
Shannon Information Capacity Theorem and Implications on Mac

32.  Shannon Information Capacity Theorem and Implications

Shannon Information Capacity Theorem

Shannon’s information capacity theorem states that the channel capacity of a continuous
channel of bandwidth W Hz, perturbed by bandlimited Gaussian noise of power spectral
density n0 /2, is given by

Cc = W log2(1 + S
N

) bits/s (32.1)

where S is the average transmitted signal power and the average noise power is

N = 
−W

W
∫ n0/2 dw = n0W (32.2)

Proof [1].

Suppose that we transmit one of a set of M equiprobable signals of bandwidth W  in time
T.  Each signal thus represents log2M bits.  According to the sampling theorem, each

signal can be represented by n = 2WT samples in T seconds.  Assume that the
maximum average signal power is S and the noise power is N.  In the geometrical
representation, all the transmitted signals must be restricted to an n-dimensional

hypersphere of radius ST 0.5 around the origin corresponding to their maximum energy.
Similarly, all the received signals are restricted to an overall signal space of radius

[(S + N)T]0.5.  This is shown in Figure 32.1.  

Figure 32.1  Signal space for calculating channel capacity.

A noise power greater than NT will cause incorrect detection.  In the presence of noise,
the channel capacity can be determined by the number of signals that can be accommodated
in the signal space.

The volume of an n-dimensional hypersphere is proportional to rn, where r is the radius
of the hypersphere.  Hence the number of signals that can be accommodated in an n-
dimensional signal space is

M < [(S + N)T]0.5n / (NT)0.5n

< [1 + (S/N)]0.5n

The information per signal is
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log2M < 
n

2
log2[1 + (S/N)]

and the channel capacity is

Cc = 
1
T

log2M

< 
n

T2
log2[1 + (S/N)]

< Wlog2[1 + (S/N)]

Example 32.1

If W = 3 kHz and S/N is maintained at 30 dB for a typical telephone channel, the
channel capacity Cc is about 30 kbits/s.

The theorem implies that error-free transmission is possible if we do not send information
at a rate greater than the channel capacity.  Thus, the information capacity theorem defines
the fundamental limit on the rate of error-free transmission for a power limited, bandlimited
Gaussian channel.

Figure 32.2 shows the general form of encoding scheme suggested by Shannon.  A binary
sequence of length Rb bits in a second are encoded into a binary sequence of length

Rb Tb bits in Tb seconds before transmission.  However, the design of the encoder and

decoder is left unspecified.

Figure 32.2  Error-free transmission system model.

It can be seen that the encoding time is Tb seconds.  There is a encoding delay of Tb
seconds in transmission and a decoding delay of Tb seconds at the receiver.  A total delay

of 2 Tb seconds is entailed.  We can reduce the delay by decreasing the value of Tb, but

we require more channel bandwidth for transmission. 

In the case of no bandwidth limitation, it can be shown that the channel capacity approaches
a limiting value C ∞  given by

C∞  = lim
W →∞

 Cc = 
S

n0
loge2 = 1.44 

S

n0
(32.3)

The channel capacity variation with bandwidth is shown in Figure 32.3.

Figure 32.3  Channel capacity variation with bandwidth.
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Proof.

Cc = W log2(1 + S/N)

= W log2(1 + 
S

n W0
)

= (
S

n0
)(

n W

S
0 ) log2(1 + 

S

n W0
)

= (
S

n0
) log2[(1 + 

S

n W0
)(n0W/S)]

Since lim
x →0

 (1 + x)1/x = e, we have

Cc = 
S

n0
 log2e = 1.44 

S

n0

Implications [2, 3]

1. Capacity of M-point QAM Signals

In bandlimited channels, how does the capacity of M-point QAM signals compare to
Shannon’s information capacity limit?  In this example, we derive the capacity of M-ary
QAM signals.  Assume that each M-point QAM signal symbol has a duration of T
seconds.  We can represent each M-point QAM signal by log2M bits.  Thus, we have

log2M bits/symbol,

1/T  symbols/s,

and the transmission rate Rb is

Rb = (log2M)/T bits/s (32.4)

Suppose that the bandwidth of the M-ary QAM signals is set equal to the channel
bandwidth W.  Using the definition of the null-to-null bandwidth, the bandwidth of the

M -ary QAM signals is W = (fc + 
1
T

) - (f c  - 
1
T

) = 2/T, where fc is the carrier

frequency.  Hence, we may express the transmission rate of equation (32.4) as

Rb = 
W

2
log2 M bits/s (32.5)
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For a fixed spacing between adjacent signals, increasing the value of M also increases the
average transmitted signal power S.  Accordingly, we increase the signal-to-noise ratio.

Let M  = K ' S
N

, where K' varies with error rate and is a constant small enough to

achieve negligible error rate.  We have

Rb = 
W

2
log 2(K' S

N
) bits/s (32.6)

The capacity of an M-ary QAM system approaches the Shannon channel capacity Cc if

the average transmitted signal power in the QAM system is increased by a factor of 1/K'.  

The Shannon information capacity theorem tells us the maximum rate of error-free
transmission over a channel as a function of S, and equation (32.6) tells us what is
achievable for a practical M-ary QAM system.

2. Capacity of an n-ary PCM system

In this example, we derive the capacity of an n-ary PCM system.  Assume that an input
analogue  signal of bandwidth W Hz is sampled at the minimum Nyquist sampling rate of

2W samples/s and the samples are uniformly quantised to M = nm levels.

We can represent each M-level signal sample by  m n-ary symbols.  This is shown in
Figure 32.4.

Figure 32.4  Representations of quantised sample.

Thus we have

2W samples/s,

M = nm levels/sample,
m symbols/sample,
log2n bits/n-ary symbol, and

m log2n bits/sample.

The symbol rate is  2W m symbol/s and the information transmission rate is

Rb = 2W m log2n bits/s (32.7)

For error-free transmission, the channel capacity Cc > Rb.  

Observation:  For fixed values of n and m, the capacity  Rb is proportional to W.
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Let S be the average transmitted signal power and a be the spacing between n-levels.
We assume that the n discrete levels are equally likely and have the values + a/2, + 3a/2,
..., + (n-1)a/2.  The average transmitted signal power is

S = (1/n){( a/2)2 + (3a/2)2 + ... + [(n - 1)a/2]2} x 2

= a2(n2 - 1) /12 (32.8)

Expressing n in terms of S and substituting into (32.7), we get

Rb = W log2 (1 + 12S

a2
) (32.9)

To maintain a negligible error rate, there must be a finite separation a between adjacent n-

ary levels.  Call this separation a = Kσ, where K varies with the error rate and is a
constant large enough to allow recognition of individual levels with negligible error rate,

and σ2 = N is the noise power.  We have

Rb = W log2 (1 + 12S

K
2
N

) bits/s (32.10) 

Observation:  We can trade-off bandwidth for signal-to-noise ratio for a system with given
channel capacity  Cc = Rb.

The capacity expression of an n-ary PCM system is identical to the Shannon channel
capacity expression if the average transmitted signal power in the PCM system is increased

by a factor of K2/12.
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Figure 32.1  Signal space for calculating channel capacity.
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Figure 32.2  System model to achieve error-free transmission.
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Figure 32.3   Channel capacity variation with bandwidth.
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Figure 32.4  Representations of quantised sample.  
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