
ENGR 2210 Sec 03 February 15, 2005

Building a Simple HID Peripheral

2.1 Objectives

In this lab, you construct and modify another low-speed USB peripheral around a PIC16C745
microcontroller. This device is a USB keyboard, which conforms to the human interface
device (HID) class definition.

2.2 HID Class Devices

The human interface device (HID) class includes many familiar devices, such as mice, touch-
pads, gamepads, and keyboards. Many other devices are part of the HID class as well,
some of which have seemingly very little to do with human/computer interfaces, such as
thermometers and voltmeters. HID class devices communicate data to the host through pre-
defined forms, called reports. In addition to the default control pipe, EP0, which is required
of all USB devices, HID class devices must also posess an interrupt IN pipe through which
the host receives input reports from the device at regular intervals. Some HID class devices
occasionally receive output reports from the host, which the device will use to modify its
behavior in some fashion.

In this lab, you will be building a very basic USB keyboard that, once configured by
the host, continually types out foobar followed by a space as long as it remains plugged in.
This keyboard will also have one key (connected to RA0), which the host will interpret as
the caps lock key, and one status LED (connected to RA1), which the host will update to
reflect the status of the caps lock key. The host polls a USB keyboard at a regular interval
(e.g., once every 10 ms). In response, the keyboard reports the state of eight modifier keys
and the keycodes of up to six keys that are pressed simultaneously through an interrupt IN
endpoint (i.e., EP1 IN). If one of the keycodes reported to the host were the caps lock key,
the host would toggle the state of the caps lock LED send an output report via the default
control pipe (i.e., EP0) that indicates the state of all of the status LEDs on the keyboard.
Details of the format of the standard USB keyboard reports can be found on p. 56, p. 60,
and pp. 62–63 of the Device Class Definition for Human Interface Devices Version 1.11.
A table of all of the keycodes on a standard USB keyboard is located on pp. 53–57 of the
HID Usage Tables Version 1.11. Both doucments are available electronically from the USB
Implementers Forum. Links to both documents are on the course web page.

2.3 Building a Simple HID Class Peripheral

Obtain the lab2.zip firmware kit from the course web site. Create a new MPLAB project
file and insert the source files in the appropriate locations. Build the firmware and program

1



1

2

3

4

5

6

7

8

9

10

11

12

13

14

28

27

26

25

24

23

22

21

20

19

18

17

16

15

 MCLR

 RA0

 RA1

 RA2

 RA3

 RA4

 RA5

 VSS

 OSC1

 OSC2

 RC0

 RC1

 RC2

 VUSB

RB7

RB6

RB5

RB4

RB3

RB2

RB1

RB0

VDD

VSS

RC7

RC6

D+

D-

P
IC

16
C

74
5

6 MHz

22 pF

22 pF

0.22 mF

1.5 kW

0.1 mF

 D+

 D-

 +5V

 GND

470 W

1.5 kW

LED

Figure 2.1: PIC16C745 lab 2 circuitry.

a PIC16C745 with it. Construct the circuit around the PIC16C745 shown in Fig. 2.1 in a
solderless breadboard. Launch an application, such as Microsoft Word or WinEdt that can
capture keystrokes and plug in your newly constructed peripheral. When your peripheral is
plugged into a USB port on the host, the host should recognize it as a USB keyboard and it
will automatically assign an HID class driver that is appropriate to it. You should see lots
of foobar in the window of your text editor. If you hit the caps lock key, you should see
the status LED turn on and you should see lots of FOOBAR in your text editor.

2.4 Modifying Your Peripheral

Now, you will need to make a modification to the firmware to add a new functionality to
your peripheral. You could add another key to one of the PORTA pins, which interrupts the
continual stream of foobar being sent to the host. You could move the keycode look-up table
to a segment of data memory and add a vendor specific request to the firmware to change the
keycodes being typed out by the peripheral. If you choose to add a vendor specific request
to the firmware, you will have to find the device from your host-side application with the
Vendor ID 0x04D8 and Product ID 0x0002; the Product ID for the Lab 1 peripheral was
0x0001.

2


