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signal processing

The fractional N synthesizer has
been credited with the ability to

decrease phase noise, provide increased
loop speed for a given step size, and
provide reduced reference spur levels.
This article will examine the wave-

forms produced by charge pumps when
operating in the fractional N mode. It
will use these waveforms to
calculate approximate levels
for the spurious sidebands
created by the fractional N
technique. While this article
will not derive the loop equa-
tions for a phase-locked loop,
it will go through some of the
calculations required to get a
simple loop up and running. 

Finally, it will examine
the  mult ip le -modulus
divider provided in the chips
and develop a concise algo-
rithm for determining a
valid set of divider numbers
for the three- and four-mod-
ulus prescalers. While this
analys is  uses  Phi l l ips
devices for presentation, the
developed theory can be
applied to all fractional N
synthesizers.

The fractional N loop
In the traditional synthe-

sizer, the voltage-controlled
oscillator (VCO) frequency is
at some integer multiple of
the divided down reference
frequency at the phase comparator
(comparison frequency, or fcomp).
Frequency steps smaller than fcomp are
not possible. As a result, the compari-
son frequency can be no higher, in fre-
quency, than the desired channel spac-
ing, or step size. If the VCO frequency
is high, and the step size is small, this
results in a large division ratio in the
VCO path. 

For example, with a 500 MHz VCO,
and a channel spacing of 50 kHz, the
VCO frequency will have to be divided
by 10,000 to obtain the comparison fre-
quency of 50 kHz. This will result in an
increase of the phase detector noise of
20log10000, or 80 dB. And the 50 kHz
channel spacing will require a narrow
loop bandwidth, to control the ampli-
tude of the reference spurs. The nar-
rowband loop will exhibit a slow tran-
sient response. The fractional N loop
allows us to lock the VCO to a frequen-

cy that is a fractional multiple of fcomp.
This, in turn, allows use of a compari-
son frequency larger than the step size.
The overall division ratio can be
reduced, lowering the contribution of
the phase detector noise. Because the
reference spurs are now at a higher fre-
quency, the loop can be sped up while
retaining the same rejection of the ref-
erence spurs. 

As an example, consider again the
500 MHz VCO, with the channel spac-
ing of 50 kHz. The required division
ratio for the standard loop, using a 50
kHz comparison frequency, is 10,000.
To set the VCO to 500.05 MHz would
require the next integer division ratio,
10,001. Now, increase the comparison
frequency to 100 kHz, reducing the
division ratio to 5,000. To set the VCO
to 500.05 MHz would require a division
ratio of 5000.5. The 0.5 is clearly unob-
tainable using a standard digital

counter. The fractional N
loop gets around this prob-
lem by alternating the divi-
sion ratio between 5,000 and
5,001. The average division
ratio is then precisely
5,000.5, just what we need to
set the VCO on frequency.

A closer look
In a normal synthesizer,

while locked, the phase
detector produces a narrow
pulse, which is required to
keep the VCO on frequency.
Each pulse from the phase
detector should be identical
to all the other pulses.

In the fractional N loop
described above, the VCO is
never quite on frequency.
That is, it is never an exact
integer multiple of the com-
parison frequency. In one
cycle of the comparison fre-
quency the VCO frequency
will appear to be high by half
the comparison frequency. In
the next cycle, the VCO will
appear to be low by an equal

amount. The loop will therefore attempt
to ramp the VCO frequency up, then
down in alternate cycles of the phase
detector, creating a spur at half the com-
parison frequency. Because this spur
occurs at a fraction of the comparison
frequency1, it is known as a fractional
spur. It will be shown later that the
chips used to develop this technique con-
tain some additional circuitry to mini-
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mize the level of the fractional spurs. 
The above example represents a frac-

tional modulus of two. It is possible to
choose either a fractional part of zero,
when the divider is an integer, or a
fractional part of one, when alternating
the divide ratio between two adjacent
integers. This allows selection of a
either a fractional modulus of 5 or 8.
This makes it possible to set the VCO
divider to fractional multiples of 1/5 or
1/8 of the comparison frequency. This is
accomplished by alternating the divi-
sion ratio between two adjacent inte-
gers in a cycle that repeats over a a
period of five phase detector cycles, or
eight phase detector cycles. (With a
fractional modulus of 8, the cycle may
repeat in two or four phase detector
cycles.) A fractional modulus of 5 pre-
sents a choice of a fractional part of 0/5
to 4/5. A fractional modulus of 8 offers a
choice of a fractional part of 0/8 to 7/8.

It is necessary to define two other
terms that will be used in the following
discussion. First, the time from one
phase detector pulse to the next will be
addressed as a comparison cycle. The
time required for the phase detector
waveform to repeat will be called a
fractional cycle. For example, if a frac-
tional modulus of 5 is used, the frac-
tional cycle will normally contain five
comparison cycles.

The fractional N current waveform
Return to the example using the frac-

tional modulus of 2 along with a frac-
tional part of 1. The divider and charge
pump waveforms for this example are
illustrated in Figure 1. Suppose that as
the fractional cycle starts (beginning
with the division ratio of 5,000), the ref-
erence divider and the VCO divider
both transition at exactly the same
time. At this point the two dividers are
perfectly aligned in phase. It has
already been determined that the VCO
is running just a bit fast, so that the
next VCO divider transition occurs
before the reference divider transition
by exactly half a VCO cycle. The offset
in time results in an error pulse from
the phase detector, with a width equal
to half a cycle of the VCO. At the third
VCO divider transition (which termi-
nates the fractional cycle), the VCO has
moved ahead by another half cycle, or a
total of one VCO cycle. But because the
VCO divider is now dividing by 5,001,
the two transitions again line up. Think
of this extra divide as swallowing a
VCO cycle. Figure 1 shows that this

fractional N synthesizer will deliver
error pulses from the phase detector on
alternate comparison cycles.

This waveform would soon drive the
loop out of lock, as the continuous puls-
es drive the tuning line up to the posi-
tive rail. It will later be shown that
another charge pump in the chips pro-
vides a compensating pulse to remove
the charge delivered by the phase
detector charge pump, preventing the
continuous rise of the tuning voltage.

If a fractional part of 1/8 is selected,
the error pulse from the phase detector
will start with a width of zero. Each
subsequent transition of the VCO
divider will result in a growth of the
width of the error pulse equal to 1/8 of
a VCO cycle, to a maximum width of
7/8 of a VCO cycle. On the eighth cycle
of the VCO divider, the divide number
is increased by one, so that the VCO
divider transition and reference divider
transition are again coincident, and the
width of the error pulse is again zero.
This waveform is shown in Figure 2.

If a fractional part of 3/8 is chosen,
an error width is accumulated three
times as fast. As the cycle begins, the
transitions occur together. In the sec-
ond cycle, the VCO transition will lead
by 3/8 of a VCO cycle. In the third
cycle, it will lead by 6/8 of a VCO cycle.
In the fourth cycle, the VCO will again
advance by 3/8 of a cycle, for a total of
9/8 of a VCO cycle. But the synthesizer
keeps track of the slipping phase and
detects when the accumulated phase
reaches, or exceeds, a full VCO cycle.
When this occurs, the VCO divide num-
ber is increased by one to swallow the
extra VCO cycle. At the end of the
fourth cycle, after delaying the VCO
divider transition by a full cycle, the

VCO divider transition will lead the
reference divider transition by 9/8, - 1,
or 1/8 of a VCO cycle. This slipping and
correcting of the phase will continue
until the end of the eighth VCO divider
cycle, when the VCO divider and refer-
ence divider transitions are once again
coincident. With a fractional part of
three, the VCO divider will have divid-
ed by the larger divide number three
times to swallow a total of three VCO
cycles. This will result in a VCO fre-
quency that has increased by 3/8 of the
comparison frequency. Similarly, frac-
tional parts of five and seven will
advance the width of the error pulse
even more quickly, include five and
seven divisions by the larger divide
number, and again return to a zero
error at the conclusion of the eighth
cycle of the VCO divider, while swallow-
ing five or seven VCO cycles during the
fractional cycle. In each of these cases,
the fractional cycle will consist of eight
comparison cycles, so a spurious signal
at 1/8 of the comparison frequency will
be developed.

An article by Johnathan Stillwell2,
who developed the first N synthesizers
at Phillips, states that higher fraction-
al parts raise the fractional spurious
frequency, bringing it closer to the
comparison frequency reference spur.
This is not true. In fact, a fractional
part of 1/8 will create spurs that are
identical to those created using a frac-
tional part of 7/8. The phases of the
spurs will be different, however.

With a fractional part of 7/8, the
waveform in Figure 2 will appear to
reverse, or run backward, with the
first pulse 7/8 VCO cycle wide, and the
last 1/8 VCO cycle wide. With fraction-
al parts of 3/8 or 5/8, all the pulses in

Figure 1. Divider and charge pump waveforms.
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Figure 2 will again be present, but
their order will be shuffled.

Even numbered fractional parts (2,
4, and 6) modify the cycles slightly. A
fractional part of 2 or 6 will result in a
zero-width error pulse after four
cycles. The fractional cycle will there-
fore consist of just four comparison
cycles, and the lowest frequency spuri-
ous signal will occur at 1/4 of the com-
parison frequency.

If the fractional part is set to 4, the
cycle repeats after only two cycles of
the VCO divider, just as in the case of
the fractional modulus of 2 described
above. The fractional cycle will consist
of only two comparison cycles, and the
lowest frequency spurious signal will be
at 1/2 of the comparison frequency.

If the fractional part is set to 0, the
fractional cycle and the comparison
cycle are the same. In this case, the
synthesizer operates just as though it
were not in a fractional N mode.

If a fractional modulus of 5 is chosen,
the fractional cycle will consist of five
comparison cycles, producing spurs at
1/5 of the comparison frequency. This
will be true for any fractional part
except 0, where the synthesizer will
again operate as though it were not in
the fractional N mode.

The loop
Figure 3 illustrates a PSpice repre-

sentation of a simple passive loop. This
loop will be used to model the 500 MHz
synthesizer. The circuit models fre-
quency and phase errors are equivalent
voltages. It will be necessary to exam-
ine the transfer function for the phase-
locked loop as the ratio of the output
frequency error (at the output of the
VCO divider) to an induced frequency
error at the input to the synthesizer
phase detector. The input source, V1,
represents the induced frequency error.

The output voltage, developed across
R4, will represent the frequency error
at the output of the VCO divider. 

Following the input source is an inte-
grator with a gain of 1.0/s, which trans-
forms the frequency error into a phase
error. The charge pump, G1, has been
set to a level of 0.5 mA. This sets the
phase detector gain at 0.5 mA per cycle
because it will produce a DC level of 0.5
mA for a phase error of a full cycle. The
loop filter, consisting of R1, C1, and C2,
has been designed to obtain a loop band-
width of 10 kHz. Because the filter’s
transfer function is defined by the out-
put voltage (the VCO tuning voltage)
resulting from the charge pump current,
the transfer function is just the imped-
ance of the three-element network. The
500 MHz VCO is represented using a
gain block with a gain of 50 MHz/V (the
assumed sensitivity of the VCO). The
voltage at the output of the VCO gain
block represents the VCO frequency
error. The ratio of the VCO output volt-
age to the input source (V1) represents
the transfer function for an error in the
VCO output frequency caused by an
error in frequency at the input of the
phase detector. The VCO divider is rep-
resented by a gain block, with a gain
equal to the reciprocal of the divide
ratio. With a VCO frequency of 500
MHz, a step size of 50 kHz, and a frac-
tional modulus of 8, the divide ratio is:

(1)

In this case, the divider ratio of 1,250
results in a gain of 800•10-6. The gain
is specified as negative to provide the
negative feedback required if a closed
loop simulation were desired.

Resistors R2, R3, and R4 are present to
allow PSpice to correctly perform the ini-

tial bias point calculation, or to provide a
DC path to ground, as required by the
simulator. It is not intended to develop
the loop equations for a phase-locked
loop here, or discuss the different type
loops. But for completeness, a brief dis-
cussion of how the component values in
Figure 3 were chosen will be provided.

As mentioned earlier, the loop shown
in Figure 3 was designed to provide a
loop bandwidth of 10 kHz. The loop fil-
ter was chosen to provide an open-loop
gain slope of 20 dB per decade over the
range of 1 kHz to 100 kHz. This 20 dB-
per-decade gain slope occurs where the
loop filter response (impedance) is dom-
inated by the resistor, R1. Below 1 kHz,
the loop filter impedance is dominated
by C1, providing a 40 dB-per-decade
slope. Above 100 kHz, the loop filter
impedance is dominated by C2, again
providing a 40 dB-per-decade slope.

To calculate a value for R1,  the open-
loop gain will be calculated at 10 kHz,
and set R1 to obtain a gain of 0 dB. The
open-loop gain is given by:

(2)

where Kφ is the phase detector con-
stant (0.5 mA/Hz), and KVCO is the VCO
tuning sensitivity (50 MHz/V).

By setting the loop gain, AV to 1.0,  a
value for R1 can be calculated of 3.142
kΩ. The closest standard value of 3.3
kΩ has been chosen for this loop

As defined above, C1 will just start to
dominate the loop gain at a frequency
of 1 kHz. This is accomplished by set-
ting C1 to obtain a reactance of 3.3 kΩ
at 1 kHz. This requires a capacitance of
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Figure 2. An example of the growth of the phase detector pulse by 1/8 of the VCO cycle as the the reference period counts up.
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0.048 µF. Again, the next closest stan-
dard value, 0.047 µF was chosen for the
loop. Similarly, the value of C2 is 470
pF, to obtain a reactance of 3.3 kΩ at a
frequency of 100 kHz.

The open-loop gain for the loop in
Figure 4 was calculated using PSpice.
The resulting loop gain is displayed as
a function of frequency in Figure 4,
which shows that the desired response
has been obtained.

Reference sideband
calculation

Reference sidebands, whether frac-
tional or integer, are caused by slight
perturbations in the VCO tuning volt-
age, originating with the current pulses
delivered by the synthesizer charge
pump. Theoretically, the integer spurs
could be eliminated by eliminating any
current leakage path in the tuning line,
thereby reducing the phase detector
pulse width to zero. In practice, it
doesn’t work.

If leakage were the only cause of
spurs at the comparison frequency, the
spurious sideband level could be calcu-
lated by first determining the ampli-
tude of the corresponding spurious fre-
quency component on the tuning line

because of the finite pulse width. The
resultant frequency modulation of the
VCO could then be calculated, followed
by the sideband levels, usually by using
the low-modulation index approxima-
tion. However, the synthesizer can also

create reference sidebands from imbal-
ance between the charge sink and
charge source, or even from a leakage
path from the reference or VCO divider
outputs. These contributions make a
calculation of the reference sideband
level more difficult. Ignoring these
additional sources, calculate the maxi-
mum allowable phase detector pulse
width given a specified maximum
allowable spurious level at the compari-
son frequency.

The amplitude of a discrete frequen-
cy component on the tuning line volt-
age is determined by calculating the
Fourier series for the pulse waveform
delivered by the charge pump, and
multiplying by the impedance of the
loop filter. Once the Fourier coefficients

are obtained, which are equivalent to
the peak voltage deviation caused by
each harmonic, each Fourier coefficient
can be multiplied by the VCO gain con-
stant to obtain the peak deviation of
the resultant frequency modulation of
the VCO, due to that harmonic. The
resulting sideband level can then be
calculated using the standard low-mod-
ulation index approximation:

(3)

where: ∆f is the peak deviation, and fm

is the frequency of the spurious compo-
nent (fm would be equal to the compari-
son frequency for the fundamental ref-
erence frequency spur).

For example, to obtain a maximum
sideband level of –60 dB at the 400 kHz
reference frequency of the loop, Equation
2 can be rearranged to calculate the
maximum allowable peak deviation (∆f)

as 800 Hz. Working
backward, using the
VCO gain constant of
50 MHz/V, a maxi-
mum tuning line
voltage amplitude of
16 µV (800 Hz/50
MHz/V) peak for the
400 kHz component
on the tuning voltage
waveform can be cal-
culated.

The magnitude of
the impedance of the
loop filter at the first
eight fractional spur
frequencies is dis-
played in Table 1.
The impedance is
equal to 0.81 kΩ.

Using this impedance we can calculate
the maximum allowable level of the 400
kHz component of the charge pump
current waveform. A maximum ampli-
tude for the 400 kHz component of the
charge pump pulse of 19.8 nA (16
µV/0.81 k) is obtained.

For a narrow current pulse, the
Fourier coefficient of the kth harmonic
is given by:

(4)

where Ip is the peak current (equal to
the charge pump current),τ is the pulse
width, and T is the waveform period.

In this loop, the charge pump cur-
rent is 0.5 mA, and the period (T) of the
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Frequency Impedance

50 kHz 2.94 kΩ
100 kHz 2.53 kΩ
150 kHz 1.85 kΩ
200 kHz 1.50 kΩ
250 kHz 1.25 kΩ
300 kHz 1.06 kΩ
350 kHz 0.92 kΩ
400 kHz 0.81 kΩ

Table 1. Loop filter impedance at fractional spur
frequencies.

Figure 4. Open-loop gain response for the synthesizer loop.

Figure 3. A simple passive loop for the model device.
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400 kHz reference frequency is 2.5 ms.
By rearranging the equation, a maxi-
mum pulse width (τ) of 0.05 ns can be
calculated to obtain the desired refer-
ence level of –60 dBc above. It is not
likely that an error pulse this narrow
will be achieved using the actual chips.
Therefore, additional filtering of the
reference spurs would probably be
required.

Fractional spurs
The level of the fractional spurious

sidebands can be calculated in a similar
manner. But, in the case of the frac-
tional spurs, one must keep in mind
that the charge pump waveform is
more complicated. As illustrated earli-
er, because the divider ratio is being
altered between two adjacent integers
to accomplish the fractional division,
the charge pump waveform may take
as many as eight reference divider
cycles before it repeats. And the charge
pump waveform may contain as many
as  seven pulses that contribute to the
Fourier series.

As a second consideration, the fre-
quency of the spurious component is
closer to the loop bandwidth, and will
be subjected to less attenuation from
the loop filter. With a fractional mod-
ulus of 8, and a reference frequency of
400 kHz, the fractional spur frequen-
cy can be as low as 50 kHz, while the
loop bandwidth is 10 kHz (see Figure
4, which shows the phase detector
output waveform expected for a frac-
tional modulus of 8, and a fractional
part of 1/83).

As discussed earlier, the phase
detector outputs an error pulse whose
width grows with each cycle, until
returning to a zero width at the end of
the eight comparison cycles that form
the fractional cycle. According to the
device’s design, the phase detector
pulse always ends at the leading edge
of the reference divider output pulse.
The VCO is running fast, by 1/8 of a
VCO cycle for each comparison cycle.
So the leading edge of the phase detec-
tor output, which is triggered by the
VCO divider, advances by 1/8 of a
VCO cycle for every cycle of the refer-
ence divider.

Obtaining the Fourier series for this
waveform is a relatively simple exer-
cise. By using superposition, the
Fourier series can be added together for
the eight separate pulses, and one of
the eight pulses is of zero width. The
harmonic components for the Fourier

series equivalent of a train of current
pulses is given by:

(5)

where: Ik is the complex coefficient of
the kth harmonic, τ is the pulse width, T
is the period for the fractional cycle, Ip

is the charge pump current, and φ is
the angle by which the center of the
pulse is offset from t = 0.

The width (τ) of each of the eight
pulses can be calculated from the
expression:

(6)

where k takes on values from 0 to 7,
and fVCO is the frequency of the VCO.

The offset angle is produced by two
mechanisms. First, each pulse is
delayed by 45 degrees (or π/4) of the
fractional cycle from the previous pulse.
In addition, as can be seen in Figure 4,
each pulse is advanced by an amount
equal to half of its width. Thus the
angle in Equation 5 can be calculated
from the expression:

(7)

If the Fourier series for these eight
pulse trains are calculated and summed
(actually seven because pulse 0 is a zero
width pulse), the harmonic content of the
phase-detector charge pump current for
the fractional spurs will be obtained.
This has been done for the previous
example, using Mathcad. The results
are:

Ik=0.1308 µA @112.6°                          (8)

for the first eight harmonics of the frac-
tional spurious frequency. The first eight
harmonic coefficients are essentially
identical because of the narrow pulses. If
the pulse widths are calculated using
Equation 6, it is clear that they vary
from 0.25 ns to 1.75 ns, with T equal to
20 µs. These are indeed narrow pulses.

Now the level of the fractional spurs
can be calculated from the magnitude
of the current calculated above. The

calculation will be carried out for only
the first fractional spur, at 50 kHz.
Because of the loop filter, this will be
the worst-case spurious signal.

Looking back at Table 1, the magni-
tude of the impedance of the loop filter
at 50 kHz is 2.94 kΩ. Multiplying by
the current magnitude, the level of the
50 kHz component on the tuning line
can be calculated as:

V50kH = (0.1308 µA)(2.94 kΩ) = 0.38 mV

(8)

The peak deviation can be calculated
by multiplying by the VCO sensitivity:

∆f = (0.38 mV)(50 MHz/V) = 19 kHz  (9)

Using the low-modulation index
approximation for calculating the side-
band level:

(11)

However, in calculating the results, it
is noted that the level is a bit high.

Fractional N compensation
It has been illustrated that the

phase-detector charge pump will put
out a series of pulses of increasing
width during the fractional N cycle. An
important point to note is that the out-
put pulses from the charge pump dur-
ing fractional N operation do not tune
the VCO. They take no part in keeping
the loop in lock. They are just a result
of the constantly slipping phase. An
additional circuit designed into the
device provides an additional charge
pump, independent of the VCO, intend-
ed to extract an equal amount of charge
from the loop filter, at the same time as
the phase-detector charge pump dumps
it into the loop filter. This extra charge
pump serves two important functions.
First, it prevents the tuning line from
slewing up to the positive rail by
removing the charge that is pumped
into the loop filter by the phase detec-
tor charge pump. Second, if the charge
is extracted at the same time as the
phase detector charge pump adds
charge, the effects will cancel, and the
fractional spurs will disappear.

Figure 5 illustrates the waveform
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produced by the compensation charge
pump4. For each error pulse from the
phase detector charge pump, there is a
compensating pulse from the fractional
compensation charge pump. Just as the
phase detector pulses grow linearly in
width from pulse to pulse, the compen-
sation pulses similarly grow linearly in
amplitude. So long as the area of each
compensation pulse is equal to the area
of the corresponding error pulse, the
net charge transferred into the loop fil-
ter will be zero. Unlike the phase detec-
tor pulses, the seven compensation
pulses are all the same width, each
being twice the period of the external
reference clock. For a 10 MHz clock, the
pulse width is 200 ns, much wider than
the corresponding phase detector pulse
widths. It can also be seen in Figure 5
that each of the pulses in the compen-
sation waveform is at an exact multiple
of 45 degrees, whereas the phase detec-
tor pulses were offset slightly from 45
degrees, by half the pulse width. It can
be seen that the pulse trains do not
match, so some fractional spurs should
be expected to remain. Knowing that
the error pulse amplitudes are 0.5 mA,
and calculating the first phase detector
pulse width from Figure 4 as 0.25 ns,
its area can be calculated:

(12)

And, knowing that the width of the
compensation pulses is 200 ns, the
required amplitude for the first com-
pensation pulse can be calculated:

(13)

Because increases in the charge are
transferred linearly from pulse to pulse,
by setting the first pulses to cancel,

each of the seven pulses in the wave-
form have been forced to cancel. To
determine the first eight Fourier series
components for the compensating pulse
train, it is necessary to repeat the earli-
er analysis. Using Mathcad, the ampli-
tude of the first (50 kHz) component is:

(14)

providing a substantial cancellation of
the 50 kHz component of the phase
detector output. The eighth harmonic
(which is equal to the normal reference
spur frequency) is:

(15)
The amplitude of the eighth harmonic
component has dropped slightly. This is
a result of the relatively wide compen-
sation pulse. Even with a 200 ns pulse
width, the drop is slight, and the can-
cellation of the phase detector pulse
will be good.

In practice, the phase detector pulses
will not be cancelled perfectly. The
major problem will be the inability to
accurately set the current of the com-
pensation pulses. If trimmer adjust-
ment is not desirable, the two current
pumps will have to be set using 5%, or
perhaps 1% resistors5. Assuming 5%
resistors are used, the best cancellation
guaranteed (with one charge pump 5%
high, and the other 5% low) is about
90%, or 20 dB. With an additional 20
dB of spurious rejection due to the can-
cellation, the spurious level in the
example (referring back to equation 11)
would be expected to become –34.4 dBc.
Using 1% resistors, the best to hope for
is a reduction of about 34 dB, assuming
there are no other sources of error.

Raising the frequency of the refer-

ence source will create a narrower can-
cellation pulse. This will allow a better
cancellation of the higher order har-
monics of the fractional spur. It was
illustrated in the example that the
eighth harmonic, which is at the same
frequency as the normal reference spur,
was only slightly affected by the wide
pulse width, certainly less than the
degradation caused by using 5% resis-
tors. Low reference frequencies, howev-
er, will result in degraded cancellation
of the higher frequency harmonics.

Changing the VCO frequency
In the example, it was shown that

the width of the error pulses start at 1/8
of a VCO cycle, growing to 7/8 of a VCO
cycle before returning to a width of zero.
This implies that the charge dumped
into the loop filter by the phase detector
charge pump, which is proportional to
the pulse width, is inversely proportion-
al to the VCO frequency.

There is no digital control over the
compensation charge pump. It is set
once by an external resistor. Its ampli-
tude, width, and therefore its charge
contribution, are fixed. Thus, if cancel-
lation of the phase detector pulses is to
be maintained across some VCO fre-
quency range, it must be accomplished
by adjusting the main phase detector
charge pump current as the VCO fre-
quency is changed. Because the phase
detector pulse width is inversely pro-
portional to the VCO frequency, the
phase-detector charge pump current
will have to be made proportional to
the VCO frequency to compensate for
the decreased pulse width. This is
accomplished by adjusting the CN reg-
ister in the synthesizer chip. 

Fortunately, this is a profitable way
to maintain a constant loop gain as the
VCO frequency changes. As the VCO
frequency increases, the loop gain
drops inversely proportional to the

I 8 0 1293= .  uA at an
angle of 112.5 degrees

I1 0 1306= .  uA at an
angle of 112.5 degrees

icomp = =0 125
200

0 625
.

.
pC

 ns
 uA

Qerr = =( . )( . ) .0 5 0 25 0 125 mA  ns  pC

Figure 5. Example of the variation of compensation pulse to compensate for the varying error pulse widths.
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VCO frequency, as the VCO divider
number increases.

Increasing the phase-detector charge
pump current, proportional to the VCO
frequency, will exactly compensate for
the reduced loop gain. It is known that
the energy contained in these pulse
waveforms will increase as the width of
the pulses increase. This implies that a
higher VCO frequency will result in
less energy in the fractional spurs. We
should see a 6 dB decrease in the frac-
tional spur level every time the VCO
frequency doubles. 

Calculating the
divider numbers

For the devices used as models in
this article, the manufacturer has pro-
posed a rather complicated algorithm
for calculating possible divider combi-
nations for achieving a desired main
divide ratio, using up to a three- and
four-modulus divider. In this section, a
simple algorithm for selecting a divide
number will be examined.

By including a three- or four-modulus
prescaler, it is possible to obtain a wider

range of divide ratios than are possible
with a dual-modulus prescaler. For
example, a 64/65 dual-modulus
prescaler can obtain any divide number
greater than 4,031. Depending upon the
device, using a three-modulus divider,
one can obtain any divide ratio above
1,023. Using a four-modulus divider, one
can obtain any divide ratio above 765.

The standard 64/65 dual-modulus
prescaler will divide an input signal by a
fixed number of 64s, plus a fixed number
of 65s. It will be assumed that any num-
ber of divisions by 64 and/or 65 is legal,
including zero, so long as at least one of
the two divide numbers is non-zero.

The limitations on the divide number
for this prescaler should be examined.
The first divide ratio that can be obtained
is just 64, by dividing with the 64 divider
once. By switching to the other divider,
65 can also be divided by. No other num-
bers can be divided by until we reach the
number 128, which  can be obtained by
dividing by 64 twice. Thus, a “hole” of 62
numbers is located between 65 and 128.
129 can also be divided by, by dividing
once by 64, and once by 65. And 130 can

be divided by dividing by 65 twice. A pat-
tern is developing. There is a range of
divide ratios that can be obtained, with
each range starting at an integer multi-
ple of 64. For the nth multiple of 64, it is
possible to obtain that divide ratio, and
the next n divide ratios.

For example, at the 3rd multiple of 64,
or 192, it will be possible to hit four
divide numbers–192 to 195. By the time
the 63rd multiple of 64 (4,032) has been
reached, it will be possible to obtain the
full range of 64 divide ratios that sepa-
rate this from the next multiple of 64,
leaving no hole in between these two
multiples of 64. Thus the last unobtain-
able divide ratio  with a 64/65 divider is
4,031. Many divide ratios below 4,031
can be hit, but there will be holes. These
holes will grow longer (contain more
unobtainable, sequential divide num-
bers) as the divide ratios drop.

Look again at obtaining successive
divide ratios. Start with some multiple
of 64. This divide number is reached by
using only the 64 divider. Then move
up to the next divide number by
exchanging a 64 for a 65. This works so
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long as the remaining number of divi-
sions by 64 is non-zero. Once zero divi-
sions by 64 have been reached, they
can’t be exchanged for 65s any more. At
this point, it is necessary to jump up to
the next multiple of 64. How does this
affect the obtainable divide ratios?

Let’s consider a triple modulus
prescaler where division by 72 is also
possible. The device programs the 64
modulus divider by loading the total
number of divisions, minus two, into the
control register. Thus, the smallest
divide ratio obtainable corresponds to
programming a zero in this register,
obtaining a minimum divide ratio of
128. To obtain a divide ratio of 129, it
would be necessary to divide once by 64,
and once by 65. But because the mini-
mum number of divisions by 64 has
already been found, this is not possible.
The next  achievable divide number is
three times 64, or 192. But this time the
number of divisions by the 64 divider
can be dropped by one. Therefore it is
possible to achieve a divide ratio of 193
by setting the 64 divider to two, and the
65 divider to one. But it is also possible
to  trade off the extra divide-by-64 for a
divide-by-72, achieving a divide ratio of
200. There aren’t any more extra divide-
by-64s, so divide ratios are out until the
next multiple of 64. 

Similarly, at the fourth multiple of
64, it will be possible to hit divide ratios
of 256, 257, and 258. By trading one of
the divide-by-64s for a divide-by-72,
divide ratios of 264 and 265 can be
achieved. With both of the extra 64s
traded for divide-by-72s, it will be pos-
sible to achieve a divide ratio of 272.
Again, there is nowhere to go until the
next multiple of 64, because there are
no more extra 64s to exchange for a
divide by 65 or 72.

It can be seen from this pattern that
the divide numbers are filling in more
rapidly with the triple modulus divider.
But there is something else that should
be noticed in this pattern. Not just one
region between multiples of 64 is being
filled, but multiple regions, with each
region starting eight positions above the
previous region. The reason for the exis-
tence of these multiple regions is that a
single divide-by-64 is being traded for a
divide-by-72, giving us an offset of eight,
at a cost of a single divide-by -64. With
the dual modulus prescaler, this would
cost eight divide-by-64s. The triple mod-
ulus prescaler then, due to the divide-
by-72, can be more thrifty in the con-
sumption of divisions by 64. Look at an

algorithm for calculating the divide
numbers for the triple modulus divider.

Given a desired divide ratio (N),
start by finding the largest multiple of
64 (M64) that is less than or equal to N.
The multiplier will be called NBase.

(16)

Then take the difference (D):

(17)

As seen above, this difference between
the desired divide number, and the
next lowest multiple of 64, must be
made up by using the other divider
ratios.

Next, take the largest multiple of
eight (M8) that is less than or equal to
D. Call the multiplier N72.

(18)

As you might guess, this multiplier is
the number to program into the 72
modulus divider. If M8 is equal to zero,
the dual modulus mode will be selected
so as not to divide by 72.

Again, take the difference (N65).

(19)
N6 represents what is left after the divi-
sions by 64s and 72s, and is the num-
ber to program into the 65 modulus
divider.

Finally, the required number of divi-
sions by 64 can be calculated:

(20)

The value of N64 will now tell if N is
a valid divide number. If N64 is less
than the minimum number of divisions
that can be programmed into the device
(2), then this divide number is not
obtainable with the triple modulus
prescaler. If N64 is larger than the max-
imum number of divisions by 64 that
can be programmed into the device
(4,097), it may still be possible to obtain
the divide number by using additional
divisions by 72 and 65, but the algo-
rithm will fail. However, this is already
an enormous divide number. When
dealing with a device that uses a four-
modulus prescaler, with divide ratios of
64, 65, 68 and 73, the technique is simi-
lar, but offers a bit more flexibility.

With a four-modulus prescaler,
more divide numbers can be obtained,
and the maximum divide number that
cannot be obtained drops. With a
three-modulus prescaler, start by find-
ing the largest multiple of 64 that is
less than or equal to the required
divide number. Then pull out as many
divide-by-72s as possible, making up
the difference with divide-by-65s,
reducing the number of divisions by 64
by an amount equal to the total num-
ber of divisions by 65 and 72. With the
four-modulus prescaler, the algorithm
is similar. In this case, calculate again
the maximum multiple of 64 less than
or equal to the required divide num-
ber. Then pull out as many divide-by-
73s as possible. In this case, pull fac-
tors of nine out of the difference,
rather than factors of eight. But with
the four-modulus prescaler, one can
also trade off a division-by-64 for a
division-by-68, consuming an addition-
al difference of four with the loss of a
single division-by-64. Thus the four-
modulus prescaler is even more thrifty
in its consumption of divide-by-64s.
Divide-by-65s are still required to
make up any difference less than four. 

Conclusions
Two main topics have been discussed.

First, the generation of fractional spurs
in fractional N synthesizer chips. While
the normal reference spurs can be
reduced by reducing tuning line leakage,
and by proper design of the charge
pump, the presence of fractional spurs is
guaranteed by the finite and well-defined
pulse widths of the phase detector
charge pump during fractional N opera-
tion. It has been illustrated how to calcu-
late the fractional spur levels resulting
from these finite width pulses. It has also
been shown that the model chips provide
a mechanism for cancelling the fractional
spurs. It was determined that  a reduc-
tion of about 20 dB should be expected
using 5% components to set the charge
pump currents. It was illustrated that a
fractional modulus of 8 will generate
fractional spurs at multiples of 1/8 of the
comparison frequency for any fractional
part that is odd. A fractional part of two
or six will generate fractional spurs that
are multiples of 1/4 of the comparison
frequency. A fractional part of four will
generate fractional spurs that are multi-
ples of 1/2 of the comparison frequency.
A fractional part of zero will not generate
any fractional spurs. If a fractional mod-
ulus of 5 is used, all fractional parts will

N N N NBase64 72 65= − −

N D M65 8= −

M N8 72 8= ( )

D N M= − 64

M NBase64 64= ( )
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generate fractional spurs at multiples of
1/5 of the comparison frequency, except a
fractional part of zero, which will not
generate any fractional spurs. A calcula-
tion of the expected fractional spur level
for a 500 MHz synthesizer was gone
through using a fractional modulus of 8.
Also seen was how to calculate the cur-
rent required in the compensation
charge pump to cancel the effect of the
phase detector error pulses. The article
examined how to compensate as the
VCO frequency changes and showed that
fractional spur levels are not insignifi-
cant. If the fractional spurs lie too close
to the loop bandwidth, they will not be
filtered adequately.

Also discussed was the selection of
the divide numbers for the three- and
four-modulus prescalers. An algorithm
was detailed for the triple modulus
prescaler, and the algorithm for the
four-modulus prescaler was sketched
out. With these algorithms, it can be
determined if a desired divide ratio is
possible. If so, an optimum set of divide
numbers can be calculated  that maxi-
mizes the number of divisions by 64.

With the information presented in this
article, the engineer will be better pre-
pared to determine the tradeoffs involved
in choosing the fractional N loop.

Notes

1. It would actually look more like the
tuning voltage steps up and down,
since the entire ramp would occur dur-
ing the short duration of the error
pulse.

2. “A Fractional N Frequency Synthesizer
for Digital RF Communications”. RF
Design, February 1993.

3. Again assuming that the cancellation
techniques used by the Phillips models
for this article synthesizers will result
in a net charge into the loop filter of
zero with this waveform.

4. Again illustrated the waveform for a
fractional part of one, where the pulse
widths increase linearly from each to
the next.

5. The necessity of adjusting the level
of the phase detector charge pump as
the frequency changes will soon be
shown, if it is desirable to maintain the
best performance across a range of
VCO frequencies. The smallest step
size for this adjustment is about 0.5%
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