
Appendix B
Tuned Circuits

Resonant Circuits

Resonant or tuned circuits are not as common these
days as they used to be, but they are still essential in
many communications devices. They are often called
LC circuits because they contain inductors (L) and ca-
pacitors (C). There is also always some resistance which
affects the operation of the circuit as we will see.

Depending on whether the capacitor and inductor
are in parallel or series, tuned circuits fall into two cate-
gories as shown in Fig. B-1 — parallel tuned and series
tuned circuits. Both of these have a resonant frequency
which (neglecting the effects of resistance) is the fre-
quency at which the XL of the inductor is equal to the
XC of the capacitor. We can find this resonant frequency
by solving the equation

XL = XC

2 π f L = 
1

2 π f C

where f is the frequency, L is the inductance, and C is
the capacitance, for the frequency:

fresonant = 
1

2 π √ L C

The operation of both circuits depends on the fact
that the voltage and current in inductors and capacitors
are 90 degrees out of phase. You may remember “ELI
the ICE man” — this little phrase reminds us that the
voltage (E) comes 90 degrees before the current (I) in
the inductor (the current lags behind the voltage), but 90
degrees after the current in the capacitor (the current
leads the voltage).

In the parallel-tuned circuit, the capacitor and induc-
tor are in parallel, and they therefore have the same
voltage. Now consider what happens at the resonant fre-
quency where XL = XC; their reactances are equal and so
they both have the same current. But because one of
these currents leads the voltage by 90 degrees, whereas
the other current lags the voltage by 90 degrees, they are
180 degrees apart. They therefore go in opposite direc-
tions — when one goes up, the other goes down. Hence
the current in the wire which leads to the parallel-tuned
circuit must be zero. Since the external current into the
tuned circuit is zero, the circuit behaves like an open
circuit (which also has a voltage but no current through
it.)

The opposite happens in the series-tuned circuit.
Here, both the capacitor and the inductor have the same
current since they are in series. This time, the voltage
across one of them leads the current, while the voltage
in the other lags the current by 90 degrees. The two
voltages are therefore 180 degrees apart. At resonance
(which is another way of saying “at the resonant fre-
quency”), their reactances are equal and so their volt-
ages are equal, but opposite. The total voltage across the
series circuit is therefore zero, even though there is a
current through it. The circuit therefore behaves like a
short circuit (which also has a current but no voltage
across it.)

We therefore form the following rules of thumb:
• At resonance, a parallel-tuned circuit behaves

like an open
• At resonance, a series-tuned circuit behaves like

a short.
• At other frequencies, both circuits have some

impedance. Close to the resonant frequency, the
circuits are not quite an open (for the parallel-
tuned) or short (for the series-tuned), but still
fairly close to it. The further we go away from
the resonant frequency, the less the circuits be-
have like an open or short circuit. 

Both of these circuits can be used as selective filters to
let some frequencies get through, and stop others. They
can be connected in one of two basic ways — either the
tuned circuit can be connected between a signal and
ground as in Fig. B-1 (a) and (b) (in which case it will
short some of the signal to ground, depending on the
circuit’s impedance), or so that a signal has to travel
through the filter to get from the input to the output as
shown in (c) and (d) (in which case more or less will get
through, again depending on the circuit’s impedance).

Consider circuit (a), for example. At resonance, the
parallel-tuned circuit behaves like an open circuit, and
most of the input signal travels right through the resistor
to the output. Depending on the load at the output, thereFig. B-1. Parallel and Series Tuned Circuits
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may be some current in the series resistor and so there
may be some voltage loss, but this can be minimized by
keeping the load resistance high. Away from resonance,
however, the tuned circuit is no longer open; it causes
an increased current to flow through the series resistor,
and the voltage drop therefore increases. The further
away from resonance, the greater this drop, and the
smaller the output voltage. 

If we keep the input voltage constant but vary the
frequency, and then plot the output voltage vs. fre-
quency, we get a plot similar to Fig. B-2 (a). We see
that the peak in output occurs at the resonant frequency,
and there is a dropoff on both sides. There is a band of
frequencies around resonance that do get through, while
frequencies far away from resonance are reduced
(though not entirely stopped). Since there is this band of
frequencies that get through, this is called a band-pass
filter. Circuit (c) in Fig. B-1 is also a band-pass filter;
since the series-tuned circuit is a short circuit at reso-
nance, frequencies at (and near) resonance get through,
while frequencies farther away are reduced because the
series-tuned circuit now has some reactance.

Circuits (b) and (d) do the opposite — at resonance,
they stop the signal; circuit (b) does it by shorting the
signal, whereas circuit (d) does it by opening the path
between the input and output. Even near resonance they
reduce the signal, so they stop (or reduce) a band of fre-
quencies, as shown in Fig. B-2 (b). They are therefore
called band-stop or band-reject filters.

Bandwidth

Returning to Fig. B-2, we’re interested in measuring
how wide a band of frequencies gets through the filter;

that is, we want to know the bandwidth. Clearly the
width of the curve depends on where you measure it;
the customary point is to measure the bandwidth at the
point where the height of the curve is 70% of the maxi-
mum height; this is labelled BW in Fig. B-2. (To be
exact, the amplitude is 1 ⁄ √2  or 0.707 of the maximum.)
This point also happens to be 3 dB below the maximum,
as we can see from

20 log10 
0.707

1
 = 20 × −0.15 = −3 dB

and so it is often called the “–3 dB point” or “half-
power point” (see the very end of Appendix A for an
explanation.).

Quality or “Q”

The narrower the bandwidth, the “better” the circuit,
and so we define the Q or Quality of a tuned circuit as

Q = 
resonant frequency

bandwidth

For example, if a circuit resonant at 1 MHz
has a bandwidth of 50 kHz (at the –3 dB
point), then the Q would be 20; if the
bandwidth is only 40 kHz, then the Q would
be 25, which would be considered “better” or
“higher quality” for some applications. Fig.
B-3 shows how the Q affects the response and
bandwidth of a tuned circuit.

The Q, in turn, depends on the resistance
in the circuit. Ideally, a tuned circuit would
consist of only capacitance and inductance;
with no added resistance; the Q would be infi-
nite because the circuit would be ideal. In
practice, however, there is always some resis-
tance in a circuit, and this degrades the qual-
ity. 

The added resistance could be in one of
two places: it could be in series with the in-

Fig. B-2. Band-pass and Band-stop filter responses

Fig. B-3. Effect of Q on bandwidth
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ductor (for instance, every inductor consists of wire that
has some resistance), or it could be in parallel with it
(such as the resistance of whatever other circuitry the
tuned circuit is connected to). If XL is the reactance of
the inductor at the resonant frequency, then the Q is 

Qseries = 
XL

Rseries

if the resistance is in series with the inductor, and it is

Qparallel = 
Rparallel

XL

if the resistance is in parallel. Note that, since R and XL
are both in ohms, Q has no units.

In most cases, there are resistances both in series and
in parallel with the inductor. In that case, we need to
take both effects into our calculations. There are some
fairly complex equations used in circuit theory which
give us the total Q, but a much easier way of finding the
equivalent total Q is 

Qtotal = 
Qseries Qparallel

Qseries + Qparallel

You may recognize that this is the same format as the
“product over the sum” formula for parallel resistors. 

Example

Let’s do a sample calculation: what is the bandpass
for the circuit in Fig. B-4? First, find the resonant fre-
quency:

f = 
1

2 π √ L C
 = 

1

2 × 3.14159 × √10−3  × 10−6  = 5033 Hz

Actually, if we used the full equation that many text-
books give for the resonant frequency when there is a
resistor inside the tuned circuit, we would find that the
resonant frequency is about 5039 Hz. But the difference
is less than 1⁄10%, and so our equation is perfectly ade-
quate.

Next, find XL at this frequency:

XL = 2 π f L = 2 × 3.14159 × 5033 × 10−3 = 31.623 Ω

There is a 1-ohm resistor in series with the inductor, so
the series Q is 

Qseries = 
XL

Rseries
 = 

31.623
1

 = 31.623

What about the parallel resistance? If we assume that
the signal generator has zero output resistance and im-
agine that we are looking outward from the inductor at
whatever resistances are outside, we would see the 500-
ohm resistor in parallel with the inductor. (We could
prove that more rigorously by applying Thevenin’s the-
orem). Hence we use 500 ohms in the parallel Q for-
mula:

Qparallel = 
Rparallel

XL
 = 

500
31.623

 = 15.811

The total Q is therefore 

Qtotal = 
Qseries Qparallel

Qseries + Qparallel
 = 

31.623 × 15.811
31.623 + 15.811

 = 10.54

Note how the total Q is a combination of the series and
parallel Q. The fact that the equation has the same form
as the “product over the sum” equation for parallel re-
sistors means that we can apply similar reasoning to the
Q as we can to parallel resistors. That is, 
• When two resistors are in parallel, the total par-

allel resistance is always smaller than the smaller
resistor. Likewise, the total Q is always smaller
than either the parallel Q or the series Q.

• If one of two parallel resistors is much larger
than the other, we can approximate the total par-
allel resistance by ignoring the larger resistor.
The same applies to the Q. For example, if the
series and parallel Q were 5 and 50, the total Q
would be 4.55, which is very close to 5, the
smaller Q. Hence it is the smaller Q that plays a
major role in setting the total Q.

We now find the bandwidth from

Q = 
resonant frequency

bandwidth
           

Fig. B-4. Example for calculating the Q Fig. B-5. Response of circuit in Fig. B-4
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bandwidth = 
resonant frequency

Q
 = 

5033 Hz
10.54

 = 477 Hz

Fig. B-5 shows the actual bandpass as measured in
the laboratory and then plotted. Note how we customar-
ily use a dB scale for the amplitude. At the peak (which
occurs at the resonant frequency) there is a loss of ap-
proximately 3.5 dB in the circuit, so the peak plots at
−3.5 dB.

The measured resonant frequency is 5038 Hz, the
lower 3-dB frequency (the lower frequency at which the
gain drops by 3 dB, from –3.5 dB to –6.5 dB) is 4805
Hz, and the upper 3-dB frequency is 5281 Hz. The mea-
sured bandwidth is thus

5281 Hz − 4805 Hz = 476 Hz

which is quite close to the calculated value.
Incidentally, the frequency scale in Fig. B-5 is lin-

ear; that is, frequency increments are evenly spaced left
to right, so that the distance from 4000 Hz to 5000 Hz is
equal to the distance from 5000 to 6000 Hz. This is
fairly common when only a small range of frequencies
is plotted; when plotting large spans of frequencies,
however, we generally use a logarithmic frequency
scale, as shown in Fig. B-6. Here equal spacing along
the frequency axis is given to each decade (10-to-1 fre-
quency ratio), so that the spacing from 10 to 100 Hz is
the same as from 100 to 1000 Hz, and so on. While this
looks as though it unduly compresses the high frequen-
cies, a given percentage change in frequency occupies
the same amount of space at all points on the graph.

Conclusion

You may wonder why we’ve reviewed resonant cir-
cuits to such depth, when you have probably already
studied them in a previous course. The reason is that

resonance and bandwidth are important phenomena in
many analog communications circuits. For example,
Fig. B-7 shows the coupling circuit in a typical small
transistor AM radio.

You will note that there is a transformer which cou-
ples the signal from one transistor stage to the next. But
the primary of the transformer is connected to a capaci-
tor, which makes the primary resonant. The purpose of
this circuit in the radio is to help select the one station
you wish to listen to, and reject other stations on the
dial. If the bandwidth were too large (meaning that the
Q is too small) the circuit would let through undesired
adjacent stations.

Just as the 500-ohm resistor in Fig. B-4 was in paral-
lel with the tuned circuit, so the collector output imped-
ance of the left-hand transistor in Fig. B-7 is in parallel
with the tuned circuit, thus reducing the Q.

You will note, however, that all of the transformer
primary is used with the tuned circuit, but only part of it
actually connects between the transistor and the
Vccpower line. Since only part of the primary is actually
used in the collector circuit, this reduces the inductance
(and therefore the XL) in the collector circuit. Since the
parallel Q is

Qparallel = 
Rparallel

XL

reducing the XL increases the Q.

Fig. B-6. Frequency response plotted on log paper

Fig. B-7. Radio receiver coupling circuit
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