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Implementing a PID Controller Using a PIC18 MCU
INTRODUCTION

Continuous processes have been controlled by
feedback loops since the late 1700’s. In 1788, James
Watt used a flyball governor on his steam engine to
regulate its speed. The Taylor Instrument Company
implemented the first fully functional Proportional,
Integral and Derivative (PID) controller in 1940.
Although feedback control has come a long way since
James Watt, the basic approach and system elements
have not changed. There are several elements within a
feedback system; for discussion purposes, we will use
a home heating temperature control system as our
model in the descriptions below.

• Plant – The physical heating and cooling parts of 
the system.

• Sensors – The devices (thermistors measuring 
temperature) that measure the variables within 
the Plant.

• Setpoint – This is a value (i.e., 70 degrees), 
which is converted to a voltage that the process 
drives towards.

• Error Signal – This is the difference between the 
response of the Plant and the desired response 
(Setpoint). In a house, the thermostat may be set 
to 70 degrees, but the temperature is actually 
65 degrees, therefore resulting in an error of 
5 degrees (Error = Setpoint – Measured).

• Disturbances – These are unwanted inputs to 
the Plant, which can be common. A disturbance 
would be an open entry door allowing a gust 
of cold air to blow in, quickly dropping the 
temperature and causing the heat to come on.

• Controller – Intentionally left for last, this is the 
most significant element of a control system. The 
Controller is responsible for several tasks and is 
the link that connects together all of the physical 
and nonphysical elements. It measures the output 
signal of the Plant’s Sensors, processes the 
signal and then derives an error based on the 
signal measurement and the Setpoint. Once the 
sensor data has been collected and processed, 
the result must be used to find PID values, which 
then must be sent out to the Plant for error 
correction. The rate at which all of this happens is 
dependent upon the Controller’s processing 
power. This may or may not be an issue 
depending on the response characteristic of the 
Plant. A temperature control system is much more 
forgiving on a Controller’s processing capabilities 
than a motor control system. Figure 1 shows a 
basic block diagram of a feedback control system.

FIGURE 1: FEEDBACK CONTROL LOOP
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OBJECTIVES

The objectives for this application note are to:

• discuss in detail the three elements of a PID 
Controller: Proportional, Integral and Derivative

• discuss a firmware PID routine on a PIC18 device
• discuss the implementation of a firmware-based 

PID that has the flexibility of adapting to different 
systems, but is capable of being specifically tuned 
later on

• discuss the details of tuning a PID once 
implementation has been completed

SOURCE CODE OVERVIEW

Before going further, let’s discuss how the PID source
code is configured. There is no specific way a PID
should be implemented in firmware; the methods
discussed in this application note only touch upon a few
of the many possibilities.

The PID routine is configured in a manner that makes
it modular. It is intended to be plugged into an
existing piece of firmware, where the PID routine is
passed the 8-bit or 16-bit error value (Desired Plant
Response – Measured Plant Response). Therefore,
the actual error value is calculated outside of the PID
routine. If necessary, the code could be easily modified
to do this calculation within the PID routine. The PID
can be configured to receive the error in one of two
ways, either as a percentage with a range of 0 to 100%
(8-bit), or a range of 0 to 4000 (16-bit). This option is
configured by a #define statement at the top of the

PID source code with the PID’s variable declarations.
The gains for proportional, integral and derivative all
have a range of 0 to 15. For resolution purposes, the
gains are scaled by a factor of 16 with an 8-bit
maximum of 255. A general flow showing how the PID
routine would be implemented in the main application
code is presented in Figure 2.

There were two methods considered for handling the
signed numbers. The first method was to use signed
math routines to handle all of the PID calculations. The
second was to use unsigned math routines and
maintain a sign bit in a status register. The latter
method was implemented. There are five variables that
require a sign bit to be maintained:

• error

• a_error

• p_error

• d_error

• pid_error

All of these sign bits are maintained in the pid_stat1
register (see Register 1).

Although all of the PID status bits are shown in
Register 1 and Register 2, the user needs only to be
concerned with the error sign bit (err_sign) and the PID
final result sign bit (pid_sign). The err_sign bit is
inserted into the PID routine along with the error. The
user will check the pid_sign bit to determine which
direction the Plant must be driven.

FIGURE 2: PID FIRMWARE IMPLEMENTATION
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Firmware Variables and Constants

The list of firmware variables and constants and their
definitions that are discussed in this application note
are shown in Table 1.

TABLE 1: FIRMWARE VARIABLES AND CONSTANTS

Variable/Constant Type Definition

error0:error1 Error Variable 16-bit variable, difference between the Setpoint and measured output of 
the Plant

a_error0:a_error1 Error Variable 16-bit variable, accumulative error which is the sum of all past errors

d_error0:d_error1 Error Variable 16-bit variable, difference between error0:error1 and 
p_error0:p_error1

p_error0:p_error1 Error Variable 16-bit variable, value of the last error

a_err_1_lim Error Variable 8-bit constant defining the accumulative error limits

a_err_2_lim Error Variable 8-bit constant defining the accumulative error limits

kd Gains 8-bit variable, derivative gain, max. = 15 (16 levels)

ki Gains 8-bit variable, integral gain, max. = 15 (16 levels)

kp Gains 8-bit variable, proportional gain, max. = 15 (16 levels)

pid_stat1 Status Register 8-bit variable, status bit register (see Register 1)

pid_stat2 Status Register 8-bit variable, status bit register (see Register 2)

deriv0:deriv2 Terms 24-bit variable, value of the derivative term

integ0:integ2 Terms 24-bit variable, value of the integral term

pid_out0:pid_out2 Terms 24-bit variable, final PID results

prop0:prop2 Terms 24-bit variable, value of the proportional term

timer1_hi Time Base 8-bit constant loaded into the TMR1H register

timer1_lo Time Base 8-bit constant loaded into the TMR1L register

Note: In 16-bit variables, the first variable is the Most Significant Byte (MSB), whereas the second variable is the
Least Significant Byte (LSB). For example, in the variable error0:error1, error0 = MSB 8-bit and
error1 = LSB 8-bit. 

In 24-bit variables, the first variable is the MSB, whereas the last variable is the LSB. For example, in the
variable pid_out0:pid_out2, pid_out0 = MSB 8-bit and pid_out2 = LSB 8-bit.
 2004 Microchip Technology Inc. DS00937A-page 3
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Data Registers

The pid_stat1 and pid_stat2 Data registers contain the
individual PID status bits. The following two registers
provide brief bit descriptions and their associated
values.

REGISTER 1: pid_stat1 DATA REGISTER            

REGISTER 2: pid_stat2 DATA REGISTER            

pid_sign d_err_sign mag p_err_sign a_err_sign err_sign a_err_zero err_zero

bit 7 bit 0

bit 7 pid_sign: Indicates sign of final PID result
1 = Result was positive
0 = Result was negative

bit 6 d_err_sign: Indicates sign of the derivative term

1 = Result was positive
0 = Result was negative

bit 5 mag: Indicates which variable is greater in magnitude (AARGB or BARGB)
1 = Result was AARGB
0 = Result was BARGB

bit 4 p_err_sign: Indicates sign of the previous error
1 = Result was positive
0 = Result was negative

bit 3 a_err_sign: Indicates sign of the accumulative error

1 = Result was positive
0 = Result was negative

bit 2 err_sign: Indicates sign of the error (input into the PID)
1 = Result was positive
0 = Result was negative

bit 1 a_err_zero: Indicates if the accumulative error is equal to zero or non-zero
1 = Result was zero
0 = Result was non-zero

bit 0 err_zero: Indicates if the error is equal to zero or non-zero

1 = Result was zero
0 = Result was non-zero

— — — — — d_err_z — —

bit 7 bit 0

bit 7-3, 1-0 Unimplemented

bit 2 d_err_z: Indicates if the data error is equal to zero
1 = Result was zero
0 = Result was non-zero
DS00937A-page 4  2004 Microchip Technology Inc.
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PID Routine Flowcharts
Flowcharts for the PID main routine and the PID
Interrupt Service Routine (ISR) functions are shown in
Figure 3 and Figure 4 (see following pages). 

The PID main routine is intended to be called from
the main application code that updates the
error0:error1 variable, as well as the pid_stat1 error
sign bit. Once in the PID main routine, the PID value will
be calculated and put into the pid_out0:pid_out2

variable, with its sign bit in pid_stat1. The value in
pid_out0:pid_out2 is converted by the application
code to the correct value so that it can be applied to the
Plant. 

The PID ISR is configured for the PIC18 device’s high
priority interrupt at location 0x0008. The instructions
within this ISR can be placed into an existing ISR, or
kept as is and plugged into the application.

FIGURE 3: MAIN PID ROUTINE (PIDMain)
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FIGURE 4: PID INTERRUPT ROUTINE (PidInterrupt)
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Proportional

The proportional term is the simplest of the three and is
also the most commonly found control technique in a
feedback system. The proportional gain (kp) is
multiplied by the error. In this application note, the error
is a 16-bit value, error0:error1. The amount of
correction applied to the system is directly proportional
to the error. As the gain increases, the applied correc-
tion to the Plant becomes more aggressive. This type
of Controller is common for driving the error to a small,
but non-zero value, leaving a steady state error. This is
the reason for proportional control not being enough in
some systems, thereby requiring integral and deriva-
tive control to come into play, separately or together
(i.e., PI, PD or PID Controller).

IMPLEMENTATION

As mentioned earlier, the proportional is the simplest
term. The error is multiplied by the proportional gain,
error0:error1 * kp. This is accomplished by the
16 * 16 multiplication routine. The result is stored in the
24-bit variable, prop0:prop2. This value will be used
later in the code to calculate the overall value needed
to go to the Plant.

EQUATION 1: PROPORTIONAL TERM

Integral

Unlike proportional control, which looks at the present
error, integral control looks at past errors. Given this,
the accumulative error (sum of all past errors) is used
to calculate the integral term, but at fixed time intervals.
Basically, every time the fixed interval expires, the
current error at that moment is added to the a_error
variable. A temperature system would require a longer
sample period than a motor system because of the

sluggish response in a temperature controlled environ-
ment. If the integral sample period was too fast in the
temperature system, the accumulative error would add
too quickly to give the system a chance to respond,
thereby not allowing it to ever stabilize. Another
element in integral control to consider is ‘wind-up’.
Wind-up occurs when the accumulative error keeps
increasing because the Plant output is saturated. This
event can be avoided by setting limits to the accumula-
tive error. It can also be eliminated by not executing the
integral term when the Plant output is saturated.
Another characteristic is excessive gain, that can
create an unstable condition within the system, causing
it to oscillate. The integral gain must be thoroughly
tested for all possible situations to find the best overall
value. In conclusion, as the accumulative error
increases, the integral term has a greater effect on the
Plant. In a sluggish system, this could dominate the
value that is sent to the Plant.

IMPLEMENTATION

To obtain the integral term, the accumulated error
must be retrieved. The accumulated error
(a_error0:a_error2) is the sum of past errors. For
this reason, the integral is known for looking at a
system’s history for correction. Refer to Table 2 for
details on how a_error is accumulated.

Each time the PID routine receives an error, it may or
may not be added to the accumulated error variable.
This is dependant upon the Timer1 overflow rate. If
Timer1 overflowed, then the error at that moment will
be added to the accumulated error variable. The
Timer1 overflow rate is interrupt driven and is config-
ured as a high priority interrupt. The TMR1H:TMR1L
registers are loaded with values defined by the
constants, timer1_hi and timer1_lo. The values
for these constants should be based on the Plant’s
response. The accumulated error will be multiplied by
the integral gain, a_error0:a_error2 * ki and the
result is stored in integ0:integ2.

TABLE 2: a_error ACCUMULATION EXAMPLE

prop0:prop2 = kp * error0:error1

Time Error Timer1 Overflow Accumulated Error

t = n 10% No x%

t = n + 1 8% No x%

t = n + 2 12% Yes x + 12%

t = n + 3 9% No (x% + 12%)

t = n + 4 6% No (x% + 12%)

t = n + 5 4% Yes (x% + 12%) + 4%

t = n + ...
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To avoid integral wind-up, accumulative error limits
were installed (a_err_1_Lim:a_err_2_Lim). When
the accumulative error is calculated, the result is com-
pared against the limit variables. If the calculated value
exceeds the limits, the accumulative error is made
equal to the value that is determined by the user in the
variable definition at the beginning of the code.

EQUATION 2: INTEGRAL TERM

Derivative

As previously mentioned, the proportional term works
on the present error, the integral term works on past
errors and the derivative term works on the present and
past error to forecast a future response of the system.
The derivative term makes an adjustment based on the
rate at which the Plant output is changing from its
Setpoint. A notable characteristic in this type of control
is when the error is constant, or at the maximum limit,
the effect is minimal. There are some systems where
proportional and/or integral do not provide enough
control. In these systems, adding in the derivative term
completes the control requirements.

IMPLEMENTATION

The derivative term is calculated in similar fashion to
the integral term. Considering that the derivative term
is based on the rate at which the system is changing,
the derivative routine calculates d_error. This is the
difference between the current error and the previous
error. The rate at which this calculation takes place is
dependant upon the Timer1 overflow. The derivative
term can be extremely aggressive when it is acting on
the error of the system. An alternative to this is to cal-
culate the derivative term from the output of the system
and not the error. In this application note, the error will
be used. To keep the derivative term from being too
aggressive, a derivative counter variable has been
installed. This variable allows d_error to be calculated
once for an x number of Timer1 overflows (unlike the
accumulated error, which is calculated every Timer1
overflow).

To get the derivative term, the previous error is sub-
tracted from the current error (d_errro0:d_error1 =
error0:error – p_error0:p_error1). The differ-
ence is then multiplied by the derivative gain (kd) and
this result is placed in deriv0:deriv2, which is
added with the proportional and integral terms.

Tuning

There are several different ways to tune a PID
Controller for system optimization. The code in this
application note is loosely defined, giving it the
flexibility to be tuned for a specific application (i.e.,
motor control, temperature, actuator, etc.). 

Tuning a PID Controller can be somewhat difficult and
time consuming and should be completed in a
systematic fashion. 

1. Run the system in an open loop and measure its
response over time. Based on the measured
response, you will get an idea for which PID
term is needed most. 

2. Determine the application requirements: Plant
response time, which PID term will have the
most affect and accumulative error limits. 

3. Determine how often the a_error and
d_error terms should be calculated; this will
dictate the values loaded into the Timer1 and
derivative counter registers. 

In the current configuration, d_error is calculated
once for every a_error calculation. Should this be
less or more, or vice versa? Finally, once these
variables are decided, the PID gains can be
experimented with. Start with the smallest gains (i.e.,
kp = 1 * 16, ki = 1 * 16, kd = 1 * 16), slowly
increasing these values until the desired output is
reached. With a few code modifications, it is possible to
make the Controller a proportional only Controller and
tune this to an optimal value. Then it is possible to add
the other terms one at a time, optimizing each time. 

EQUATION 3: DERIVATIVE TERM

integ0:integ2 = ki * a_error0:a_error1 (a_error0:a_error1 = error0:error1 + error0:error1 + …error0:error1)

deriv0:deriv2 = kd * d_error0:d_error1 (d_error0:d_error1 = error0:error – p_error:p_error1)
DS00937A-page 8  2004 Microchip Technology Inc.
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The system response of a temperature controlled
environment is shown in Figures 5 through 7. Figure 5
shows the graphic response for a proportional only
feedback loop. As shown, none of the gain values can
reach the input signal and maintain that level. All four
gain values have settled at a non-zero value, as
previously discussed.

FIGURE 5: PROPORTIONAL ONLY GRAPHIC RESPONSE
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Figure 6 shows the graphic response of a Proportional/
Integral (PI) Controller. The high integral gain
dominates the response (see line with diamond
shapes). 

With a tuned proportional and integral gain, the system
does settle to its Setpoint, which is why PI control is
adequate in many systems. The disadvantage is the
time required for it to settle (t = 3), which brings us to
PID control.

FIGURE 6: PROPORTIONAL/INTEGRAL (PI) CONTROLLER GRAPHIC RESPONSE
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Figure 7 shows the graphic response of a PID
Controller. This graph is very similar to the PI graph
(Figure 6), except that the PID control takes half as
long as the PI control to settle (t = 1.5) as the Setpoint.

FIGURE 7: PID CONTROLLER GRAPHIC RESPONSE
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CONCLUSION

As mentioned in the introduction, the Controller’s
processing capabilities will dictate the system’s ability
to respond to the error. Table 3 shows a list of PID func-
tions, each with the amount of instruction cycles and
time required. In cases where the Plant response is
sluggish, it may be possible to decrease the processor
speed and save on power, but still be able to execute
the PID routine in acceptable time.

TABLE 3: PID FUNCTIONS

The measurements shown in Table 3 can vary,
depending on the size of the error and how much of the
math routines will be used. The measurements also
reflect an error of 6% sent to the PID routine.

After the code development for this application note
was completed, the PID routine was implemented on
the PIC18F4431 Motor Control board (PICDEM™ MC).
For the initial start of the motor, the PID gains were:
kp = 96, ki = 80 and kd = 16. These were scaled
values. After starting the motor and running it close to
its set speed, the integral gain was changed to 144.
The accumulated error was calculated every
millisecond, initiated by a Timer1 overflow. The delta
error (d_error) was calculated every 4 ms (derivative
counter = 4).

Function Instruction Cycles Elapsed Time (µS) (TCY at 40 MHz)

PID Main 437 43.7

Proportional 50 5.0

Integral 52 5.2

Derivative 52 5.2

GetPidResult 270 27

GetA_Error 70 7.0

PID Interrupt 184 18.4
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APPENDIX A: SOURCE CODE

The complete source code, including the PID
Application Maestro™ module, any demo applications
and necessary support files, are available for download
as a single archive file from the Microchip corporate
web site at:

www.microchip.com
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