
International Rectifier

IRFP260N

HEXFET® Power MOSFET

- Advanced Process Technology
- Dynamic dv/dt Rating
- 175°C Operating Temperature
- Fast Switching
- Fully Avalanche Rated
- Ease of Paralleling
- Simple Drive Requirements

$V_{DSS} = 200V$ $R_{DS(on)} = 0.04\Omega$ $I_D = 50A$

Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-247 package is preferred for commercial-industrial applications where higher power levels preclude the use of TO-220 devices. The TO-247 is similar but superior to the earlier TO-218 package because of its isolated mounting hole.

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	50	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	35	A
I _{DM}	Pulsed Drain Current ①	200	
P _D @T _C = 25°C	Power Dissipation	300	W
	Linear Derating Factor	2.0	W/°C
V_{GS}	Gate-to-Source Voltage	±20	V
E _{AS}	Single Pulse Avalanche Energy@	560	mJ
I _{AR}	Avalanche Current①	50	А
E _{AR}	Repetitive Avalanche Energy①	30	mJ
dv/dt	Peak Diode Recovery dv/dt ③	10	V/ns
T _J	Operating Junction and	-55 to +175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	
	Mounting torque, 6-32 or M3 srew	10 lbf•in (1.1N•m)	

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		0.50	
$R_{\theta CS}$	Case-to-Sink, Flat, Greased Surface	0.24		°C/W
$R_{\theta JA}$	Junction-to-Ambient		40	

IRFP260N

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	200			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.26		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.04	Ω	V _{GS} = 10V, I _D = 28A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}$, $I_D = 250\mu A$
9fs	Forward Transconductance	27			S	V _{DS} = 50V, I _D = 28A ⊕
I _{DSS}	Drain-to-Source Leakage Current			25	μA	$V_{DS} = 200V, V_{GS} = 0V$
צצטי	Brain to Godroe Edakage Garrent			250	μΛ	$V_{DS} = 160V, V_{GS} = 0V, T_{J} = 150^{\circ}C$
lass	Gate-to-Source Forward Leakage			100	nA .	V _{GS} = 20V
I _{GSS}	Gate-to-Source Reverse Leakage			-100	11/4	$V_{GS} = -20V$
Qg	Total Gate Charge			234		I _D = 28A
Q _{gs}	Gate-to-Source Charge			38	nC	V _{DS} = 160V
Q _{gd}	Gate-to-Drain ("Miller") Charge			110		V _{GS} = 10V ④
t _{d(on)}	Turn-On Delay Time		17			V _{DD} = 100V
t _r	Rise Time		60			$I_D = 28A$
t _{d(off)}	Turn-Off Delay Time		55		ns	$R_G = 1.8\Omega$
t _f	Fall Time		48			$V_{GS} = 10V$ ④
1-	Internal Drain Inductance		5.0			Between lead,
L _D	Internal Dialit Inductance		3.0		nH	6mm (0.25in.)
	Internal Course Industrance		12		ПП	from package
L _S	Internal Source Inductance		13			and center of die contact
C _{iss}	Input Capacitance		4057			V _{GS} = 0V
Coss	Output Capacitance		603		pF	$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance		161			f = 1.0MHz

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions		
Is	Continuous Source Current			50		MOSFET symbol		
	(Body Diode)				-	50	A	showing the
I _{SM}	Pulsed Source Current			200		integral reverse		
	(Body Diode)①			200		p-n junction diode.		
V _{SD}	Diode Forward Voltage			1.3	V	$T_J = 25$ °C, $I_S = 28A$, $V_{GS} = 0V$ ④		
t _{rr}	Reverse Recovery Time		268	402	ns	$T_J = 25$ °C, $I_F = 28A$		
Q _{rr}	Reverse Recovery Charge		1.9	2.8	μС	di/dt = 100A/µs ④		
ton	Forward Turn-On Time	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)						

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- $\begin{tabular}{ll} @ & Starting $T_J=25^\circ$C, $L=1.5mH$\\ $R_G=25\Omega, I_{AS}=28A.$ \end{tabular}$
- $\label{eq:loss_def} \begin{tabular}{ll} \b$
- 4 Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.

International

TOR Rectifier

IRFP260N

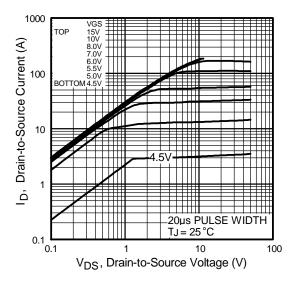


Fig 1. Typical Output Characteristics

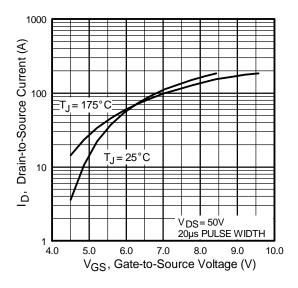


Fig 3. Typical Transfer Characteristics

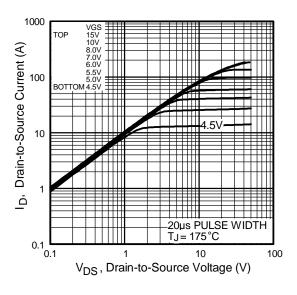
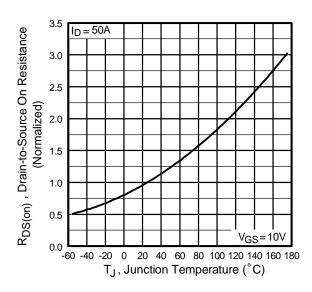
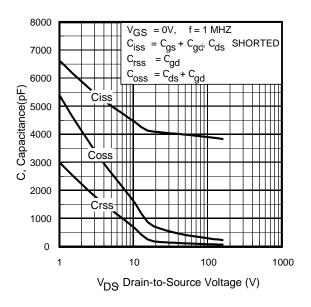
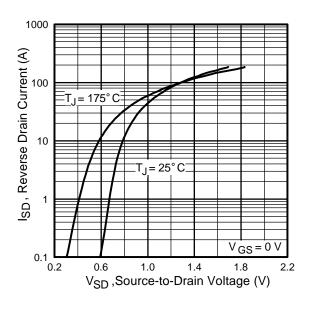




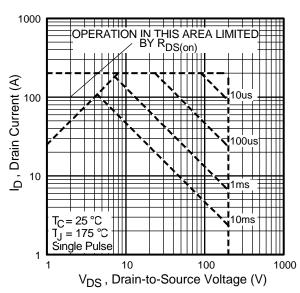
Fig 2. Typical Output Characteristics


Fig 4. Normalized On-Resistance Vs. Temperature

16 | ID = 28A | VDS = 160V | VDS = 100V | VDS = 100V | VDS = 40V |

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage



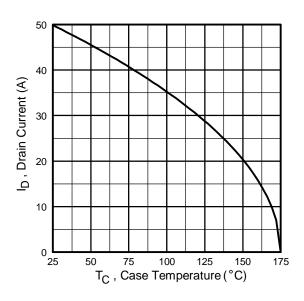

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

International

TOR Rectifier

IRFP260N

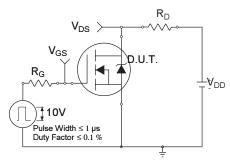


Fig 10a. Switching Time Test Circuit

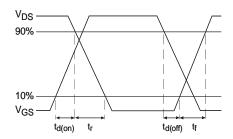


Fig 9. Maximum Drain Current Vs.
Case Temperature

Fig 10b. Switching Time Waveforms

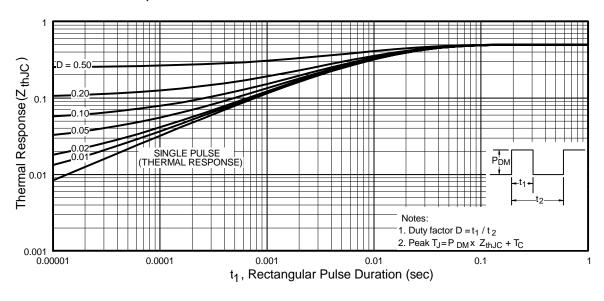


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

IRFP260N

International **TOR** Rectifier

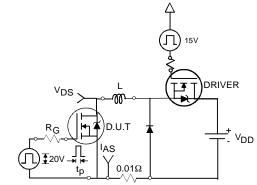


Fig 12a. Unclamped Inductive Test Circuit

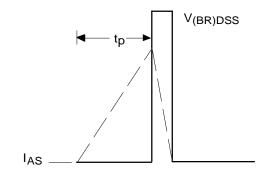


Fig 12b. Unclamped Inductive Waveforms

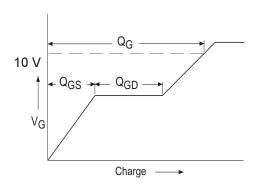


Fig 13a. Basic Gate Charge Waveform

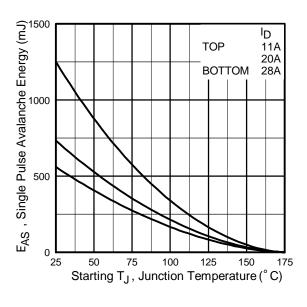


Fig 12c. Maximum Avalanche Energy Vs. Drain Current

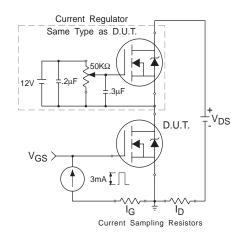
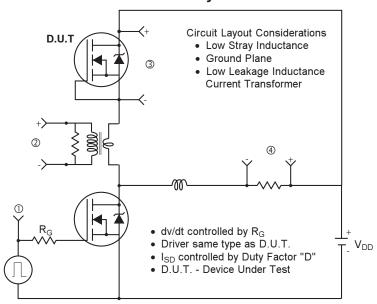
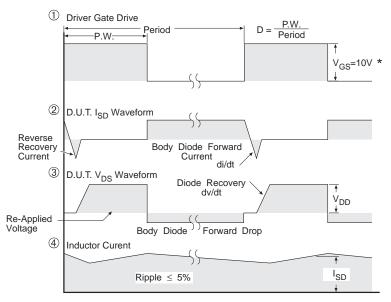




Fig 13b. Gate Charge Test Circuit

Peak Diode Recovery dv/dt Test Circuit

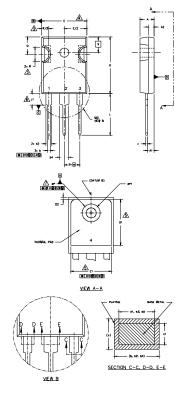
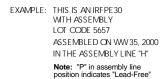
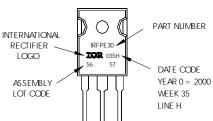

* V_{GS} = 5V for Logic Level Devices

Fig 14. For N-Channel HEXFETS

IRFP260N


International TOR Rectifier

TO-247AC Package Outline Dimensions are shown in millimeters (inches)



NOTES:								
1, DI	MENSIONING	AND TOLE	RANCING P	ER ASME Y	14.5M 19	94.		
2. DI	MENSIONS	ARE SHOWN	IN INCHES	[MILLIME TE	RS]			
<u> 3</u> . co	CONTOUR OF SLOT OPTIONAL.							
A. DI	MENSION D	& F DO N	OT INCLUDE	MOID FLA	SH. MOLE	FLASH SHALL NOT EXCEED .005" (0.127)		
PE	R SIDE, TH	ESE DIMEN	SIONS ARE	MEASURED	AT THE	OUTERMOST EXTREMES OF THE PLASTIC BOD		
	IERMAL PA	CONTOUR	OPTIONAL	WITHIN DIM	ENISONS	D1 & E1.		
<u>√6</u> . LE	AD FINISH	UNCONTROL	LED IN L1.					
√7.\ øF	TO HAVE	A MAXIMUN	DRAFT AN	IGLE OF 1.5	5 * TO TH	HE TOP OF THE PART WITH A MAXIMUM HOLE		
DI	AMETER OF	.154" [3.9	1].					
8. 0	JTLINE CON	FORMS TO	JEDEC OUTL	INE TO-24	17 WITH 1	THE EXCEPTION OF DIMENSION c.		
		DIMEN	ISIONS			1		
SYMBOL	INC	HES		ETERS	1			
	MIN,	MAX.	MIN.	MAX.	NOTES			
A	.183	.209	4.65	5.31	.,,	LEAD_ASSIGNMENTS		
A1	.087	.102	2.21	2.59				
A2	.059	.098	1.50	2,49		HEVEET		
b	.039	.055	0.99	1,40		HEXFET		
ь1	.039	.053	0.99	1.35		1 GATE		
b2	.065	.094	1.65	2.39		2 DRAIN		
b3	.065	.092	1.65	2.37		3 SOURCE		
b4	.102	,135	2.59	3.43		4 DRAIN		
b5	.102	.133	2.59	3.38				
c	,015	.034	0.38	0,86				
c1	,015	,030	0.38	0.76		IGBTs, CoPACK		
D	.776	.815	19.71	20.70	4			
D1	.515	-	13.08	-	5	1 GATE		
D2	,020	,030	0,51	0,76		2 COLLECTOR		
E	.602	.625	15,29	15.87	4	3. – EMITTER 4. – COLLECTOR		
E1	.540	-	15.72	-		4 COLLECTOR		
e	.215	BSC	5.46	BSC	1			
øk	.0	10	2.	54		DIODES		
L	.559	.634	14.20	16.10	1	DIODE O		
L1	.146	.169	3.71	4.29		1,- ANODE/OPEN		
N		3	7.62	BSC]	2 CATHODE		
øΡ	.140	,144	3.56	3.66	1	3 ANODE		
øP1	-	.275	-	6.98	1			
Q	.209	.224	5,31	5.69	1			
•	.178	.216	4.52	5,49				
R	1/0			BSC				

TO-247AC Part Marking Information

8

Data and specifications subject to change without notice.

This product has been designed and qualified for the Automotive [Q101] market.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information, 10/04

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/