Shannon Information Capacity Theorem and Implications on Mac

32. Shannon Information Capacity Theorem and Implications
Shannon Information Capacity Theorem

Shannon’s information capacity theorem states that the channel capacityrdgfraious
channelof bandwidthW Hz, perturbed bypandlimited Gaussian noisd power spectral
densityng /2, is given by

S )

Cc=Wlogp(1 + N bits/s (32.1)

whereSis the average transmitted signal power and the average noise power is

w
N= [ ng/2dw=ngW (32.2)
_VV

Proof [1].

Suppose that we transmit one of a sa¥lagquiprobable signals éandwidthW in time

T. Each signal thus represefigo>M bits. According to the sampling theorem, each
signal can be represented by= 2V T samples inT seconds Assume that the
maximum average signal power $and the noise power §. In the geometrical
representation, all the transmitted signals must be restricted tedamensional
hypersphere of radiu8T0-5 around the origin corresponding to their maximum energy.
Similarly, all the received signals are restricted to an overall signal space of radius
[(S+N)T]0-5 This is shown in Figure 32.1.

Figure 32.1 Signal space for calculating channel capacity.
A noise power greater thaiT will cause incorrect detection. In the presence of noise,

the channel capacity can be determined by the number of signals that can be accommodated
in the signal space.

The volume of am-dimensional hypersphere is proportionatio wherer is the radius
of the hypersphere. Hence the number of signals that can be accommodated in an
dimensional signal space is

M < [(S+N)T]0-5n/ (NT)0-5n
<[1+@N)9-:

The information per signal is
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l0g2M < ZlogalL + (SN)]
and the channel capacity is

1
= ~logoM

Ce 1092
< %Iogz[l + (SN)]
<Wogy[1 + (YN)] O

Example 32.1

If W =3 kHz andS/N is maintained at 30 dB for a typical telephone channel, the
channel capacit¢ is about 30 kbits/s.

The theorem implies thatror-free transmissiois possible if we do not send information

at a rate greater than the channel capacity. Thus, the information capacity theorem defines
the fundamental limit on the rate of error-free transmissioa power limited, bandlimited
Gaussian channel

Figure 32.2 shows the general form of encoding scheme suggested by Shannon. A binary
sequence of lengtRy bits in a seconareencoded intca binary sequence of length

Rp Tp bits in T seconddefore transmission. However, the design of the encoder and
decoder is left unspecified.

Figure 32.2 Error-free transmission system model.

It can be seen that the encoding timdjsseconds. There isencoding delayf Ty
seconds in transmission andecoding delayf Tp seconds at the receiver. A total delay
of 2 Tp seconds is entailed. We ceatlucethe delay by decreasing the valuelgf but
we requiremorechannebandwidthfor transmission.

In the case of no bandwidth limitation, it can be shown that the channel capacity approaches
a limiting valueC o, given by

C_ = lm Ccziloge2:1.44§ (32.3)
no no

o — 00
The channel capacity variation with bandwidth is shown in Figure 32.3.
Figure 32.3 Channel capacity variation with bandwidth.
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Proof.

Cc =Wlogo(1 +9N)
S
=Wlogy(1 + —
92( noW)

= (W S
= (G logalt + - )

- (> S_y(now!
() loealtt + S (noWS)]

Since Iim0 (1 +x)1/X = ¢, we have
X -

Ce = ) logpe = 1.44i O
no no

Implications [2, 3]

1. Capacity oM-point QAM Signals

In bandlimited channels, how does the capacitigboint QAM signals compare to
Shannon’s information capacity limit? In this example, we derive the capadtyaoy
QAM signals. Assume that eadh-point QAM signal symbol has a duration ©of

seconds. We can represent eslichoint QAM signal bylogoM bits. Thus, we have

logoM bits/symbol,
1/T symbols/s,

and the transmission rafip is
Rp = (logoM)/T bits/s (32.4)

Suppose that the bandwidth of tMeary QAM signals is set equal to the channel
bandwidthW. Using the definition of the null-to-null bandwidth, the bandwidth of the

M-ary QAM signals isW = (fc + %) - (fe - %) = 2[T, wherefs is the carrier

frequency. Hence, we may express the transmission rate of equation (32.4) as

Rp = %Iogz M bits/s (32.5)
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For a fixed spacing between adjacent signals, increasing the valualsd increases the
average transmitted signal powr Accordingly, we increase the signal-to-noise ratio.

Let M = K'Ni, whereK' varies with error rate and is a constantall enough to
achieve negligible error rate. We have

Rp = % log 2(K'N§) bits/s (32.6)

The capacity of aM-ary QAM system approaches the Shannon channel cazgcity
the average transmitted signal power in the QAM system is increased by a fadtor of 1/

The Shannon information capacity theorem tells us the maximum rate of error-free
transmission over a channel as a functior50and equation (32.6) tells us what is
achievable for a practicM-ary QAM system.

2. Capacity of am-ary PCM system

In this example, we derive the capacity ofraary PCM system. Assume that an input
analogue signal of bandwidti Hz is sampled at the minimum Nyquist sampling rate of

2W samples/s and the samplesanéormly quantised tdv = nM |evels.

We can represent eadh-level signal sample bym n-ary symbols. This is shown in
Figure 32.4.

Figure 32.4 Representations of quantised sample.
Thus we have

2W samples/s,
M =nMevels/sample,

m symbols/sample,
logon bitsh-ary symbol, and
m logpn bits/sample.
The symbol rate i2W msymbol/sand the information transmission rate is
Rp = 2W mlogon bits/s (32.7)

For error-free transmission, the channel capaCity Rp.

Observation: For fixed values nfandm, the capacityRy, is proportional to\.
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Let S be the average transmitted signal power ar the spacing betweenlevels.
We assume that thediscrete levels are equally likely and have the valua, + 3a/2,
...+ (n-1)a/2. The average transmitted signal power is

S = (h){(a/2)2 + (3/2)2 + ... + [ - 1)a/2]2} x 2
=a2(n2-1) /12 (32.8)

Expressingn in terms ofSand substituting into (32.7), we get

Rp =W logy (1 + 2—225) (32.9)

To maintain a negligible error rate, there must be a finite sepagahietween adjacemnt

ary levels. Call this separatian= Ko, whereK varies with the error rate and is a
constantargeenough to allow recognition of individual levels with negligible error rate,

ando?2 = N is the noise power. We have

Rp=Wlogp (1 + =2>-) bits/s (32.10)

KN

Observation: We camade-off bandwidth for signal-to-noise rafar a system with given
channel capacityCq = Ry,

The capacity expression of amary PCM system is identical to the Shannon channel
capacity expression if the average transmitted signal power in the PCM system is increased
by a factor oK2/12.
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Figure 32.1 Signal space for calculating channel capacity.
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Figure 32.2 System model to achieve error-free transmission.
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Figure 32.3 Channel capacity variation with bandwidth.
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M =n'M Total no. of amplitude levels

m - No. of pulses per sample
n - No. of possible amplitude levels per pulse
Quantised
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Figure 32.4 Representations of quantised sample.
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