
© 2007 Microchip Technology Inc. DS01045A-page 1

AN1045

INTRODUCTION
This application note covers the usage of file I/O func-
tions using Microchip�s memory disk drive file system
library. Microchip�s memory disk drive file system is:

� Based on ISO/IEC 9293 specifications
� Known as the FAT16 file system, used on earlier

DOS operating systems by Microsoft® Corporation
� Most popular file system with SD card, CF card

and USB thumb drive

Most SD cards and MMCs, particularly those sized
below 2 gigabytes (GB), use this standard. This appli-
cation note presents a method to read and/or write to
these storage devices through a microcontroller. This
data can be read by a PC and data written by a PC can
be read by a microcontroller. Most operating systems
(i.e., Windows® XP) support this file system.

SD CARDS AND MMCS

SD cards and MMCs are proprietary, removable, Flash
technology-based media, the use of which is licensed
by the SD Card Association and the MultiMediaCard
Association (see �References�), respectively.

Functionally, the two card formats are similar; however,
the SD card has optional encryption security features
that are not customarily found on the MMC. The speci-
fications of these devices, and the terms and conditions
for their use, vary, and should be examined for further
application licensing information.

INTERFACE
The PICtail� Daughter Board for SD and MMC cards,
Microchip product number AC164122, provides an
interface between SD or MMC cards and a PIC®

microcontroller via the SPI bus. The PICtail Daughter
Board is designed to operate with a multitude of
demonstration boards, including all those having
PICtail or PICtail Plus Daughter Board interfaces.

 The SPI protocol uses four basic pins for communica-
tion: data in (SDI), data out (SDO), clock (SCK), and
chip select (CS). In addition, almost all SD card sockets

have two electrically determined signals, card detect
and write-protect, that allow the user to determine if the
card is physically inserted and/or write-protected.

The MMC does not have a physical write-protect
signal, but most card connectors will default to a
non-write-protected state in this case.

More information about interfacing PIC® microcontrol-
lers to SD cards or MMCs is included in AN1003, �USB
Mass Storage Device Using a PIC® MCU� (DS01003),
available from the Microchip web site.

CARD FILE SYSTEM

An ISO/IEC 9293 system stores data in sectors. A
sector size of 512 bytes is common. Since the number
of available memory addresses is capped at FFFFh,
sectors can be grouped into clusters that share an
address to increase the size of the card.

The first sector on a card is the Master Boot Record
(MBR). The MBR contains information about different
logical subdivisions on a card, called partitions. Each of
these partitions can be formatted with a unique file sys-
tem. Typically, an SD card or MMC only has one active
partition, which is comprised of the following parts:

� Boot sector
� FAT regions
� Root Directory region
� Data region

The boot sector is the first sector of the partition and
contains basic information about the file system type.

Author: Peter Reen
Microchip Technology Inc.

Important: It is the user�s responsibility to obtain a
copy of, familiarize themselves fully
with, and comply with the requirements
and licensing obligations applicable to
third party tools, systems and/or speci-
fications including, but not limited to,
Flash-based media and FAT file sys-
tems available from CompactFlash®

Association, SD Card Association,
MultiMediaCard Association and
Microsoft® Corporation.

Please refer to the license agreement
for details.

Implementing File I/O Functions Using Microchip�s
Memory Disk Drive File System Library

AN1045

DS01045A-page 2 © 2007 Microchip Technology Inc.

The FAT region is actually a map of the card, indicating
how the clusters are allocated in the data region. Gen-
erally, there are two copies of the FAT in the FAT region,
to provide redundancy in case of data corruption.

The root directory region follows the FAT region and is
composed of a directory table that contains an entry for
every directory and file on the card.

Collectively, the first three sections are the system
area. The remaining space is the data region. Data
stored in this region remains intact, even if it is deleted,
until it is overwritten.

The FAT16 system uses 16-bit FAT entries, allowing
approximately 65,536 (216) clusters to be represented.
A signed byte in the boot sector defines the number of
sectors per cluster for a disk. This byte has a range of
-128 to 127. The only usable values in the FAT16 file
system are positive, power-of-two values (1, 2, 4, 8, 16,
32, 64). This means that with the standard 512-byte
sector size, the FAT16 file system can support a
maximum of 2 GB of disk space.

The memory structure of an SD card or an MMC is
illustrated in Figure 1.

FIGURE 1: DISK STRUCTURE

Master Boot Record
The MBR contains information that is used to boot the
card, as well as information about the partitions on the
card. The information in the master boot record is
programmed when the card is manufactured, and any
attempt to write to the MBR could render the disk
unusable. The contents of the MBR are listed in
Table 1.

TABLE 1: CONTENTS OF THE MBR

Partition Entry in the MBR
Information about a partition on the disk is contained in
a partition table entry of the master boot record. A file
system descriptor is included in the entry to indicate
which type of file system was specified when the parti-
tion was formatted. The following file descriptor values
indicate FAT16 formatting: 04h (16-bit FAT, < 32M), 06h
(16-bit FAT, ≥ 32M) and 0Eh (DOS CHS mapped). SD
cards generally contain a single active partition. The
contents of a partition table entry are listed in Table 2.

TABLE 2: PARTITION TABLE ENTRY

Unused Disk Space

Pa
rti

tio
n

1
Sp

ac
e

Data Space

Boot Sector

FAT n

Master Boot Record

Unused Disk Space

FAT 1

Root Directory

Legend: n = number of FATs.

Offset Description Size

000h Boot Code (machine code
and data)

446 bytes

1BEh Partition Entry 1 16 bytes
1CEh Partition Entry 2 16 bytes

1DEh Partition Entry 3 16 bytes

1EEh Partition Entry 4 16 bytes
1FEh Boot Signature Code (55h AAh) 2 bytes

Offset Description Size

00h Boot Descriptor (80h if active
partition, 00h if inactive)

1 byte

01h First Partition Sector 3 bytes
04h File System Descriptor 1 byte
05h Last Partition Sector 3 bytes
08h Number of sectors between the

Master Boot Record and the first
sector of the partition

4 bytes

0Ch Number of sectors in the partition 4 bytes

© 2007 Microchip Technology Inc. DS01045A-page 3

AN1045
Boot Sector
The boot sector is the first sector of a partition. It contains
file system information, as well as pointers to important
parts of the partition. The first entry in the boot sector is
a command to jump past the boot information. The
complete contents can be seen in Table 3.

TABLE 3: BOOT SECTOR ENTRY

Root Directory
The root directory, located after the FAT region on the
disk, is a table that stores file and directory information
in 32-byte entries. An entry includes the file name, file
size, the first cluster of the file and the time the file was
created and/or modified.

The complete contents of a root directory entry are
represented in Table 4.

TABLE 4: ROOT DIRECTORY ENTRY

Offset Description Size

00h Jump Command 3 bytes
03h OEM Name 8 bytes
0Bh Bytes per Sector 2 bytes
0Dh Sectors per Cluster 1 byte
0Eh Total Number of Reserved Sectors 2 bytes
10h Number of File Allocation Tables 1 byte
11h Number of Root Directory Entries 2 bytes
13h Total Number of Sectors

(bits 0-15 out of 48)
2 bytes

15h Media Descriptor 1 byte
16h Number of Sectors per FAT 2 bytes
18h Sectors per Track 2 bytes
1Ah Number of Heads 2 bytes
1Ch Number of Hidden Sectors 4 bytes
20h Total Number of Sectors

(bits 16-47 out of 48)
4 bytes

24h Physical Drive Number 1 byte
25h Current Head 1 byte
26h Boot Signature 1 byte
27h Volume ID 4 bytes
2Bh Volume Label 11 bytes
36h File System Type (not for

determination)
8 bytes

1FEh Signature (55h, AAh) 2 bytes

Note: Generally, a file entry conforms to �eight
dot three� short file name format. Only
digits 0 to 9, letters A to Z, the space char-
acter and special characters, ! # $ % & ()
- @ ̂ _ ̀ { } ~ ', are used. Although it is cus-
tomary to consider the period (.) and
extension as elements of the file name, in
this case, none of the characters after the
initial name are used as part of the actual
file name.
For example, a file named �FILE.TXT�
would have the file name �FILE_ _ _ _�
in the root directory, with the final 4 char-
acters replaced by 4 instances of the
space character �20h�.

Offset Description Size

00h File Name(1) 8 bytes
08h File Extension 3 bytes
0Bh File Attributes 1 byte
0Ch Reserved 1 byte
0Dh File Creation Time (ms portion) 1 byte
0Eh File Creation Time (hours, minutes

and seconds)
2 bytes

10h File Creation Date 2 bytes
12h Last Access Date 2 bytes
14h Extended Address-Index 2 bytes
16h Last Update Time (hours, minutes

and seconds)
2 bytes

18h Last Update Date 2 bytes
1Ah First Cluster of the File 2 bytes
1Ch File Size 4 bytes

Note 1: The first character of the file name can
take on special values (see Table 5).

AN1045

DS01045A-page 4 © 2007 Microchip Technology Inc.

TABLE 5: POSSIBLE VALUES FOR THE
FIRST CHARACTER IN THE
DIRECTORY FILE NAME

File Allocation Table
The FAT has space for one 2-byte entry to correspond
to every cluster in the data cluster section of the
partition. For example, the third set of two bytes in the
FAT will correspond to the first cluster in the data
region. A value placed in each position can indicate
many things. A list of values can be found in Table 6.

TABLE 6: FAT VALUES

Every file has at least one cluster assigned to it. If that
file size is smaller than the size of a cluster, the FAT
entry for that cluster will contain the last cluster value,
indicating that there are no more clusters assigned to
that file. Otherwise, it will contain the value of the next
cluster of the file. By linking clusters in this way, the FAT
can create a chain of clusters to contain larger files, and
can allocate non-sequential clusters to a file.

An example of this is shown in Figure 2. It is important
to note that the values that would point towards Clus-
ters 0 and 1 are reserved to indicate special conditions.
Because of this, the first cluster in the data region is
labeled as Cluster 2. The FAT entries corresponding to
Clusters 0 and 1 contain the media descriptor, followed
by bytes containing the value, FFh.

FIGURE 2: FAT CLUSTER CHAIN

Value Description

00h This entry is available and no subsequent
entry is in use.

E5h The file in this entry was deleted and the
entry is available.

05h The first character in the file name is �E5h�.
2Eh This entry points to the current or previous

directory.

Value Description

0000h Cluster is available for use.
0001h Cluster is reserved.
0002-FFEFh Points to next cluster in the file.
FFF0-FFF6h Cluster is reserved.
FFF7h Cluster is bad.
FFF8h-FFFFh Last cluster of a file.

FAT Position Value

File 1

File 2, Part 1

File 2, Part 2

File 3

File 2, Part 3

File 2, Part 4

Available Cluster

File 1 → Cluster 3

File 2 → Cluster 4

File 3 → Cluster 6

0003h

0004h

0005h

0006h

0007h

0008h

0009h

FFFFh

0005h

0007h

FFFFh

0008h

FFFFh

0000h

�First Cluster in File� Values

Contents of Data Clusters

© 2007 Microchip Technology Inc. DS01045A-page 5

AN1045
The �First Cluster in File� values in three root directory
entries indicate the start of three files. The FAT demon-
strates the links between the files. File 1 and File 3 are
smaller than the size of a cluster, so they are only
assigned one cluster. The cluster entries in the FAT that
correspond to these files contain only the End-Of-File
value. File 2 is larger than three clusters, but smaller
than four, so it is assigned four clusters. Since there
were not three consecutive clusters available when
File 2 was created, it was assigned nonconsecutive
clusters. This is called �fragmentation�. The values of
the cluster entries in the FAT for File 2 point to the next
cluster in the file. The last cluster entry in the FAT for
File 2 contains the End-Of-File value.

Directories
Directories in this file system, with the exception of the
root directory, are written in the same way that files are
written. Each directory occupies one or more clusters in
the data section of the partition, and each has its own
directory entry and chain of FAT entries. Bit four of the
attribute field in the directory entry of a directory is set,
indicating that the entry belongs to a directory. Direc-
tory names in this library follow short file name format
(8.3 format). Directories differ from files in that they
have no extension, though.

Each directory contains 32-byte directory entries. Two
directory entries, the dot entry and the dotdot entry, are
present in every directory except the root directory. The
dot entry is the first entry in any subdirectory. The name
value in this entry is a single dot (2Eh) followed by ten
space characters (20h). The first-cluster-in-file value of

this entry will point to the cluster that the entry is in. The
dotdot entry is similar, except the name contains two
dots followed by nine spaces, and the first-cluster-in-
file value points to the directory that contains entry for
the directory the dotdot entry is in (the previous
directory).

When directories are enabled in this library, all file
modification will be done in the Current Working
Directory (CWD). When the user initializes the card by
calling FSInit, the current working directory is auto-
matically set to the root directory. After this, the current
working directory can be changed with the FSchdir
function.

When specifying path names in the directory manipula-
tion functions, there are several conventions that
should be followed. Directory names in a path string
are delimited by the backslash character (\). Note that
when denoting a backslash character in a string, an
additional backslash must be added as part of an
escape sequence, as the backslash itself is used by C
to begin escape sequences. If the first character of a
path string is a backslash, the path will be assumed to
be specified relative to the root directory. If a path string
begins with a directory name, the path will be assumed
to be specified relative to the current working directory.
If a dot (.) or dotdot (..) is included in the path as a direc-
tory name, the code will operate using those directory
entries. For example, if the user changes the CWD to
�.\\TEST\..\\TEST\\..\\.\\.�, they will end in
the same directory that they started in, assuming the
directory �TEST� exists in the original directory. More
examples of path strings can be seen in Table 7.

TABLE 7: EXAMPLE DIRECTORY PATH STRINGS
Path Meaning

�\\� The root directory
�.� Current directory
�..� Previous directory
�ONE� Directory ONE in the current directory
�.\\ONE� Directory ONE in the current directory
�\\ONE� Directory ONE in the root directory
�..\\ONE� Directory ONE in the previous directory
�ONE\\TWO� Directory TWO in directory ONE in the current directory
�\\ONE\\TWO� Directory TWO in directory ONE in the root directory
�ONE\\..\\TWO� Directories ONE and TWO in the current directory (this path could be used to

create non-existent directories in the same place using the FATmkdir
function)

AN1045

DS01045A-page 6 © 2007 Microchip Technology Inc.

FUNCTIONS

User Functions
There are thirteen functions users can call that manage
file and disk manipulation. Table 8 provides a brief
overview of each.

TABLE 8: FILE AND DISK MANIPULATION FUNCTIONS
Function Name Description

FSInit This function initializes the card, loads the master boot record (partition information), loads the
boot sector and updates the parameters passed into it with information from each of these.

FSfclose This function updates the file information, writes the rest of the entry in and frees the RAM from
the heap that was used to hold the information about that file. This function will also update
time-stamp information for the file.

FSfeof This function detects if the end of the file has been reached.
FSfopen This function allocates space in the heap for file information. If the file being opened already

exists, FSfopen can open it so data will be appended on the end of the file, erase it and create
a new file with the same name to be written to, or simply open it for reading. If the file does not
exist, FSfopen can create it. This function then returns a pointer to the structure in the heap
that contains information for this file.

FSfopenpgm This function opens a file on the SD card and associates an FSFILE structure (stream) with it
using arguments specified in ROM. This function is only necessary on the PIC18
architecture.

FSfread This function will read information from an open file to a buffer. The number of bytes written can
be specified by its parameters. If FSfread is called consecutively on the same open file, the
read will continue from the place it stopped after the previous read. This function will return the
number of data objects read.

FSfseek This function changes the position in a file. When a user calls FSfseek, they specify the base
address to set, which can either be at the beginning or end of the file, or at the current position
in the file. The user also specifies an offset to add to the base (note that if the base address is
at the end of the file, the offset will be subtracted). So, if fseek is called FSfseek with the
base set to the beginning of the file, and a specified offset of �0�, the position would be changed
to the first byte of the file.

FSftell This function returns the current position in the file. The first position in the file is the first byte in
the first sector of the first cluster which has the value �0�. So, if a file was created and
2000 bytes were written to it, FSftell would return the number 1999 if it was called.

FSfwrite This function writes information from a buffer to an open file. The algorithm it uses reads a
sector from the data region of the disk to SRAM, modifies the relevant bytes and then writes the
sector back to the disk. Because each FSfwrite call reads the data first, the ability to open
multiple files at a time is supported. This also means that writing data in larger blocks will take
less time than writing the same amount of data in smaller blocks, since fewer sector reads and
writes will be needed.

FSremove This function searches for a file based on a file name parameter passed into it. If the file is
found, its root directory entry is marked as deleted and its FAT entry is erased.

FSremovepgm This function deletes the file identified by a given file name. If the file is opened with FSfopen,
it must be closed before calling FSremovepgm. The file name must be
specified in ROM. This function is only necessary on the PIC18 architecture.

FSrewind This function resets the position of the file to the beginning of the file.
SetClockVars This function is used in user-defined Clock mode to manually set the current date and time.

This date and time will be applied to files as they are created or modified.
FSmkdir This directory manipulation function will create a new subdirectory in the current working directory.
FSchdir This directory manipulation function will change the current working directory to one specified

by the user.

© 2007 Microchip Technology Inc. DS01045A-page 7

AN1045

FSrmdir This directory manipulation function will delete the directory specified by the user. The user
may also choose to specify whether subdirectories and files contained within the deleted direc-
tory are removed. If the user does not allow the function to delete subdirectories, it will fail if the
user attempts to delete a non-empty directory.

FSgetcwd This directory manipulation function will return the name of the current working directory to the
user.

FindFirst This function will locate files in the current working directory that meet the name and attribute
criteria passed in by the user. The user will also pass in a SearchRec Structure Pointer. Once
a file is located, the file name, file size, create time and date stamp, and attributes fields in the
SearchRec structure will be updated with the correct file information.

FindFirstpgm This function operates in the same manner as the FindFirst function, except the name
criteria for the file to be found will be passed into the function in ROM. This function is only
necessary on the PIC18 architecture.

FindNext This function will locate the next file in the current working directory that matches the criteria
specified in the last call of FindFirst or FindFirstpgm. It will then update the SearchRec
structure provided by the user with the file information.

FSformat This function will erase the root directory and file allocation table of a card. The user may also
call the function in a mode that will cause it to create a new boot sector based on the
information in the master boot record.

FSfprintf This function will write a formatted string to a file. This function will automatically replace any
format specifiers in the string passed in by the user with dynamic values from variables passed
into the function.

TABLE 8: FILE AND DISK MANIPULATION FUNCTIONS (CONTINUED)
Function Name Description

AN1045

DS01045A-page 8 © 2007 Microchip Technology Inc.

Library Setup
There are several customizations that can be used with
this library. The following should be done before
compiling a project:

1. Add the appropriate physical layer file to the
project. Interfaces for the SD card in SPI mode
(SD-SPI.c, SD-SPI.h) and the Compact-
Flash card using the PMP module (CF-PMP.c,
CF-PMP.h) or manual bit toggling (CF-Bit
transaction.c, CF-Bit transaction.h)
are provided. Set the appropriate include file
name in FSconfig.h.

2. Define system clock frequency in FSconfig.h.
3. If using static memory for file objects, specify the

maximum number of files that are going to be
open at any one time in FSconfig.h.

4. If using the SD SPI interface, specify the
appropriate register names in SD-SPI.h. For
example, if you�re using SPI module 1 on the
PIC24, change the definition of SPI1CON to
SPI1CON1. If using module 2, change the
definition to SPI1CON2.

5. If using a PIC18, modify the linker file to include
a 512-byte section of RAM that will act as a
buffer for file reads/writes. This buffer is defined
at the top of the physical interface files. Also
create a section in the linker mapped to this
RAM called �dataBuffer�. Repeat this pro-
cess to create a buffer for FAT reads and writes.
This buffer will need a section mapped to the
RAM you allocate called �FATBuffer�.

6. If planning to use dynamic memory to allocate
file objects, set the corresponding preprocessor
directive in the FSconfig.h file to �#if 1�.
Also, if using PIC18, a section must be created
in the linker file called �_SRAM_ALLOC_HEAP�
that contains enough memory to contain all of
the opened file objects. Each file object is
46 bytes. Due to the variation in the memory
allocation algorithm, the allocated amount
required will be larger. This is also true when
using a PIC24. Testing will be necessary to
determine if enough memory was allocated to
the heap. Include the salloc.c and salloc.h
files in the project when using PIC18. If planning
on using dynamic memory allocation with the
PIC24, you will need to create a heap in the
MPLINK30 tab of the Build Options menu.

7. Set the library path and include path (and linker
path, if PIC18) in the General tab of the Build
Options menu.

8. Set the required input and output pins in
your physical layer header file (SD-SPI.h,
CF-PMP.h, �).

9. Make sure that all pins used are configured as
digital I/Os, including PORTB pins set in the
Configuration registers and any pins that could
be analog channels for the A/D converter.

10. Select the appropriate device and language
toolset. The code that will be compiled will be
appropriate to the processor type (PIC18,
PIC24F, PIC24H, dsPIC30 or dsPIC33).

11. There are several definitions in FSconfig.h
that can be used to disable library functionality
to save code space if the user does not require
those functions. To use any write functions,
uncomment the ALLOW_WRITES definition; to
use directory functionality, uncomment
ALLOW_DIRS; to use the format function,
uncomment ALLOW_FORMATS; to use the
file search functions, uncomment
ALLOW_FILESEARCH. If you wish to use the
functions that accept parameters passed
through ROM (pgm functions) on PIC18, you
may uncomment ALLOW_PGMFUNCTIONS. The
pgm functions will not work with other architec-
tures. However, arguments in ROM can be
passed into standard functions (e.g., FSfopen
instead of FSfopenpgm) directly in PIC24,
dsPIC30 and dsPIC33 architectures.
ALLOW_FSFPRINTF will enable the FSfprintf
function when uncommented.

12. Uncomment a define to select a Clock mode for
determining file create/modify/access times.
The INCREMENTTIMESTAMP mode will set the
times to a static value and will not provide
accurate timing values. This mode is useful
when file times are unimportant, as it reduces
complexity. The USERDEFINEDCLOCK mode will
allow the user to manually set the timing values
using the SetClockVars function. The
USEREALTIMECLOCK mode will set the timing
values automatically, based on the values in the
Real-Time Clock and Calendar module. This
mode will require the user to enable and config-
ure the RTCC module, and it is not available in
architectures that don�t support RTCC.

© 2007 Microchip Technology Inc. DS01045A-page 9

AN1045
FAT16 Initialization and File Creation
The following example C18 code illustrates a basic
sequence of function calls to open a file for reading.
This example initializes the card with the FSInit
function and then calls FSfopen to create a new file.
Then, the code calls FSfopenpgm, a function which
performs the same function as FSfopen, but accepts
ROM parameters. This call opens an existing file in the

read mode. The code reads one ten byte object and
five one byte objects from the existing file. The example
then shows how it writes these objects to the newly
created files and then closes both files. Finally, the
code deletes the old file. It is important to close a
currently open file before deleting it.

EXAMPLE 1: INITIALIZATION AND FILE CREATION EXAMPLE FOR PIC18

#include �FSIO.h�

#define bfrsize 5

void main(void)
{

FSFILE *pOldFile, pNewFile;
char myData[20];
char bfr [6];
int bytesRead, bytesWritten;
char newFile[] = �newfile.txt�;
char writeArg = �w�;

// Must initialize the FAT16 library. It also initializes SPI and other related pins.
if(!FSInit())

// Failed to initialize FAT16 � do something�
return 1; // Card not present or wrong format

// Create a new file

pNewFile = FSfopen (newFile, writeArg);

// Open an existing file to read
pOldFile = FSfopenpgm (�myfile.txt�, �r�);
if (pOldFile == NULL)

// Either file is not present or card is not present
return 1;

// Read 10 bytes of data from the file.
bytesRead = FSfread((void*)myData, 10, 1, pOldFile);
// read bfrSize (5) items (of size 1 byte). returns items count
bytesRead = FSfread((void *)bfr, 1, bfrSize, pOldFile);

// Write those fifteen bytes to the new file
bytesWritten = FSfwrite ((void *) myData, 10, 1, pNewFile);
bytesWritten = FSfwrite ((void *) bfr, 1, bfrSize, pNewFile);

// After processing, close the file.
FSfclose(pOldFile);
FSfclose (pNewFile);

//Delete the old file
FSremovepgm (�myfile.txt�);

}

AN1045

DS01045A-page 10 © 2007 Microchip Technology Inc.

Memory Usage
Unoptimized memory usage for the file interface library
using the SD-SPI physical layer is given in Table 9.
512 bytes of data memory are used for the data buffer,
and an additional 512 are used for the file allocation
table buffer. Additional data memory will be needed
based on the number of files opened by the user at

once. The default values provided are for two files
opened in static allocation mode. The C18 data mem-
ory value includes a 200h byte stack. The first row of
the table indicates the smallest amount of memory that
the library will use (for read-only mode), and each sub-
sequent row indicates the increase in memory caused
by enabling other functionality.

TABLE 9: FILE I/O LIBRARY MEMORY USAGE(1)

Functions Included Program Memory
(C30)

Data Memory
(C30)

Program Memory
(C18)

Data Memory
(C18)

All extra functions disabled
(Read-Only mode)

11364 bytes 1220 bytes 19655 bytes 1771 bytes

File search enabled +1608 bytes +0 bytes +3628 bytes +0 bytes
Write enabled +6150 bytes +0 bytes +11972 bytes +0 bytes
Format enabled (write must be
enabled)

+2520 bytes +0 bytes +4888 bytes +0 bytes

Directories enabled (write must be
enabled)

+6870 bytes +70 bytes +13796 bytes +79 bytes

Directories and search are both
enabled

+42 bytes +0 bytes +142 bytes +0 bytes

pgm functions enabled N/A N/A +1788 bytes +0 bytes

FSfprintf enabled +4794 bytes +0 bytes +5515 bytes +0 bytes

Note 1: This is a resource requirement for V1.0. Please refer to the ReadMe file for version-specific resource
requirement.

© 2007 Microchip Technology Inc. DS01045A-page 11

AN1045
Comments
� During sector reads and writes, the card should

not be removed.
� The size of the PIC18 stack may need to be

increased. Otherwise, a stack overflow could
occur when functions are called and the data are
pushed to the stack. If the stack size is increased
in this way, the memory model in the
Project > Build Options > C18 tab must be set to
�Multi-Bank Model.� To change the size of the
stack, the linker script must be modified. An
example of this is given in Appendix A: �The
PIC18 Linker Script�.

Explanation of Data Types and Structures
� DISK � The DISK structure contains information

about the physical disk. The user should never have
to directly use the information stored in this structure.

� FILE � The FILE structure contains information about
a file on the disk. The user should never have to
directly use the information stored in this structure.

� Types defined in generic.h
- BYTE � An unsigned char (8 bits)
- WORD � A short int (16 bits)
- SWORD � An unsigned short long (24 bits)
- DWORD � An unsigned long (32 bits)

� SearchRec � The SearchRec structure contains
the name, create time and date stamps, size and
attributes of a file found using the FindFirst,
FindFirstpgm or FindNext function. The
complete contents of the SearchRec structure
can be seen in Table 10.

TABLE 10: CONTENTS OF THE SearchRec STRUCTURE
Element Function

char file name The name of the file (null-terminated)
unsigned char attributes The file attributes
unsigned long file size The size of the file in bytes
unsigned long time-stamp The create time and date of the file

Bits Value

31:25 Year (0 = 1980, 1 = 1981, �)
24:21 Month (1 = Jan, 12 = Dec)
20:16 Day (1-31)
15:11 Hours (0-23)
10:5 Minutes (0-59)
4:0 (Seconds/2) (0-29)

AN1045

DS01045A-page 12 © 2007 Microchip Technology Inc.

UNSUPPORTED FEATURES
The following features are not supported:

� Long file names
� FAT32

REFERENCES
� SD Card Association � http://www.sdcard.org
� CompactFlash® Association �

http://www.compactflash.org
� The following documents are referenced by this

application note.
- SD Memory Card Specifications, Part 1

�Physical Layer Specification�, Version 1.01,
September 2000

- SD Memory Card Specifications, Part 2 �File
System Specification�, Version 1.0, February
2000

� MultiMediaCard Association �
http://www.mmca.org

� PCGuide: FAT File System Disk Volume Structures �
http://www.pcguide.com/ref/hdd/file/fat.htm

� ISO/IEC 9293 �
http://www.iso.ch/iso/en/
CatalogueDetailPage.CatalogueDetail?
CSNUMBER = 21273

� FAT32 File System Specification �
http://www.microsoft.com/whdc/system/platform/
firmware/fatgen.mspx

� From Wikipedia �
http://en.wikipedia.org/wiki/Fat16

CONCLUSION
File creation and storage is undoubtedly useful for
applications that need to store large amounts of data or
small amounts of data over long periods of time. By
using this application note and the C18/C30 code
provided with it, the user can minimize his or her
development time.

© 2007 Microchip Technology Inc. DS01045A-page 13

AN1045

APPENDIX A: THE PIC18 LINKER SCRIPT
This sample linker script reserves three blocks of memory: one specified by section _SRAM_ALLOC_HEAP, one specified
by section dataBuffer and one specified by section FATBuffer. The heap section does not need to be reserved if
dynamic memory is not being used to store file objects.

This script also contains a 0x200 byte stack. If a stack spans multiple memory banks, like this one does, the �Multi-Bank�
model should be selected in the Project Build Options menu.

EXAMPLE A-1: PIC18 LINKER SCRIPT
// $Id: 18f8722i.lkr,v 1.4 2005/12/19 16:40:18 nairnj Exp $
// File: 18f8722i.lkr
// Sample ICD2 linker script for the PIC18F8722 processor

LIBPATH .

FILES c018i.o
FILES clib.lib
FILES p18f8722.lib

CODEPAGE NAME=vectors START=0x0 END=0x29 PROTECTED
CODEPAGE NAME=page START=0x2A END=0x1FD7F
CODEPAGE NAME=debug START=0x1FD80 END=0x1FFFF PROTECTED
CODEPAGE NAME=idlocs START=0x200000 END=0x200007 PROTECTED
CODEPAGE NAME=config START=0x300000 END=0x30000D PROTECTED
CODEPAGE NAME=devid START=0x3FFFFE END=0x3FFFFF PROTECTED
CODEPAGE NAME=eedata START=0xF00000 END=0xF003FF PROTECTED

ACCESSBANK NAME=accessram START=0x0 END=0x5F
DATABANK NAME=gpr1 START=0x60 END=0xFF
DATABANK NAME=gpr2 START=0x100 END=0x1FF
DATABANK NAME=gpr3 START=0x200 END=0x2FF
DATABANK NAME=gpr4 START=0x300 END=0x3FF
DATABANK NAME=gpr5 START=0x400 END=0x4FF
DATABANK NAME=gpr6 START=0x500 END=0x5FF
DATABANK NAME=gpr7 START=0x600 END=0x6FF
// Allocate 0x200 bytes for the data buffer
DATABANK NAME=buffer1 START=0x700 END=0x8FF PROTECTED
// Allocate 0x200 bytes for the FAT buffer
DATABANK NAME=buffer2 START=0x900 END=0xAFF PROTECTED
// Allocate 0x200 bytes for the heap
DATABANK NAME=gpr8 START=0xB00 END=0xBFF
DATABANK NAME=gpr9 START=0xC00 END=0xDFF
DATABANK NAME=gpr10 START=0xE00 END=0xEF3
DATABANK NAME=dbgspr START=0xEF4 END=0xEFF PROTECTED
DATABANK NAME=gpr11 START=0xF00 END=0xF5F
ACCESSBANK NAME=accesssfr START=0xF60 END=0xFFF PROTECTED

SECTION NAME=CONFIG ROM=config
// Create a heap section
SECTION NAME=_SRAM_ALLOC_HEAP RAM=gpr8
// Create the data buffer section
SECTION NAME=dataBuffer RAM=buffer1
// Create the FAT buffer section
SECTION NAME=FATBuffer RAM=buffer2

STACK SIZE=0x200 RAM=gpr9

AN1045

DS01045A-page 14 © 2007 Microchip Technology Inc.

APPENDIX B: API DETAILS

FSInit
Initializes the hardware and mounts the card in the library. If the card is not detected, returns FALSE. Must be called
before calling any other API function. If card is removed and inserted, the application must call FSInit to remount
the card. You can detect if the card is present by calling the MediaIsPresent() low level function.

Syntax
int FSInit(void)

Parameters
None

Return Values
True if card is present and the format is FAT16 or FAT12

False otherwise

Precondition
None

Side Effects
None

Example
// Initialize library and detect card.
if (FSInit() != TRUE)
// Failed to initialize FAT16.

© 2007 Microchip Technology Inc. DS01045A-page 15

AN1045
FSfclose

Closes an opened file

Syntax
int FSfclose(FSFILE *stream)

Parameters
stream � A pointer to a FILE structure obtained from a previous call of FSfopen

Return Values
Returns 0 on success

Returns EOF (-1) on failure

Precondition
FSfopen was called and the stream contains the pointer returned by FSfopen

Side Effects
None

Example
if(FSfclose(stream) == EOF)
{
// Failed to close the file.
...
}
...

AN1045

DS01045A-page 16 © 2007 Microchip Technology Inc.

FSfeof
Detects if End-Of-File position is reached.

Syntax
int FSfeof(FSFILE *stream)

Parameters
stream � pointer to opened file

Return Values
Returns non-zero if the End-Of-File indicator (EOF) is reached

Return 0 otherwise

Precondition
File is opened successfully

Side Effects
None

Example
if (FSfeof (pFile) == 0)
{

// Error
...

}

© 2007 Microchip Technology Inc. DS01045A-page 17

AN1045
FSfopen

Opens a file on the card and associates a FILE structure (stream) with it.

Syntax
FSFILE * FSfopen (const char * fileName, const char *mode)

Parameters
filename � A null terminated char string specifying the file name. This string must

be stored in RAM. The file name must be fewer than 8 characters, followed
by a radix (.) followed by an extension containing three of fewer
characters. The file Name cannot contain any directory or drive letter
information.

mode � A null terminated string specifying the file operation. This string must
also be specified in RAM.

The valid strings are:

r Read Only

w Write If a file with the same name exists, it will be overwritten
No reads allowed

a Append If the file exists, the current location will be set to the end of the file.
Otherwise, the file will be created.
No reads allowed

Return Values
A pointer to an FSFILE structure to identify the file in subsequent operations
NULL if the specified file could not be opened

Precondition
FSInit is called

Side Effects
None

Example
// Create argument strings in RAM and use them to call the function
FSFILE * fPtr;
char [9] name = �myFile.txt�;
char [2] modeArg = �w�;
fPtr = FSfopen(name, modeArg);

AN1045

DS01045A-page 18 © 2007 Microchip Technology Inc.

FSfopenpgm
Opens a file on the SD card and associates a FSFILE structure (stream) with it using arguments specified in ROM.

Syntax
FSFILE * FSfopenpgm (const rom char * fileName, const rom char *mode)

Parameters
filename � A null terminated char string specifying the file name. This string must be stored in ROM.

The file name must be fewer than 8 characters, followed by a radix (.) followed by an extension
containing three of fewer characters. The fileName cannot contain any directory or drive letter
information.

mode � A null terminated string specifying the file operation. This string must also be specified in ROM.
The valid strings are:

r Read Only

w Write If a file with the same name exists, it will be overwritten
No reads allowed

a Append The file must exist for this operation
No reads allowed

Return Values
A pointer to FILE structure to identify the file in subsequent operations

NULL if the specified file could not be opened

Precondition
FSInit is called

Side Effects
None

Example
// Create a file called MYFILE.TXT
FSFILE * fPtr;
fPtr = FSfopen(�myfile.txt�, �w�);

© 2007 Microchip Technology Inc. DS01045A-page 19

AN1045
FSfread

Reads data from the previously opened file. FSfread reads n items of data, each of length size bytes from the
given file stream. The data is copied to the buffer pointed by ptr. The total number of bytes transferred is
n * size .

Syntax
size_t FSfread(void *ptr, size_t size, size_t n, FSFILE *stream)

Parameters
ptr � pointer to buffer to hold the data read

size � length of item in bytes

n � number of items to read

stream � stream pointer to file opened with read (r) mode

Return Values
On success FSfread returns the number of items (not bytes) actually read

On End-Of-File or error it returns 0

Precondition
File is opened is read mode

Side Effects
None

Example
...
//Read 100 packets of size 10 bytes each
nItems = FSfread(bfr, 10, 100, pFile);

if(nItems == 0)
{

// No packet was read
...

}
else if(nItems < 100)
{

// did not read all 100 packets. Possible EOF
....

}
else
{

//read all 100 packets
...

}

AN1045

DS01045A-page 20 © 2007 Microchip Technology Inc.

FSfseek
The FSfseek function moves the file pointer position associated with the stream. The new position is offset
bytes from the file location given by whence.

Syntax
int FSfseek(FSFILE *stream, long offset, int whence)

Parameters
whence � file location defining the starting point for offset. Must be 0, 1, or 2 as follows:

SEEK_SET 0 File beginning

SEEK_CUR 1 Current file pointer position

SEEK_END 2 End-Of-File

offset � number of bytes away from the starting point defined by whence

stream � pointer to opened file

Return Values
Return 0 if success

Returns -1 on error

Precondition
File is opened successfully

Side Effects
None

Example
// move 100 bytes forward from the current position.
If(FSfseek(pFile, 100, SEEK_CUR) != 0)
{

... //handle error condition
}

© 2007 Microchip Technology Inc. DS01045A-page 21

AN1045
FSftell

Returns the current position of the file pointer

Syntax
long FSftell(FSFILE *stream)

Parameters
stream � pointer to opened file

Return Values
Returns the current file pointer position on success

Returns -1L on error

Precondition
File is opened successfully

Side Effects
None

Example
// get current file position
long pos = FSftell(pFile);
If (pos == -1)
{

... //handle error condition
}

AN1045

DS01045A-page 22 © 2007 Microchip Technology Inc.

FSfwrite
Writes data to the previously opened file. FSfwrite writes n items of data, each of length size bytes to the given
file stream. The data is copied from the buffer pointed to by ptr. The total number of bytes transferred is
n * size .

Syntax
size_t FSfwrite(const void *ptr, size_t size, size_t n, FSFILE *stream)

Parameters
ptr � pointer to buffer holding data to write

size � length of item in bytes

n � number of items to write

stream � stream pointer to file opened with write (w) or append (a) mode

Return Values
On successful completion FSfwrite returns the number of items (not bytes) actually written
On error it returns a short count or 0

Precondition
File is opened in write (w) or append (a) mode

Side Effects
None

Example
If(FSfwrite(ptr, 100, 20, pFile) != 20)
{

// not all items were written
... //handle error condition

}

© 2007 Microchip Technology Inc. DS01045A-page 23

AN1045
FSremove

The FSremove function deletes the file identified by filename. If the file is opened with FSfopen, it must be
closed before calling FSremove. The file name must be specified in RAM.

Syntax
int FSremove (const char * filename)

Parameters
filename � A pointer to a null terminated string in RAM

Return Values
Returns 0 on success

Returns EOF (-1) on failure

Precondition
FSInit is called successfully

Side Effects
None

Example
// Create a string for the file name in RAM and then deletes the file with that
// name
char name[] = �myfile.txt�;
if(FSremove(name) == EOF)
{
// error handling
...
}
...

AN1045

DS01045A-page 24 © 2007 Microchip Technology Inc.

FSremovepgm
The FSremovepgm function deletes the file identified by filename. If the file has been opened with FSfopen,
it must be closed before calling FSremovepgm. The file name must be specified in ROM.

Syntax
int FSremove (const rom char * filename)

Parameters
filename � A pointer to a null terminated string in ROM

Return Values
Returns 0 on success

Returns EOF (-1) on failure

Precondition
FSInit is called successfully.

Side Effects
None

Example
// Deletes MYFILE.TXT
if(FSremovepgm (�myfile.txt�) == EOF)
{
// error handling
...
}
...

© 2007 Microchip Technology Inc. DS01045A-page 25

AN1045
FSrewind

The FSrewind function resets the file position to the beginning of the file.

Syntax
void FSrewind (FSFILE *stream)

Parameters
stream � A pointer to FILE structure obtained from a previous call of FSfopen

Return Values
None

Precondition
File is already opened be a previous call of FSfopen

Side Effects
None

AN1045

DS01045A-page 26 © 2007 Microchip Technology Inc.

SetClockVars
The SetClockVars function sets the timing variables used to set file create/modify/access times. This function is
only used when the user-defined Clock mode is selected.

Syntax
int SetClockVars (unsigned int year, unsigned char month, unsigned char day, unsigned
char hour, unsigned char minute, unsigned char second);

Parameters
year � The year, from 1980 to 2107

month � The month, from 1-12

day � The day, from 1-31

hour � The hour of the day, from 0 (midnight) to 23

minute � The current minute, from 0 to 59

second � The current second, from 0 to 59

Return Values
Returns 0 on success

Returns -1 if an invalid parameter is passed in

Precondition
USERDEFINEDCLOCK is defined in FSconfig.h

Side Effects
Modified global timing variables

Example
// Set the date and time to
// 2:35:20 PM, January 12, 2007
if (SetClockVars (2007, 1, 12, 14, 35, 20))
{

// Invalid values passed in
...

}

© 2007 Microchip Technology Inc. DS01045A-page 27

AN1045
FSformat

The FSformat function will erase the root directory and file allocation table of a card. It can also create a new boot
sector, based on the mode the user calls the function in.

Syntax
int FSformat (char mode, long int serialNumber, char * volumeID);

Parameters
Mode � 0 Just erase FAT and root

1 Create a new boot sector. Will fail if MBR is not present.

serialNumber � The serial number to program into the new boot sector

volumeID � The name of the card. Must be 8 or fewer chars.

Return Values
Returns 0 on success

Returns -1L otherwise

Preconditions
None

Side Effects
None

Example
char volID[] = "MyCard";
// Erase FAT and root, create new boot sector
// Set card serial number to 0x12345678, set
// card name to "MyCard"
If (FSformat (1, 0x12345678, volID))
{

// Format failed
�

}

AN1045

DS01045A-page 28 © 2007 Microchip Technology Inc.

FSmkdir
The FSmkdir function will create a directory based on the path string passed in by the user. Every directory in the
path string that does not exist will be created. Directory names in the path string must be no more than 8 ASCII
characters. Directory names are delimited by the backslash character. A dot (.) as a directory name will access the
current directory. Two dots (..) will access the previous directory. Beginning the path string with a backslash will
create the directories specified in the root directory. Beginning the path string with a directory name will create the
directories specified in the current working directory.

Syntax
int FSmkdir (char * path);

Parameters
path � The path of directories to create

Return Values
Returns 0 on success

Returns -1 otherwise

Precondition
FSInit is called successfully

Side Effects
None

Example
char path[] = "\ONE\TWO\THREE\FOUR";
// The path starts with a '\' so dir ONE will be
// created in the root directory if it doesn't exist
// Dir TWO will be created in dir ONE if it doesn't
// exist. THREE will be created in TWO. FOUR will be
// created in THREE
if (FSmkdir (path))
{

// Error
...

}

© 2007 Microchip Technology Inc. DS01045A-page 29

AN1045
FSchdir

The FSchdir function will change the current working directory based on the path string passed in by the user.
Directory names are delimited by the backslash character. A dot (.) as a directory name will access the current
directory. Two dots (..) will access the previous directory. Beginning the path string with a backslash will change to
the directory specified starting from the root directory. Beginning the path string with a directory name will change
to the directory specified starting from the current working directory.

Syntax
int FSchdir (char * path);

Parameters
path � The path of directory to change to

Return Values
Returns 0 on success

Returns -1 otherwise

Precondition
FSInit is called successfully

Side Effects
The current working directory will be changed

Example
char path[] = "\ONE\TWO\THREE";
char path2[] = "..\..\..";
// Change to directory THREE
if (FSchdir (path))
{

// Error
...

}
// Change back to the root
// The first .. will change from THREE to TWO.
// The second .. will change from TWO to ONE.
// The third .. will change from ONE to the root
// Calling this function with a path of "\" would
// also change to the root
if (FSchdir (path2))
{

// Error
...
}

AN1045

DS01045A-page 30 © 2007 Microchip Technology Inc.

FSrmdir
The FSrmdir function will delete a directory based on the path string passed in by the user. Directory names in the
path string must be no more than 8 ASCII characters. Directory names are delimited by the backslash character. A
dot (.) as a directory name will access the current directory. Two dots (..) will access the previous directory. The
user can specify whether subdirectories and files in the directory should be deleted.

Syntax
int FSrmdir (char * path, unsigned char rmsubdirs);

Parameters
path � The path of the directory to delete

rmsubdirs � TRUE All subdirectories and files will be deleted

FALSE The dir will only be deleted if it is empty

Return Values
Returns 0 on success

Returns -1 otherwise

Precondition
FSInit is called successfully

Side Effects
None

Example
char path[] = "\ONE\TWO\THREE\FOUR";
// Delete directory FOUR if it exists
if (FSrmdir (path, FALSE))
{

// Error
// Maybe there's something in FOUR
// Try to delete all contents
if (FSrmdir (path, TRUE))
{

// Error
// Maybe FOUR just doesn't exist
...

}
...

}

© 2007 Microchip Technology Inc. DS01045A-page 31

AN1045
FSgetcwd

The FSgetcwd function will return the path of the current working directory, copied into a char array passed in by
the user. If the user passes in a NULL Array Pointer, a default array of size 10 bytes will be used. If the current
working directory name is too large for the array, the number of characters that fit in the array will be copied into it,
starting at the beginning of the path.

Syntax
char * FSgetcwd (char * path, int numchars);

Parameters
path � The path to copy the current working dir name to

numchars � The number of characters that can be copied into the path

Return Values
Returns a pointer to the current working directory name string

Precondition
FSInit is called successfully

Side Effects
The default name string will be overwritten if the function is called with a NULL Path Pointer.

Example
char dir[] = "\ONE\TWO\THREE\FOUR";
char buffer[40];
char * pointer;
char * pointer2;

FSmkdir (dir);
FSchdir (dir);
// Our current working directory is now
// \ONE\TWO\THREE\FOUR
// Copy the first 40 characters of the path name into
// buffer
pointer = FSgetcwd (path, 40);
// Get a pointer to a string with the first 10 chars of // the path name
pointer2 = FSgetcwd (NULL, NULL);

AN1045

DS01045A-page 32 © 2007 Microchip Technology Inc.

FindFirst
The FindFirst function will locate the first file in the current working directory that matches the naming and
attribute criteria passed in by the user and copy its parameters into a structure passed in by the user.

Syntax
int FindFirst (const char * fileName, unsigned int attr, SearchRec * rec);

Parameters
fileName � The name the file must correspond to

TABLE B-1: FILE NAME FORMATS

attr � The attributes that the file may have

TABLE B-2: ATTRIBUTE VALUES

rec � Pointer to the structure that will contain file information if a file is found.

Return Values
Returns 0 on success

Returns -1L otherwise

Precondition
FSInit is called successfully

Format Function

. Find any file or directory
FILENAME.EXT Find a file named FILENAME.EXT
FILENAME.* Find a file with name FILENAME and any extension
*.EXT File a file with any name and the extension EXT
* Find any directory
ADIRNAME Find a directory named ADIRNAME
FI*.E* Find any file with name starting with FI- and extension starting with E-

Attribute Value Function

ATTR_READ_ONLY 01h File may have read-only attribute
ATTR_HIDDEN 02h File may have hidden attribute
ATTR_SYSTEM 04h File may be a system file
ATTR_VOLUME 08h File may be a volume label
ATTR_DIRECTORY 10h File may be a directory
ATTR_ARCHIVE 20h File may have archive attribute
ATTR_MASK 3Fh File may have any attributes

© 2007 Microchip Technology Inc. DS01045A-page 33

AN1045
Side Effects
The search criteria in the SearchRec structure from the last call of FindFirst or FindFirstpgm will be lost.

Example
SearchRec file;
unsigned char attributes = ATTR_HIDDEN | ATTR_SYSTEM | ATTR_READ_ONLY | ATTR_VOLUME
| ATTR_ARCHIVE;

char name[] = "FILE*.*";

// Find any non-directory file that has a name starting
// with the letters FILE-
if (FindFirst (name, attributes, &file))
{

// Error
...

}
// Delete the file we found if its empty
if(file.size == 0)

FSremove (file.filename);

AN1045

DS01045A-page 34 © 2007 Microchip Technology Inc.

FindFirstpgm
The FindFirstpgm function performs the same function as the FindFirst function, but accepts a file name
string passed into the function in ROM. This function will only be needed on the PIC18 architecture.

Syntax
int FindFirstpgm (const rom char * fileName, unsigned int attr, SearchRec * rec);

Parameters
fileName � The name the file must correspond to

attr � The attributes that the file may have

rec � Pointer to the structure that will contain file information if a file is found

Return Values
Returns 0 on success

Returns -1L otherwise

Precondition
FSInit is called successfully

Side Effects
The search criteria from the last call of FindFirst or FindFirstpgm will be lost.

Example
SearchRec file;
unsigned char attributes = ATTR_MASK;

// Find any file that has a name starting with the
// letters FILE-
if (FindFirstpgm ("FILE*.*", attributes, &file))
{

// Error
...

}
// Delete the file we found if its empty
if(file.size == 0)

FSremove (file.filename);

© 2007 Microchip Technology Inc. DS01045A-page 35

AN1045
FindNext

The FindNext function will locate the next file in the current working directory that matches the naming and
attribute criteria specified by the last call of FindFirst or FindFirstpgm on the SearchRec object that is
passed into the function.

Syntax
int FindNext (SearchRec * rec);

Parameters
rec � Pointer to the structure that will contain file information if a file is found

Return Values
Returns 0 on success

Returns -1L otherwise

Precondition
FindFirst or FindFirstpgm is called successfully

Side Effects
None

Example
SearchRec file;
unsigned char attributes = ATTR_MASK;
char name[] = "*.*";

// Find any file or directory
if (FindFirst (name, attributes, &file))
{

// Error
...

}
// Find the next file or directory
if(FindNext (&file))
{

// Error
...

}

AN1045

DS01045A-page 36 © 2007 Microchip Technology Inc.

FSfprintf
The FSfprintf function will write a formatted string to a file.

Syntax
int FSfprintf (FSFILE *fptr, const char * fmt, ...)

Parameters
fptr � Pointer to a file to write to

fmt � The string to write (specified in ROM)

... � Format specifiers

Return Values
Returns the count of characters written on success

Returns -1L otherwise

Precondition
The file to be written to has been opened successfully.

Side Effects
None

Remarks
The FSfprintf function formats output, passing the characters to the specified stream. The format string is
processed one character at a time and the characters are output as they appear in the format string, except for
format specifiers. A format specifier is indicated in the format string by a percent sign, %; following that, a well-
formed format specifier has the following components. Except for the conversion specifier, all format specifiers are
optional.

1. Flag Characters

- �-� � The result of the format conversion will be left justified.

- �+� � By default, a sign in only prefixed to a signed conversion if the result is negative. Including this flag will
prefix a �+� sign if the result of a signed conversion is positive.

- �0� � This flag will prefix leading zeros to the result of a conversion until the result fills the field width. If the �-� flag
is specified, the �0� flag will be ignored. If a precision is specified, the �0� flag will be ignored.

- � � � The space flag will prefix a space to the result of a signed conversion if the result is positive. If the space
flag and the �+� flag are both specified, the space flag will be ignored.

- �#� � This flag will present the �alternate form� of a conversion. For the o conversion, the result will be
increased in precision such that the first digit of the result will be 0. For the x conversion, a 0x will be prefixed
to the result. For the X conversion, a 0X will be prefixed to the result. For the b conversion, a 0b will be
prefixed to the result. For the B conversion, a 0B will be prefixed to the result.

2. Field Width

The field width specifier follows the flag specifiers. It determines the minimum number of characters that result
from a conversion. If the result is shorter than the field width, the result is padded with leading spaces until it
has the same size as the field width. If the �0� flag specifier is used, the result will be padded with leading zeros.
If the �-� flag specifier is used, the result will be left justified, and will be followed by trailing spaces.

The field width may be specified as an asterisk character, *. In this case, a 16-bit argument will be read from the
list of format specifiers to specify the field width. If the value is negative, it is as if the �-� flag is specified, followed
by a positive field width.

© 2007 Microchip Technology Inc. DS01045A-page 37

AN1045
3. Field Precision

The field precision specifies the minimum number of digits present in the converted value for integer conver-
sions, or the maximum number of characters in the converted value for a string conversion. It is indicated by a
period (.) followed by an integer value or by an asterisk (*). If the field precision is not specified, the default
precision of 1 will be used.

If the field precision is specified by an asterisk character, a 16-bit argument will be read from the list of format
specifiers to specify the field precision.

4. Size Specification

The size specification applies to any integer conversion specifier or pointer conversion specifier. The integer
conversion specifiers are as follows: the size specifIer will determine what type of argument is read from the
format specifier list. For the n conversion, the size specifier for each pointer type corresponds to the specifier
for that data type. So to convert something to a Long Long Pointer, you would use the specifier for a long long
data type with the n conversion.

TABLE B-3: SIZE SPECIFIERS
Argument Type C18 C30

signed char, unsigned char hh hh
short int, unsigned short int h h
short long, unsigned short long H �
intmax_t, uintmax_t j (32-bit) j (64-bit)
long, unsigned long 1 1
long long, unsigned long long � q
size_t z z
sizerom_t Z �
ptrdiff_t t t
ptrdiffrom_t T �

AN1045

DS01045A-page 38 © 2007 Microchip Technology Inc.

5. Conversion Specifiers

- c � The int argument will be converted to an unsigned char value and the character represented by that value
will be written.

- d,i � The int argument is formatted as a signed decimal.

- o � The unsigned int argument will be converted to an unsigned octal.

- u � The unsigned int argument will be converted to an unsigned decimal.

- b, B � The unsigned int argument will be converted to an unsigned binary.

- x � The unsigned int argument will be converted to and unsigned hexadecimal. The characters, a, b, c, d, e
and f, will be used to represent the decimal numbers 10-15.

- X � The unsigned int argument will be converted to an unsigned hexadecimal. The characters, A, B, C, D, E
and F, will be used to represent the decimal numbers 10-15.

- s � Characters from the data memory array of char argument are written until either a terminating �\0�
character is seen (�\0� is not written) or the number of chars written is equal to the precision.

- S � Characters from the program memory array of char arguments are written until either a terminating �\0�
character is seen (�\0� is not written) or the number of chars written is equal to the precision. In C18, when
outputting a far rom char *, make sure to use the H size specifier (%HS).

- p � The pointer to void the (data or program memory) argument is converted to an equivalent size unsigned
integer type and that value is processed as if the x conversion operator had been specified. In C18, if the H
size specifier is present, the pointer is a 24-bit pointer; otherwise, it is a 16-bit pointer.

- P � The pointer to void the (data or program memory) argument is converted to an equivalent size unsigned
integer type and that value is processed as if the X conversion operator had been specified. In C18, if the H
size specifier is present, the pointer is a 24-bit pointer; otherwise, it is a 16-bit pointer.

- n � The number of characters written so far shall be stored in the location referenced by the argument, which
is a pointer to an integer type in data memory. The size of the integer type is determined by the size specifier
present for the conversion, or a 16-bit integer if no specifier is present.

- % � A literal percent sign will be written.

If the conversion specifier is invalid, the behavior is undefined.

Example
unsigned long long hex = 0x123456789ABCDEF0;
FSfprintf (fileptr, "This is a hex
number:%#20X%c%c", 0x12ef, 0x0D, 0x0A);
FSfprintf (fileptr, "This is a bin
number:%#20b%c%c", 0x12ef, 0x0D, 0x0A);
FSfprintf (fileptr, "%#26.22qx", hex);

// Output:
// This is a hex number: 0x12EF
// This is a bin number: 0b0001001011101111
// 0x0000123456789ABCDEF0

© 2007 Microchip Technology Inc. DS01045A-page 39

AN1045

APPENDIX C: LIBRARY DIRECTORY

TABLE C-1: LIBRARY DIRECTORY ORGANIZATION(1)

Directory Content

MDD File System-PIC18-CF-DynMem-UserDefClock Sample project for PIC18 using the CompactFlash®
interface, user-defined clock values and dynamic file
object allocation

MDD File System-PIC24-SD-StatMem-RTCC Sample project for PIC24F using the SD card interface,
the Real-Time Clock and Calendar (RTCC) module and
static file object allocation

Microchip\MDD File System C files for MDD file system
Microchip\PIC18 salloc C file for PIC18 dynamic memory allocation
Microchip\Include Contains miscellaneous include files, including a standard

data type definition file
Microchip\Include\MDD File System Include files for MDD File System
Microchip\Include\PIC18 salloc Include file for C18 dynamic memory allocation
Note 1: These directories are relative to the installation directory.

AN1045

DS01045A-page 40 © 2007 Microchip Technology Inc.

NOTES:

© 2007 Microchip Technology Inc. DS01045A-page 41

Information contained in this publication regarding device
applications and the like is provided only for your convenience
and may be superseded by updates. It is your responsibility to
ensure that your application meets with your specifications.
MICROCHIP MAKES NO REPRESENTATIONS OR
WARRANTIES OF ANY KIND WHETHER EXPRESS OR
IMPLIED, WRITTEN OR ORAL, STATUTORY OR
OTHERWISE, RELATED TO THE INFORMATION,
INCLUDING BUT NOT LIMITED TO ITS CONDITION,
QUALITY, PERFORMANCE, MERCHANTABILITY OR
FITNESS FOR PURPOSE. Microchip disclaims all liability
arising from this information and its use. Use of Microchip
devices in life support and/or safety applications is entirely at
the buyer�s risk, and the buyer agrees to defend, indemnify and
hold harmless Microchip from any and all damages, claims,
suits, or expenses resulting from such use. No licenses are
conveyed, implicitly or otherwise, under any Microchip
intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron,
dsPIC, KEELOQ, KEELOQ logo, microID, MPLAB, PIC,
PICmicro, PICSTART, PRO MATE, rfPIC and SmartShunt are
registered trademarks of Microchip Technology Incorporated
in the U.S.A. and other countries.

AmpLab, FilterLab, Linear Active Thermistor, Migratable
Memory, MXDEV, MXLAB, SEEVAL, SmartSensor and The
Embedded Control Solutions Company are registered
trademarks of Microchip Technology Incorporated in the
U.S.A.

Analog-for-the-Digital Age, Application Maestro, CodeGuard,
dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN,
ECONOMONITOR, FanSense, FlexROM, fuzzyLAB,
In-Circuit Serial Programming, ICSP, ICEPIC, Mindi, MiWi,
MPASM, MPLAB Certified logo, MPLIB, MPLINK, PICkit,
PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal,
PowerInfo, PowerMate, PowerTool, REAL ICE, rfLAB, Select
Mode, Smart Serial, SmartTel, Total Endurance, UNI/O,
WiperLock and ZENA are trademarks of Microchip
Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated
in the U.S.A.

All other trademarks mentioned herein are property of their
respective companies.

© 2007, Microchip Technology Incorporated, Printed in the
U.S.A., All Rights Reserved.

 Printed on recycled paper.

Note the following details of the code protection feature on Microchip devices:
� Microchip products meet the specification contained in their particular Microchip Data Sheet.

� Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
intended manner and under normal conditions.

� There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip�s Data
Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

� Microchip is willing to work with the customer who is concerned about the integrity of their code.

� Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
mean that we are guaranteeing the product as �unbreakable.�

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our
products. Attempts to break Microchip�s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts
allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Microchip received ISO/TS-16949:2002 certification for its worldwide
headquarters, design and wafer fabrication facilities in Chandler and
Tempe, Arizona; Gresham, Oregon and design centers in California
and India. The Company�s quality system processes and procedures
are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals, nonvolatile memory and
analog products. In addition, Microchip�s quality system for the design
and manufacture of development systems is ISO 9001:2000 certified.

DS01045A-page 42 © 2007 Microchip Technology Inc.

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://support.microchip.com
Web Address:
www.microchip.com
Atlanta
Duluth, GA
Tel: 678-957-9614
Fax: 678-957-1455
Boston
Westborough, MA
Tel: 774-760-0087
Fax: 774-760-0088
Chicago
Itasca, IL
Tel: 630-285-0071
Fax: 630-285-0075
Dallas
Addison, TX
Tel: 972-818-7423
Fax: 972-818-2924
Detroit
Farmington Hills, MI
Tel: 248-538-2250
Fax: 248-538-2260
Kokomo
Kokomo, IN
Tel: 765-864-8360
Fax: 765-864-8387
Los Angeles
Mission Viejo, CA
Tel: 949-462-9523
Fax: 949-462-9608
Santa Clara
Santa Clara, CA
Tel: 408-961-6444
Fax: 408-961-6445
Toronto
Mississauga, Ontario,
Canada
Tel: 905-673-0699
Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431
Australia - Sydney
Tel: 61-2-9868-6733
Fax: 61-2-9868-6755
China - Beijing
Tel: 86-10-8528-2100
Fax: 86-10-8528-2104
China - Chengdu
Tel: 86-28-8665-5511
Fax: 86-28-8665-7889
China - Fuzhou
Tel: 86-591-8750-3506
Fax: 86-591-8750-3521
China - Hong Kong SAR
Tel: 852-2401-1200
Fax: 852-2401-3431
China - Nanjing
Tel: 86-25-8473-2460
Fax: 86-25-8473-2470
China - Qingdao
Tel: 86-532-8502-7355
Fax: 86-532-8502-7205
China - Shanghai
Tel: 86-21-5407-5533
Fax: 86-21-5407-5066
China - Shenyang
Tel: 86-24-2334-2829
Fax: 86-24-2334-2393
China - Shenzhen
Tel: 86-755-8203-2660
Fax: 86-755-8203-1760
China - Shunde
Tel: 86-757-2839-5507
Fax: 86-757-2839-5571
China - Wuhan
Tel: 86-27-5980-5300
Fax: 86-27-5980-5118
China - Xian
Tel: 86-29-8833-7252
Fax: 86-29-8833-7256

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-4182-8400
Fax: 91-80-4182-8422
India - New Delhi
Tel: 91-11-4160-8631
Fax: 91-11-4160-8632
India - Pune
Tel: 91-20-2566-1512
Fax: 91-20-2566-1513
Japan - Yokohama
Tel: 81-45-471- 6166
Fax: 81-45-471-6122
Korea - Daegu
Tel: 82-53-744-4301
Fax: 82-53-744-4302
Korea - Seoul
Tel: 82-2-554-7200
Fax: 82-2-558-5932 or
82-2-558-5934
Malaysia - Kuala Lumpur
Tel: 60-3-6201-9857
Fax: 60-3-6201-9859
Malaysia - Penang
Tel: 60-4-646-8870
Fax: 60-4-646-5086
Philippines - Manila
Tel: 63-2-634-9065
Fax: 63-2-634-9069
Singapore
Tel: 65-6334-8870
Fax: 65-6334-8850
Taiwan - Hsin Chu
Tel: 886-3-572-9526
Fax: 886-3-572-6459
Taiwan - Kaohsiung
Tel: 886-7-536-4818
Fax: 886-7-536-4803
Taiwan - Taipei
Tel: 886-2-2500-6610
Fax: 886-2-2508-0102
Thailand - Bangkok
Tel: 66-2-694-1351
Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
Denmark - Copenhagen
Tel: 45-4450-2828
Fax: 45-4485-2829
France - Paris
Tel: 33-1-69-53-63-20
Fax: 33-1-69-30-90-79
Germany - Munich
Tel: 49-89-627-144-0
Fax: 49-89-627-144-44
Italy - Milan
Tel: 39-0331-742611
Fax: 39-0331-466781
Netherlands - Drunen
Tel: 31-416-690399
Fax: 31-416-690340
Spain - Madrid
Tel: 34-91-708-08-90
Fax: 34-91-708-08-91
UK - Wokingham
Tel: 44-118-921-5869
Fax: 44-118-921-5820

WORLDWIDE SALES AND SERVICE

09/10/07

	Introduction
	SD Cards and MMCs
	Interface
	Card File System
	FIGURE 1: Disk Structure
	Master Boot Record
	TABLE 1: Contents of the MBR

	Partition Entry in the MBR
	TABLE 2: Partition Table Entry

	Boot Sector
	TABLE 3: Boot Sector Entry

	Root Directory
	TABLE 4: Root Directory Entry
	TABLE 5: Possible Values for the First Character in the Directory File Name

	File Allocation Table
	TABLE 6: FAT Values
	FIGURE 2: FAT Cluster Chain

	Directories
	TABLE 7: Example Directory Path Strings

	Functions
	User Functions
	TABLE 8: File and disk Manipulation Functions

	Library Setup
	FAT16 Initialization and File Creation
	EXAMPLE 1: Initialization and File Creation Example for PIC18

	Memory Usage
	TABLE 9: File I/O Library Memory Usage(1)

	Comments
	Explanation of Data Types and Structures
	TABLE 10: Contents of the SearchRec Structure

	Unsupported Features
	References
	Conclusion
	Appendix A: The PIC18 Linker Script
	EXAMPLE A-1: PIC18 Linker Script

	Appendix B: API Details
	FSInit
	FSfclose
	FSfeof
	FSfopen
	FSfopenpgm
	FSfread
	FSfseek
	FSftell
	FSfwrite
	FSremove
	FSremovepgm
	FSrewind
	SetClockVars
	FSformat
	FSmkdir
	FSchdir
	FSrmdir
	FSgetcwd
	FindFirst
	TABLE B-1: File Name Formats
	TABLE B-2: Attribute Values
	FindFirstpgm
	FindNext
	FSfprintf

	TABLE B-3: Size Specifiers

	Appendix C: LIBRARY DIRECTORY
	TABLE C-1: Library Directory Organization(1)

	Worldwide Sales and Service

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /OK
 /CompatibilityLevel 1.2
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /3Of9Barcode
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /Arnprior
 /BaskOldFace
 /Batang
 /Bauhaus93
 /Baveuse
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /Berylium
 /Berylium-BoldItalic
 /BlackadderITC-Regular
 /BlueHighway
 /BlueHighway-Bold
 /BlueHighwayCondensed
 /BlueHighwayDType
 /BlueHighwayLinocut
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /BurnstownDam
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /CarbonBlock
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /CreditValley
 /CreditValley-Bold
 /CreditValley-BoldItalic
 /CreditValley-Italic
 /CurlzMT
 /EarwigFactory
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HandelGothicEFBold
 /HandelGothicEFMedium
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /HurryUp
 /Impact
 /ImprintMT-Shadow
 /INCONTROL
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /Kartika
 /Kredit
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /Map-Symbols
 /MaturaMTScriptCapitals
 /MICROCHIP
 /MicrosoftSansSerif
 /MinyaNouvelle
 /MinyaNouvelleBold
 /MinyaNouvelleBoldItalic
 /MinyaNouvelleItalic
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MonotypeSorts
 /MS-Mincho
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MT-Extra
 /MVBoli
 /Neuropol
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /PlanetBenson2
 /Playbill
 /PoorRichard-Regular
 /Pristina-Regular
 /Pupcat
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SimSun
 /SnapITC-Regular
 /Stencil
 /Stereofidelic
 /SybilGreen
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Teen
 /Teen-Bold
 /Teen-BoldItalic
 /Teen-Italic
 /TeenLight
 /TeenLight-Italic
 /TempusSansITC
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /VelvendaCooler
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Waker
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [1200 1200]
 /PageSize [612.000 792.000]
>> setpagedevice

