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PROCESS DYNAMICS: LAPLACE TRANSFORMS

M.T. Tham
Dept. of Chemical and Process Engineering

University of Newcastle upon Tyne

INTRODUCTION

It is always useful, and often essential, to analyse the performance capabilities and the stability
of a proposed system before it is build or implemented. Many analysis techniques centre
around the use of transformed variables to facilitate mathematical treatment of the problem. In
the analysis of continuous time dynamical systems, the use of Laplace Transforms
predominates.

Applying Laplace Transforms is analogous to using logarithms to simplify certain types of
mathematical manipulations and solutions. By taking logarithms, numbers are transformed
into powers of 10 or some other base, e.g. natural logarithms. As a result of the
transformations, mathematical multiplications and divisions are replaced by additions and
subtractions respectively. Similarly, the application of Laplace Transforms to the analysis of
systems which can be described by linear, ordinary time differential equations overcomes
some of the complexities encountered in the time-domain solution of such equations.

Laplace Transforms are used to convert time domain relationships to a set of equations
expressed in terms of the Laplace operator 's'. Thereafter, the solution of the original problem
is effected by simple algebraic manipulations in the 's' or Laplace domain rather than the time
domain. The Laplace Transform of a time variable )(tf  is defined as:

F s L f t f t e dtst
t

( ) { ( )} ( )= = −∫
0

where {}.L  is used to denoted the transformation.

Basic Properties of the Laplace Transform

The following are some of the fundamental properties of Laplace Transforms:

P1) The Laplace Transformation is linear, i.e.

{ } { } { } )()()()()()( 212121 sFsFtfLtfLtftfL +=+=+
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and { } { } constant)()()( === kskFtfkLtkfL

P2) Laplace Transformations of derivatives are given by the following:

{ } { } )0()()('/)( fssFtfLdttdfL −==

where )0(f  is the initial value of )(tf , at t = 0.

{ } { } )0(')0()()("/)( 222 fsfsFstfLdttfdL −−==

In general,

{ } { } )0()0()()(/)( 11 −− −−−== nnnnnn ffssFstfLdttfdL !

P3) Laplace Transforms of integrals are given by:

{ } [ ] sfsFtfL /)0()()( 11 −− −=

In general,

{ } sfsfsfssFtfL nnnnn /)0(/)0(/)0(/)()( 121 −−−−− ++++= !

P4) The 'Final Value' theorem states that:

)(lim)(lim
0

ssFtf
st →∞→

=

and facilitates the determination of the value of )(tf  as time tend towards infinity, i.e.
the steady-state value of )(tf .

P5) The 'Initial Value' theorem states that:

)(lim)(lim
0

ssFtf
st ∞→→

=

and allows the determination of the value of )(tf  at time += 0t , i.e. at a time instant

immediately after time 0=t .

Properties P1 to P4 are the most often used in systems analysis.

To return to the time-domain from the Laplace domain, inverse Laplace Transforms are used.
Again this is analogous to the application of anti-logarithms and as in the use of logarithms,
tables of Laplace Transform pairs help to simplify the task (see Table 1). More comprehensive
lists of Laplace Transform pairs may be found in standard Control Engineering texts (e.g.
Di'Stephano and colleagues, 1967; Kuo, 1980).
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Functions of time, f(t) Laplace Transforms of f(t), L{f(t)}

1. )(tf )(sF

2. )()( tytx + )()( sYsX +

3. )(. tfk )(. sFk

4. dttdf /)( )0()( fssF −

5. nn dttfd /)( )0()0()0()( 1121 −−− −−−− nnnn ffsfssFs !

6. ∫
t

dttf
0

).( ssF /)(

7. 1 s/1

8. t 2/1 s

9. ate−
1

( )s a+

10. atte−
( )

1
2s a+

11. ate−−1 ( )ass
a
+

12. atatf >− ),( )(sFe as−

Table 1. Table of Laplace Transformations

Illustrative Example

The following simple example illustrates the use of Laplace Transforms in systems analysis,
showing how it is used to solve a linear ODE. Consider the first-order process:

)()()( tKUtY
dt

tdY =+τ (1)
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Here, )(tY  is the output variable while )(tU  is the 'forcing' input. The time-domain solution

of this ODE is required and is to be found using Laplace Transforms. The first step is to
convert the 'full-valued' variables )(tY  and )(tU  to their respective ‘deviation varibales’, )(ty
and )(tu  via:

ssYtYty −= )(()( ssUtUtu −= )(()(

where ssY  is the steady-state value that )(tY  will attain given a steady input ssU . Further, it is

usual to assume that the steady-state values are equal to the initial values of the respective
variables. Therefore,

0)0()0( == uy

Since the time derivatives of steady values are zero, the deviation variables can be substituted
into Eq.(1) to yield:

)()()( tKuty
dt

tdy =+τ (2)

Application of properties P1 and P2 to Eq.(2) yields:

)()()0()( sKUsYyssY =+−τ (3)

The reason for the use of deviation variables now becomes clear. Since )0(y  is zero, Eq.(3)

simplifies to:

)()()( sKUsYssY =+τ (4)

Therefore, using deviation variables allow us to simplify Laplace Transforms because all
initial conditions are zero.

The effect of the input on output is then arrived at by simple rearrangement of terms to yield:

s
K

sU
sYsG

τ+
==

1)(
)()( (5)

)(sG  is called the transfer function of the process under consideration and describes the
relationship between the input )(sU  and the output )(sY . The time domain solution to Eq.(3)

and equivalently Eq.(2), depends on the form of the input. Assume that the input is a unit step
change in )(tu , i.e.

1)( =tu

From Table 1, the Laplace Transform of )(tu  is:
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{ } {} ssULtuL /1)(1)( ===

Substituting into Eq.(5),

[ ]ss
K

ss
KsY

+τ
τ⋅=⋅

τ+
=

)/1(
)/1(1

)1(
)( (6)

Looking up the inverse Laplace Transform of Eq.(6) from Table 1 yields the time domain
solution of Eq.(4) as:

[ ]τ−−= /1)( teKty or [ ] ss
t YeKtY +−= τ− /1)( (7)

TRANSFER FUNCTIONS

Transfer functions play a central role in the analysis of dynamic systems behaviour since it
fully describes the relation between input-output pairs. In the previous example, the transfer
function )(sG  encapsulates the behaviour of the system given by Eq.(1) in the ratio, Eq.(5).

There are several things to note about transfer functions.

Transfer functions are independent of the form of the input. If instead of a unit step input
( 1)( =tu ), a ramping input, ttu =)(  was considered, )(sG  would still describe the behaviour
of the output )(ty . However, the time-domain solution would be different from that given by

Eq.(7).

Transfer functions obey algebraic rules. Laplace Transforms are commutative as well as
associative. Therefore, given two transfer functions )(1 sG  and )(2 sG :

)()()()( 1221 sGsGsGsG = Commutative property

)()()()( 1221 sGsGsGsG +=+ Associative property

Transfer functions are linear functions. Since they are expressed in the Laplace domain,
transfer functions are implicitly linear functions and obey all the rules governing the theory of
linear systems.

Transfer functions can be visualised conveniently using block diagrams. Another useful
feature of using Laplace Transforms is that the dynamical system can be expressed in the form
of block diagrams. Each block represents a transfer function while the signal flows between
the blocks are defined by block connections. As a result, the system can be easily visualised
and relationships between inputs and outputs worked out via block diagram manipulations.
Several examples are shown below:
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Block Diagram Transfer Function

)(sG
)(sY)(sU

)(
)(
)( sG

sU
sY =

)(1 sG
)(sY)(sU

)(2 sG )()(
)(
)(

21 sGsG
sU
sY =

)(1 sG
)(sY)(sU

)(2 sG

+ )()(
)(
)(

21 sGsG
sU
sY +=

)(sG
)(sY)(sU

Σ
+- )(1

)(
)(
)(

sG
sG

sU
sY

+
=

Transfer functions are ratios of polynomials in ‘s’. From the above block diagrams, it can be
seen that transfer functions can be made up of a combination of other transfer functions. Thus,
in general, transfer functions are ratios of polynomials in ‘s’ as illustrated in the following
example. Suppose

)()(
)(
)(

21 sGsG
sU
sY +=

with
s

KsG
1

1
1 1

)(
τ+

= and
s

KsG
2

2
2 1

)(
τ+

=

Then
s

K
s

K
sU
sY

2

2

1

1

11)(
)(

τ+
+

τ+
=

and hence

( ) ( )
( )( )ss

sKsK
sU
sY

21

1221

11
11

)(
)(

τ+τ+
τ++τ+=

( ) ( )
( )( )ss

sKKKK
sU
sY
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11)(
)(

τ+τ+
τ+τ++=


