cp("Here!") / Print "Here!" at current cursor posi-
tion
- Vo T-

3@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOkS - COMPILERS

mikroBASIC

’_"f’_é_‘_”?_ & slmple... ! MIKROBASIC - BASIC CaMPILER FOR MIGROCHIP PIE MICROCONTROLLERS
Spi_Lcd_Chr
Prototype sub procedure Spi Lcd Chr(dim Row, Column, Out Char as byte)
Description Prints character on LCD at specified row and column (parameters row and col).

Both variables and literals can be passed as character.

Requires Port with LCD must be initialized. See Spi Lcd Config or Spi Led Init.

Example Spi Lcd Chr(2, 3, "i")

Spi_Lcd _Chr_Cp

Prototype sub procedure Spi Lcd Chr CP(dim Out Char as byte)

Description Prints character on LCD at current cursor position. Both variables and literals can be
passed as character.

Requires Port with LCD must be initialized. See Spi Lcd Config or Spi Led Init.

Example Spi Lcd Chr Cp("e") / Print "e" at current cursor position
P pi_ _ _Lp

Spi_Lcd_Cmd

Prototype sub procedure Spi Lcd Cmd(dim out char as byte)

Description Sends command to LCD. You can pass one of the predefined constants to the function.
The complete list of available commands is shown below.

Requires Port with LCD must be initialized. See Spi Lcd Config or Spi Led Init.

Example Spi Lcd Cmd(Spi Led Clear) ’ Clear LCD display

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS @ﬂ @

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W de-

LCD Commands

LCD Command Purpose
LCD_FIRST ROW Move cursor to 1st row
LCD_SECOND_ROW Move cursor to 2nd row
LCD_THIRD ROW Move cursor to 3rd row
LCD_FOURTH_ ROW Move cursor to 4th row
LCD_CLEAR Clear display

Return cursor to home position, returns a shifted display to original posi-

LCD_RETURN HOME . . .
- - tion. Display data RAM is unaffected.

LCD_CURSOR_OFF Turn off cursor
LCD_UNDERLINE ON Underline cursor on
LCD_BLINK CURSOR ON Blink cursor on

LCD _MOVE CURSOR_LEFT Move cursor left without changing display data RAM

Lcd Move Cursor Right | Move cursor right without changing display data RAM

LCD_TURN ON Turn LCD display on

LCD_TURN OFF Turn LCD display off

LCD_SHIFT LEFT Shift display left without changing display data RAM
LCD_SHIFT RIGHT Shift display right without changing display data RAM

Library Example (default pin settings)

program Spi Lcd default test

dim text as charf 20]

main:
SPI init ' Initialize SPI communication
Spi Lecd Init ' Initialize lcd via SPI interface
Spi Lcd Cmd (LCD_CLEAR) " Clear display
Spi Lcd Cmd (LCD_CURSOR _OFF) ' Turn cursor OFF
Spi Led Out(l, 5, "mikroE") ' Write Txt to LCD
Spi Lcd Out (2, 1, "mikroElektronika") ' Write Txt to LCD
Spi Lecd Out (3, 1, "mikroE") ' Write Txt to LCD, for lcd's with more than two rows
Spi Lcd Out (4, 10, "mikroE")' Write Txt to LCD, for lcd's with more than two rows
end
- Vo T-

@2@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Mééw et simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Hardware Connection

MCP23S17
N4

N
_1[GPBO GPA7]i I: :l
2 27 [1
—]| epB1 GPA6 [|—
RS 37 26 [l 1
| GPB2 GPA5]? i i
[[ePB3 GPA4[}— 0 1l
D4 5A pea GPA3 |—24 [-U I
D5 64 23 —
—— | ePB5 GPA2 [|— [l Il
D6 7 22 i O i
— | ePB6 GPA1 [|—
D7 8 21 vece [- Il
ﬁ[GPB7 GPAO [} - i i
g }—10[VDD INTA :|T " Avee o0 i
12
] INTB [|— —l T1
l RC1 114 VS8 —— 18 RCO 1 13 rGND]
m[cs RESET | | = —z1]osct .h 1
R0513[scK Az]T 415[0802 o1 I
—1] sl Al[—¢ {|rco N 1
8 Mhz 16
RC4 14 o 15 —®Mret]24
{ 1 RC5 [}—
o 1s] H23
= <, T —L|Rc3 RC4]
= I I
{ 1

vcc
Contrast
:I‘: | Adjustment

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

SPI LCD8 (8-bit interface) Library

mikroBasic provides a library for communicating with commonly used 8-bit inter-
face LCD (with Hitachi HD44780 controller) via SPI Interface. Figures showing
HW connection of PIC and SPI LCD are given at the end of the chapter.

Note: Spi_Init must be called before initializing SPI LCD8.

Library Routines

Spi Lcd8 Config
Spi Lcd8 Init
Spi Lcd8 Out
Spi Lcd8 Out Cp
Spi Lcd8 Chr
Spi Lcd8 Chr Cp
Spi Lcd8 Cmd

Spi_Lcd8_Config

Prototype sub procedure Spi LCD8 Config(dim DeviceAddress as byte, dim
byref rstport as byte, dim rstpin as byte, dim byref csport as
byte, dim cspin as byte)

Description Initializes LCD via SPI interface with pin settings (Reset pin and Chip Select pin) you

specify.
Requires Spi_Init must be called before initializing SPI LCDS.
Examp]e Spi Lcd8 Config(0, PORTB, 1, PORTB, 0)

@22 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Spi_Lcd8_Init

Prototype sub procedure Spi Lcd8 Init

Description Initializes LCD at Control port (ctrlport) and Data port (dataport) with default pin set-
tings (see the connection scheme at the end of the chapter).

Requires Spi_Init must be called before initializing SPI LCDS.

Example Spi Lcd8 Init

Spi_Lcd8_Out

Prototype sub procedure Spi LCD8 Out(dim row, column as byte, dim byref
Text as stringl 20])

Description Prints text on LCD at specified row and column (parameters row and col). Both string
variables and literals can be passed as text.

Requires Ports with LCD must be initialized. See Spi Lcd8 Config or Spi Lcd8 Init.

Example Spi Lcd8 Out(l, 3, "Hello!") ’ Print "Hello!" at line 1, char 3

Spi_Lcd8 Out_Cp

Prototype sub procedure Spi LCD8 Out CP(dim byref text as stringf 20])

Description Prints text on LCD at current cursor position. Both string variables and literals can be
passed as text.

Requires Ports with LCD must be initialized. See Spi Lcd8 Configor Spi Lcd8 Init.

Example Spi Lcd8 Out Cp("Here!") ’ Print "Here!'" at current cursor posi-
tion

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Spi_Lcd8_Chr

Prototype sub procedure Spi LCD8 Chr(dim row, column, out char as byte)

Description Prints character on LCD at specified row and column (parameters row and col).
Both variables and literals can be passed as character.

Requires Ports with LCD must be initialized. See Spi Lcd8 Config or Spi Lcd8 Init.

Example Spi LCD8 Chr(l,1,"e") / Print "e" at line 1, char 1

Spi_Lcd8 Chr_Cp

Prototype sub procedure Spi LCD8 Chr CP(dim out char as byte)

Description Prints character on LCD at current cursor position. Both variables and literals can be
passed as character.

Requires Ports with LCD must be initialized. See Spi Lcd8 Config or Spi Lcd8 Init.

Example Spi Lcd8 Chr Cp("e"); / Print "e" at current cursor position

Spi_Lcd8 Cmd

Prototype sub procedure Spi LCD8 Cmd(dim out char as byte)

Description Sends command to LCD. You can pass one of the predefined constants to the function.
The complete list of available commands is shown below.

Requires Ports with LCD must be initialized. See Spi Lcd8 Configor Spi Lcd8 Init.
Example Spi Lcd8 Cmd(LCD Clear) / Clear LCD display
“TTpage e

@24 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

méap? et simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

LCD Commands

LCD Command Purpose
LCD FIRST ROW Move cursor to 1st row
LCD_SECOND_ROW Move cursor to 2nd row
LCD_THIRD_ ROW Move cursor to 3rd row
LCD_FOURTH ROW Move cursor to 4th row
LCD_CLEAR Clear display

Return cursor to home position, returns a shifted display to original posi-

LCD RETURN HOME) . .
- - tion. Display data RAM is unaffected.

LCD_CURSOR OFF Turn off cursor
LCD_UNDERLINE ON Underline cursor on
LCD_BLINK CURSOR _ON Blink cursor on

LCD _MOVE CURSOR_LEFT Move cursor left without changing display data RAM

Led_Move Cursor Right | Move cursor right without changing display data RAM

LCD_TURN ON Turn LCD display on

LCD_TURN OFF Turn LCD display off

LCD_SHIFT LEFT Shift display left without changing display data RAM
LCD_SHIFT RIGHT Shift display right without changing display data RAM

Library Example (default pin settings)

program Spi Lcd8 default test
dim text as char[20]

main:
SPI init " Initialize SPI communication
Spi Lcd8 Init " Initialize lcd via SPI interface
Spi Lcd8 Cmd(LCD_CLEAR) " Clear display
Spi Lcd8 Cmd(LCD CURSOR OFF) " Turn cursor OFF
Spi Lcd8 Out(l, 5, "mikroE") ' Write Txt to LCD
Spi Lcd8 Out(2, 1, "mikroElektronika") ' Write Txt to LCD
Spi Lcd8 Out (3, 1, "mikroE")' Write Txt to LCD, for lcd's with more than two rows
Spi Lcd8 Out (4, 10, "mikroE")' Write Txt to LCD, for lcd's with more than two rows

end.

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS @25

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W étW oo

Hardware Connection

MCP23S17 7
N\
Do 1[GPBO GPA7]ﬂ Q I
D1 2- 27 [I
[] ePB1 GPA6 [|—
2230 Gee2 GPA5]i I I
D3 47 25 RS (] 1
ores oPasll— i 1
E: 6[GPB4 GPA3 [|— 0 -U I
—|D‘5 {Jopes oAz '722 E [— [
—— | ePB6 GPA1 [|— i O I
D7 8 2 vce Q0 - 1
ﬁ[GPB7 GPAO [} - [i
g }—10[VDD INTA :|T :; VEE (0] i
I———=—1] vss INTB [— [——5{]eno T1 i
RC111H 22 0 18 RCO 135
W[cs RESET [} p= —a1]osct N I
m[SCK A2]T 415|; oscz €JY 1l
—[sl Al[—1 & Mhe ralLEUNN NG Y i
RC4 14[o o 15 —® Mret 0,,
= = (] RC5 [}
<, T i[RC3 RC4]23
= I I
I i
vee
Contrast
:; Adjustment

FFFEFFFFFEEFTFF

@2@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Mé"ﬂ? d@m‘e MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

SPI T6963C Graphic LCD Library

mikroPascal for PIC provides a library for drawing and writing on Toshiba
T6963C Graphic LCD (various sizes) via SPI interface.

Note: Spi_Init; must be called before initializing SPI LCD.

Library Routines

Spi T6963C Config

Spi T6963C writeData

Spi T6963C writeCommand
Spi T6963C_setPtr

Spi T6963C _waitReady

Spi T6963C fill

Spi T6963C _dot

Spi T6963C write char
Spi T6963C write text
Spi T6963C line

Spi T6963C_rectangle

Spi T6963C box

Spi T6963C circle

Spi T6963C_image

Spi T6963C_sprite

Spi T6963C_set cursor
Spi T6963C clearBit

Spi T6963C_setBit

Spi T6963C negBit

Spi T6963C displayGrPanel
Spi T6963C displayTxtPanel
Spi T6963C_setGrPanel
Spi T6963C_setTxtPanel
Spi T6963C panelFill

Spi T6963C grFill

Spi T6963C txtFill

Spi T6963C cursor height
Spi T6963C _graphics

Spi T6963C_ text

Spi T6963C _cursor

Spi T6963C cursor blink
Spi T6963C Config 240x128
Spi T6963C Config 240x64

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS @27

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Spi_T6963C_Config

Prototype sub procedure Spi T6963C Config(dim width, height, fntW as word,
dim byref rstport as byte, dim rstpin as byte, dim byref csport
as byte, dim cspin as byte, dim wr, rd, cd, rst as byte, dim
DeviceAddress as byte)

Description Initalizes the Graphic Lcd controller. This function must be called before all Spi T6963C
Library Routines.

width - Number of horizontal (x) pixels in the display.

height - Number of vertical (y) pixels in the display.

fntW - Font width, number of pixels in a text character, must be set accordingly to the
hardware.

data - Address of the port on which the Data Bus is connected.

cntrl - Address of the port on which the Control Bus is connected.

wr - |WR line bit number in the *cntrl port.

rd - !RD line bit number in the *cntrl port.

cd - !CD line bit number in the *cntrl port.

rst - IRST line bit number in the *cntrl port.

DeviceAddress - Device Address.

Display RAM :

The library doesn't know the amount of available RAM.

The library cuts the RAM into panels : a complete panel is one graphics panel followed
by a text panel, The programer has to know his hardware to know how much panel he

has.
Requires Spi_Init must be called before initializing SPI Toshiba T6963C Graphic LCD.
Examp]e Spi T6963C Config (240, 64, 8, PORTB, 1, PORTB, 0O, 0, 1, 3, 4, 0)

I %

init display for 240 pixel width and 64 pixel height

'* 8 bits character width

'* reset pin on PORTB.1

'* chip select pin on PORTB.O0

' bit 0 is !WR

' pbit 1 is !RD

'* bit 3 is !CD

'* bit 4 is RST

'* chip enable, reverse on, 8x8 font internaly set in library
'* device address is 0

@2 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Mé‘”? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Spi_T6963C_writeData

Prototype sub procedure Spi T6963C writeData(dim data as byte)

Description Routine that writes data to Spi T6963C controller.

Requires GLCD needs to be initialized, see Spi_T6963C_Config.

Example Spi T6963C writeData (AddrL)

Spi_T6963C_writeCommand

Prototype sub procedure Spi T6963C writeCommand(dim data as byte)
Description Routine that writes command to Spi T6963C controller

Requires GLCD needs to be initialized, see Spi_T6963C_Config.

Example Spi T6963C writeCommand (T6963C_CURSOR POINTER SET)

Spi_T6963C_setPtr

Prototype sub procedure Spi T6963C setPtr(dim p as word, dim c as byte)

Description This routine sets the memory pointer p for command c.

Requires GLCD needs to be initialized, see Spi_T6963C_Config.

Example Spi T6963C setPtr(T6963C grHomeAddr + start, T6963C ADDRESS POINT-
ER SET)

Spi_T6963C_waitReady

Prototype sub procedure Spi T6963C waitReady
Description This routine pools the status byte, and loops until ready.
Requires GLCD needs to be initialized, see Spi_T6963C_Config.
Example Spi T6963C_waitReady

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS @2@

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Spi_T6963C_fill

Prototype sub procedure Spi T6963C fill(dim v as byte, dim start, len as
word)

Description This routine fills length with bytes to controller memory from start address.

Requires GLCD needs to be initialized, see Spi_T6963C_Config.

Example Spi T6963C fill (0x33,0x00FF, 0x000F)

Spi_T6963C_dot

Prototype sub procedure Spi T6963C dot(dim x, y as integer, dim color as
byte)
Description This routine sets current graphic work panel. It sets the pixel dot (x0, y0).

peolor = T6963C_[WHITE[BLACK].

Requires GLCD needs to be initialized, see Spi T6963C_Config.

Example Spi T6963C _dot (x0, y0, pcolor)

Spi_T6963C_write_char

Prototype sub procedure Spi T6963C write char(dim c, x, y, mode as byte)

Description This routine sets current text work panel.
It writes char ¢ row x line y.
mode = T6963C ROM_MODE [OR|EXOR|AND]

Requires GLCD needs to be initialized, see Spi T6963C_Config.

Example Spi T6963C write char('A',22,23,AND)

Spi_T6963C_write_text

Prototype sub procedure Spi T6963C write text(dim byref str as byte[10],
dim x, y, mode as byte)

Description This sets current text work panel.
It writes string str row x line y.
mode = T6963C ROM_MODE [OR|EXOR|AND]

Requires GLCD needs to be initialized, see Spi_T6963C_Config.

Example Spi T6963C write text ("GLCD LIBRARY DEMO, WELCOME !", 0, 0,
T6963C_ROM MODE XOR)

3@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOkS - COMPILERS

mikroBASIC

Mé‘”? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Spi_T6963C_line

Prototype sub procedure Spi T6963C line(dim x0, yO, x1, yl as integer, dim
pcolor as byte)

Description This routine current graphic work panel.
It's draw a line from (x0, y0) to (x1, y1).
pcolor = T6963C [WHITE[BLACK]

Requires GLCD needs to be initialized, see Spi_T6963C_Config.

Example Spi T6963C line (0, 0, 239, 127, T6963C WHITE)

Spi_T6963C_rectangle

Prototype sub procedure Spi T6963C rectangle(dim x0, yO0, x1, yl as integer,
dim pcolor as byte)

Description It sets current graphic work panel.
It draws the border of the rectangle (x0, y0)-(x1, y1).
pcolor = T6963C_[WHITE[BLACK].

Requires GLCD needs to be initialized, see Spi_T6963C_Config.

Example Spi T6963C rectangle (20, 20, 219, 107, T6963C WHITE)

Spi_T6963C_box

Prototype sub procedure Spi T6963C box(dim x0, y0, x1, yl as integer, dim
pcolor as byte)

Description This routine sets current graphic work panel.
It draws a solid box in the rectangle (x0, y0)-(x1, y1).
pcolor = T6963C_[WHITE[BLACK].

Requires GLCD needs to be initialized, see Spi_T6963C_Config.

Example Spi T6963C box (0, 119, 239, 127, T6963C_WHITE)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS @3@

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

mIkI‘IlBAS“:

Spi_T6963C_circle
Prototype sub procedure Spi T6963C circle(dim x, y as integer, dim r as
longint, dim pcolor as word)
Description This routine sets current graphic work panel.
It draws a circle, center is (X, y), diameter is r.
pcolor = T6963C [WHITE[BLACK]
Requires GLCD needs to be initialized, see Spi_T6963C_Config.
Example Spi T6963C circle (120, 64, 110, T6963C WHITE)
Spi_T6963C_image
Prototype sub procedure Spi T6963C_ image (const pic as “byte)
Description This routine sets current graphic work panel :
It fills graphic area with picture pointer by MCU.
MCU must fit the display geometry.
For example : for a 240x128 display, MCU must be an array of (240/8)*128 = 3840
bytes .
Requires GLCD needs to be initialized, see Spi_T6963C_Config.
Example Spi T6963C image (my image)
Spi_T6963C_sprite
Prototype sub procedure Spi T6963C sprite(dim px, py as byte, const pic as
“byte, dim sx, sy as byte)
Description This routine sets current graphic work panel.
It fills graphic rectangle area (px, py)-(px + sx, py + sy) witch picture pointed by MCU.
Sx and sy must be the size of the picture.
MCU must be an array of sx*sy bytes.
Requires GLCD needs to be initialized, see Spi_T6963C_Config.
Example Spi T6963C sprite(76, 4, einstein, 88, 119) ’ draw a sprite
CTpage T

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BoOkKkSs -

COMPILERS

mikroBASIC

Mé‘”? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Spi_T6963C_set_cursor

Prototype sub procedure Spi T6963C set cursor(dim x, y as byte)
Description This routine sets cursor row x line y.

Requires Ports must be initialized. See Spi_T6963C_init.

Example Spi T6963C_set cursor (cposx, Cposy)

Spi_T6963C_clearBit

Prototype sub procedure Spi T6963C clearBit (b as byte)
Description Clear control bit.

Requires Ports must be initialized. See Spi_T6963C_init.
Example Spi T6963C clearBit (b)

Spi_T6963C_setBit

Prototype sub procedure Spi T6963C setBit (dim b as byte)
Description Set control bit.

Requires GLCD needs to be initialized, see Spi_T6963C_Config.
Example Spi T6963C setBit (b)

Spi_T6963C_negBit

Prototype sub procedure Spi T6963C negBit(dim b as byte)
Description Neg control bit.

Requires GLCD needs to be initialized, see Spi_T6963C_Config.
Example Spi T6963C negBit (b)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 333

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Spi_T6963C_displayGrPanel

Prototype sub procedure Spi T6963C displayGrPanel (dim n as word)
Description Display graphic panel number n.

Requires GLCD needs to be initialized, see Spi T6963C_Config.

Example Spi T6963C displayGrPanel (n)

Spi_T6963C_displayTxtPanel

Prototype sub procedure Spi T6963C displayTxtPanel(dim n as word)
Description Display text panel number n.

Requires GLCD needs to be initialized, see Spi_T6963C_Config.

Example Spi T6963C displayTxtPanel (n)

Spi_T6963C_setGrPanel

Prototype sub procedure Spi T6963C setGrPanel (dim n as word)
Description Compute graphic start address for panel number n.

Requires GLCD needs to be initialized, see Spi_T6963C_Config.
Example Spi T6963C_setGrPanel (n)

Spi_T6963C_setTxtPanel

Prototype sub procedure Spi T6963C setTxtPanel (dim n as word)
Description Compute text start address for panel number n.
Requires GLCD needs to be initialized, see Spi_T6963C_Config.
Example Spi T6963C setTxtPanel (n)
Cpage e

3@4 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

Mé‘”? d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Spi_T6963C_panelFill

Prototype sub procedure Spi T6963C panelFill (dim v as word)

Description Fill full #n panel with v bitmap (0 to clear).

Requires GLCD needs to be initialized, see Spi_T6963C_Config.

Example Spi T6963C panelFill (v)

Spi_T6963C_grFill

Prototype sub procedure Spi T6963C grFill(dim v as word)

Description Fill graphic #n panel with v bitmap (0 to clear).

Requires GLCD needs to be initialized, see Spi_T6963C Config.

Example Spi T6963C grFill (v)

Spi_T6963C_txtFill

Prototype sub procedure Spi T6963C txtFill(dim v as word)

Description Fill text #n panel with char v + 32 (0 to clear).

Requires GLCD needs to be initialized, see Spi_T6963C_Config.

Example Spi T6963C_txtFill (v)

Spi_T6963C_cursor_height

Prototype sub procedure Spi T6963C cursor height(dim n as word)
Description Set cursor size.

Requires GLCD needs to be initialized, see Spi_T6963C_Config.

Example Spi T6963C cursor height (n)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS 335

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Spi_T6963C_graphics

Prototype sub procedure Spi T6963C graphics(dim n as word)

Description Set graphics on/off.

Requires GLCD needs to be initialized, see Spi T6963C_Config.

Example Spi T6963C graphics (1)

Spi_T6963C_text

Prototype sub procedure Spi T6963C text(dim n as word)
Description Set text on/off.

Requires GLCD needs to be initialized, see Spi_T6963C_Config.
Example Spi T6963C text (1)

Spi_T6963C_cursor

Prototype sub procedure Spi T6963C cursor(dim n as word)
Description Set cursor on/off.

Requires GLCD needs to be initialized, see Spi_T6963C_Config.
Example Spi T6963C cursor(1l)

Spi_T6963C_cursor_blink

Prototype sub procedure Spi T6963C cursor blink(dim n as word)
Description Set cursor blink on/off.
Requires GLCD needs to be initialized, see Spi_T6963C_Config.
Example Spi T6963C cursor blink(0)
Cpage

3@@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOkS - COMPILERS

mikroBASIC

W d@m MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Spi_T6963C_Config_240x128

Prototype sub procedure Spi T6963C Config 240x128

Description Initialize T6963C based GLCD (240x128 pixels) with default settings for mE GLCD's.

Requires Spi_Init; must be called before initializing SPI Toshiba T6963C Graphic LCD.

Example Spi T6963C Config 240x128

Spi_T6963C_Config_240x64

Prototype sub procedure Spi T6963C Config 240x64

Description Set graphics on/off.

Requires Initialize T6963C based GLCD (240x64 pixels) with default settings for mE GLCD's.

Example Spi T6963C Config 240x64

Library Example

The following drawing demo tests advanced routines of SPI1 T6963C GLCD
library.

program Spi T6963C 240x128
include "T6963C Consts"

include "bitmap"
include "bitmap2"

dim panel as byte ' current panel
i as word " general purpose register
curs as byte " cursor visibility
Cposx,
cposy as word ' cursor x-y position
txtcols as byte " number of text colons
main:
PORTB = 0
TRISB = O0xFF

//continues...

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS @37

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS . making & simple...
//continued. ..
! * init display for 240 pixel width and 128 pixel height
! * 8 bits character width
! * data bus on PORTF
! * control bus on PORTD
' * bit 2 is !WR
' * pbit 1 is !RD
' * bit 0 is !CD
' * bit 4 is RST
r *
r *

chip enable, reverse on, 8x8 font internaly set in library
SPI Init()

Spi_T6963C_Init 240x128()

Spi_T6963C_panelFill (0)

" enable both graphics and text display at the same time

Spi T6963C graphics (1)

Spi T6963C text (1)

panel = 0
i =20

curs = 0
cposy =
Ccposx
txtcols

o O

240 div 8 ' calculate number of text colomns
" (grafic display width divided by font width)

' text messages
Spi T6963C write text (" GLCD LIBRARY DEMO, WELCOME !", 0, O,
T6963C_ROM MODE XOR)
Spi T6963C write text (" EINSTEIN WOULD HAVE LIKED mE", 0, 15,
T6963C_ROM MODE XOR)

' cursor

Spi T6963C cursor height (8) ' 8 pixel height

Spi T6963C set cursor (0, 0) ' move cursor to top left
Spi T6963C cursor (0) ' cursor off

' draw rectangles

Spi T6963C rectangle
Spi T6963C rectangle
Spi T6963C rectangle
Spi T6963C rectangle

0, 0, 239, 127, T6963C WHITE)

20, 20, 219, 107, T6963C WHITE)
40, 40, 199, 87, T6963C WHITE)
60, 60, 179, 67, T6963C WHITE)

//continues...

33 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikroBASIC

_________________ M I_KFEI_E_&?_IE_-_ EIAS_I_I:E _I:il:l_l:lf'l_L_E_R_ fElF_l:/l_IERDEHIF' PIC MICROCONTROLLERS
//continued...
'draw a cross
Spi T6963C line(0, 0, 239, 127, T6963C WHITE)
Spi T6963C line(0, 127, 239, 0, T6963C WHITE)
' draw solid boxes
Spi T6963C box (0, 0, 239, 8, T6963C WHITE)
Spi T6963C box (0, 119, 239, 127, T6963C WHITE)
' draw cicles
Spi T6963C circle (120, 64, 10, T6963C WHITE)
Spi T6963C circle(120, 64, 30, T6963C WHITE)
Spi T6963C circle(120, 64, 50, T6963C WHITE)
Spi T6963C circle (120, 64, 70, T6963C WHITE)
Spi T6963C circle(120, 64, 90, T6963C WHITE)
Spi T6963C circle (120, 64, 110, T6963C WHITE)
Spi T6963C circle (120, 64, 130, T6963C WHITE)
Spi T6963C sprite (76, 4, einstein, 88, 119) ' draw a sprite
Spi T6963C setGrPanel (1) ' select other graphic panel
Spi T6963C image (mikroPascal logo glcd bmp)
' fill the graphic screen with a picture
while true
if RB1 is pressed, toggle the display between graphic panel 0 and
graphic 1
if (PORTB.1 <> 0) then
panel = panel + 1
panel = panel and 1
Spi T6963C displayGrPanel (panel)
Delay ms (300)
end if
if RB2 is pressed, display only graphic panel
if (PORTB.2 <> 0) then
Spi T6963C graphics (1)
Spi T6963C text (0)
Delay ms (300)
end if
//continues...

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS @3@

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W de-

//continued. ..
' if RB4 is pressed, display text and graphic panels
if (PORTB.4 <> 0) then
Spi T6963C graphics (1)
Spi T6963C text (1)
Delay ms (300)
end if

' if RB5 is pressed, change cursor
if (PORTB.5 <> 0) then

curs = curs + 1
if(curs = 3) then
curs = 0
end if
select case curs
case 0
Spi T6963C cursor (0)
case 1

Spi T6963C cursor (1)
Spi T6963C cursor blink(1)
case 2
Spi T6963C cursor (1)
Spi T6963C cursor blink(0)
end select
Delay ms(300)

end if
' move cursor, even if not visible
cposx = cposx + 1
if (cposx = txtcols) then
cposx = 0

cposy = cposy + 1
if (cposy = (128 div T6963C CHARACTER HEIGHT)) then
" if y end
cposy = 0 !
" graphic height (128) div character height
end if
end if
Spi T6963C set cursor (cposx, cposy)
Delay ms(100)
wend
end.

@4@ MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

mikrn_BASIl:

Méém? et simple. .. MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS

Hardware Connection

MCP23S17 -,
N\
SLE y PRY GPA7]£ I I
D1 24 H27 Fs 1 1
GPB1 GPAG []
D2 37 26 MD 1 1]
oPB2 GPAS[|——— 0 1]
D3 4 25 RST
GPB3 GPA4[] (] I
Da 5 H24 CE
o5 el ©PB4 GPA3] . i 'U il
GPB5 Gpa2 [} e] — 1]
D6 7 H22 RW i O il
GPB6 GPA1[]
D7 s D21 Rs vee [l -— 1
5 S epe7 aPao [} i i
g o VDD INTA |—19 11 s m i
12
| INTB [}— |—| Tl
I—wen yss o _INTB H 18 RCO Il 13 rGND i
oL 8 RESET [} 1z 1josc S 1
——1 ()
Res 134 oK A2 _15[22::2 N %
Rea1ad o A 8 Mhz — % Arer i
so A0 O i RC5 24
. = £y 18 RC3 RC4]23
= '
= i I
] 1
Contrast
Adjustment
P1 R
10K
—
L 2
vcC

FFEFEFFFFFEFEFFFEFFEF

Toshiba T6963C Graphic LCD (240x128)

MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOoOKS - COMPILERS @4ﬂ

mikroBASIC

MIKROBASIC - BASIC COMPILER FOR MICROCHIP PIC MICROCONTROLLERS W dW

Contact us: I_

If you are experiencing problems with any of our products or you just want addi-
tional information, please let us know.

Technical Support for compiler

If you are experiencing any trouble with mikroBasic, please do not hesitate to
contact us - it is in our mutual interest to solve these issues.

Discount for schools and universities

mikroElektronika offers a special discount for educational institutions. If you
would like to purchase mikroBasic for purely educational purposes, please con-
tact us.

Problems with transport or delivery

If you want to report a delay in delivery or any other problem concerning distri-
bution of our products, please use the link given below.

Would you like to become mikroElektronika's distributor?

We in mikroElektronika are looking forward to new partnerships. If you would
like to help us by becoming distributor of our products, please let us know.

Other

If you have any other question, comment or a business proposal, please contact
us:

mikroElektronika
Admirala Geprata 1B
11000 Belgrade
EUROPE

Phone: + 381 (11) 30 66 377, + 381 (11) 30 66 378
Fax: + 381 (11) 30 66 379

E-mail: office@mikroe.com

Web: www.mikroe.com

@42 MIKROELEKTRONIKA: DEVELOPMENT TOOLS - BOOKS - COMPILERS

	mikroBasic
	Reader’s note
	Table of Contents
	mikroBasic IDE
	Code Editor
	Code Explorer
	Debugger
	Error Window
	Statistics
	Integrated Tools
	Keyboard Shortcuts

	Building Applications
	Projects
	Source Files
	Compilation
	Error Messages

	mikroBasic Language Reference
	PIC Specifics
	mikroBasic Specifics
	Code Optimization
	mikroICD (In-Circuit Debugger)
	Lexical Elements
	Tokens
	Literals
	Keywords
	Identifiers
	Punctuators
	Program Organization
	Scope and Visibility
	Modules
	Variables
	Constants
	Labels
	Symbols
	Functions and Procedures
	Types
	Simple Types
	Arrays
	Multi-Dimensional Arrays
	Strings
	Pointers
	Structures
	Types Conversions
	Operators
	Expressions
	Statements
	Compiler Directives

	mikroBasic Libraries
	Built-In Routines
	Library Routines
	ADC Library
	CAN Library
	CANSPI Library
	Compact Flash Library
	EEPROM Library
	Ethernet Library
	SPI Ethernet Library
	Flash Memory Library
	I2C Library
	Keypad Library
	LCD Library (4-bit interface)
	LCD Library (8-bit interface)
	Graphic LCD Library
	T6963C Graphic LCD Library
	Manchester Code Library
	MMC/SD Library
	OneWire Library
	PS/2 Library
	PWM Library
	RS-485 Library
	Software I2C Library
	Software SPI Library
	Software UART Library
	Sound Library
	SPI Library
	USART Library
	USB HID Library
	Util Library
	Conversions Library
	Delays Library
	Math Library
	String Library
	SPI Graphic LCD Library
	Port Expander Library
	SPI LCD Library (4-bit interface)
	SPI LCD8 (8-bit interface) Library
	SPI T6963C Graphic LCD Library

	Contact us

