IV AKX/

Maxim > App Notes > REAL-TIME CLOCKS

Keywords: DS1307, DS1339, DS1340, 2-wire, serial interface, example code, sample code, example program, Mar 29, 2001
sample program, timekeeping, real time clocks, RTCs

Interfacing the DS1307 with an 8051-Compatible Microcontroller

Abstract: This application note provides information on how to interface a DS1307 real-time clock (RTC) to a
microcontroller and provides some example code for accessing the part.

Introduction

The DS1307 Serial Real Time Clock, which incorporates a 2-wire serial interface, can be controlled using an 8051-
compatible microcontroller. The DS1307 in this example is connected directly to two of the 1/0 ports on a DS5000
microcontroller and the 2-wire handshaking is handled by low-level drivers, which are discussed in this application
note.

DS1307 Description

The DS1307 Serial Real Time Clock is a low-power, full BCD clock/calendar plus 56 bytes of nonvolatile SRAM.
Address and data are transferred serially via the 2-wire bi-directional bus. The clock/calendar provides seconds,
minutes, hours, day, date, month, and year information. The end of the month date is automatically adjusted for
months with less than 31 days, including corrections for leap year. The clock operates in either the 24-hour or 12-
hour format with AM/PM indicator. The DS1307 has a built-in power sense circuit which detects power failures and
automatically switches to the battery supply.

DS1307 Operation

The DS1307 operates as a slave device on the serial bus. Access is obtained by implementing a START condition and
providing a device identification code followed by a register address. Subsequent registers can be accessed
sequentially until a STOP condition is executed. The START and STOP conditions are generated using the low level
drives, SEND_START and SEND_STOP found in the attached DS5000 code. Also the subroutines SEND_BYTE and
READ_BYTE provide the 2-wire handshaking required for writing and reading 8-bit words to and from the DS1307.

Hardware Configuration

The system is configured as shown in Figure 1. The DS1307 has the 2-wire bus connected to two 1/0 port pins of the
DS5000: SCL - P1.0, SDA - P1.1. The Vpp voltage is 5V, Rp = 5KQ and the DS5000 is using a 12-MHz crystal. The

other peripheral device could be any other device that recognizes the 2-wire protocol, such as the DS1621 Digital
Thermometer and Thermostat. The interface with the D5000 was accomplished using the DS5000T Kit hardware and
software. This development kit allows the PC to be used as a dumb terminal using the DS5000's serial ports to
communicate with the keyboard and monitor.

http://www.maxim-ic.com/
http://www.maxim-ic.com/
http://www.maxim-ic.com/appnotes10.cfm
http://www.maxim-ic.com/appnotes10.cfm/ac_pk/21/ln/en

SOA * »
2=WIRE
SERIAL DATA
BLIS
DES000 DE1307 OTHEA
MICROCOMN- REAL TIME 2=WIRE
TROLLER CLOCK DEVICE

Figure 1. Typical 2-wire bus configuration.
The following bus protocol has been defined (see Figure 2).

During data transfer, the data line must remain stable whenever the clock line is high. Changes in the data line while
the clock line is high will be interpreted as control signals.

Accordingly, the following bus conditions have been defined:

Start data transfer: A change in the state of the data line from high to low, while the clock line is high, defines a
START condition.

Stop data transfer: A change in the state of the data line from low to high, while the clock line is high, defines the
STOP condition.

Data valid: The state of the data line represents valid data when, after a START condition, the data line is stable for
the duration of the high period of the clock signal. The data on the line must be changed during the low period of the
clock signal. There is one clock pulse per bit of data.

Each data transfer is initiated with a START condition and terminated with a STOP condition. The number of data
bytes transferred between the START and the STOP conditions is not limited, and is determined by the master device.
The information is transferred byte-wise and each receiver acknowledges with a ninth bit.

Acknowledge: Each receiving device, when addressed, is obliged to generate an acknowledge after the reception of
each byte. The master device must generate an extra clock pulse which is associated with this acknowledge bit.

A device that acknowledges must pull down the SDA line during the acknowledge clock pulse in such a way that the
SDA line is stable low during the high period of the acknowledge related clock pulse. Of course, setup and hold times
must be taken into account. A master must signal an end of data to the slave by not generating an acknowledge bit
on the last byte that has been clocked out of the slave. In this case, the slave must leave the data line high to enable
the master to generate the STOP condition.

Figure 2 details how data transfer is accomplished on the 2-wire bus. Depending on the state of the R/active-low W
bit, two types of data transfer are possible:

1. Data transfer from a master transmitter to a slave receiver. The first byte transmitted by the master is
the slave address. Next follows a number of data bytes. The slave returns an acknowledge bit after each
received byte. Data is transferred with the most significant bit (MSB) first.

2. Data transfer from a slave transmitter to a master receiver. The first byte (the slave address) is
transmitted by the master. The slave then returns an acknowledge bit. This is followed by the slave
transmitting a number of data bytes. The master returns an acknowledge bit after all received bytes other
than the last byte. At the end of the last received byte, a not acknowledge is returned.

13 ' L e "‘\._,-—-V--___rl"' et \-_r-—h..__',.r-—-_a"" e ' B

* Y ADDRESS RW AGK DATA ACK DATA ACK -

STAAT STOP
COMOHTION CONDITION

Figure 2. Data transfer on 2-wire serial bus.

The master device generates all of the serial clock pulses and the START and STOP conditions. A transfer is ended
with a STOP condition or with a repeated START condition. Since a repeated START condition is also the beginning of
the next serial transfer, the bus will not be released. Data is transferred with the most significant bit (MSB) first.

The DS1307 may operate in the following two modes:

1. Slave receiver mode (DS1307 write mode): Serial data and clock are received through SDA and SCL.

After each byte is received, an acknowledge bit is transmitted. START and STOP conditions are recognized as
the beginning and end of a serial transfer. Address recognition is performed by hardware after reception of
the slave address and direction bit (see Figure 3). The address byte is the first byte received after the start
condition is generated by the master. The address byte contains the 7-bit DS1307 address, which is 1101000,
followed by the direction bit (R/active-low W) which for a write is a 0. After receiving and decoding the
address byte, the DS1307 outputs an acknowledge on the SDA line. After the DS1307 acknowledges the slave
address + write bit, the master transmits a register address to the DS1307. This will set the register pointer
on the DS1307. The master will then begin transmitting each byte of data with the DS1307 acknowledging
each byte received. The master will generate a stop condition to terminate the data write.

I
<SLAVE ADDRESE- % =WORD ADDRESS (n) <DATA (s <DAATA [1 s <DATA [l
] 000D Q] IR A 0NN A MO0 & LR R 8 A F
I 3
B=START L
%WEH{E DATA TRANSFERAED
(d+1 BYTES « ACKNOWLEDGE)

Figure 3. Data write—slave receiver mode.

. Slave transmitter mode (DS1307 read mode): The first byte is received and handled as in the slave
receiver mode. However, in this mode, the direction bit will indicate that the transfer direction is reversed.
Serial data is transmitted on SDA by the DS1307 while the serial clock is input on SCL. START and STOP
conditions are recognized as the beginning and end of a serial transfer (See Figure 4). The address byte is
the first byte received after the start condition is generated by the master. The address byte contains the 7-
bit DS1307 address, which is 1101000, followed by the direction bit (R/active-low W), which for a read is a 1.
After receiving and decoding the address byte, the DS1307 inputs an acknowledge on the SDA line. The
DS1307 then begins to transmit data starting with the register address pointed to by the register pointer. If
the register pointer is not written to before the initiation of a read mode, the first address that is read is the
last one stored in the register pointer. The DS1307 must be sent a Not-Acknowledge bit by the master to
terminate a read.

i
<ELAVE ADDFES S % <DWATA [n]= <CWATA, {1 e <DATA ined]> RATA {iq- M=

b+ ARG i A 00K A HIOC0 A el A RO K ALl P
S=START | # |
A=ACKNOWLEDG

Soap : DATA TRANSFERRED B
A =MOT ACKNOWLEDGE {®+1 BYTES + ACKHOWLEDGE]; MOTE: LAST DATA BYTE FOLLOWED BY NOT ACKNOAWLEDGE (A}

Figure 4. Data read—slave transmitter mode.
Software Operation

DS5000 Interface

The software presented in Appendix 1 is written to interface the DS5000 with the DS1307 over the 2-wire interface.
The DS5000 was programmed using Dallas Semiconductor's DS5000T Evaluation Kit, which allows a PC to be used as
a dumb terminal. The KIT5K software environment supplied with the DS5000T Evaluation Kit provides a high-level
interface for loading application software to the DS5000 or for setting its configuration parameters via the Program
command. The KIT5K software includes a dumb terminal emulator to allow users to run application software in the
DS5000, which communicates with the user via a PC COM port.

DS1307 Source Code

The first section of the code found in the Appendix is used to configure the DS5000 for serial communication with the
PC. Also at the beginning of the code is the MASTER_CONTROLLER subroutine which is used to control the
demonstration software.

The subroutines that immediately follow the MASTER_CONTROLLER subroutine are the low level drivers for controlling
the 2-wire interface. They are not specific to the DS1307 but can be used with any 2-wire compatible slave-only
device. These subroutines are:

SEND_START
This subroutine is used to generate the Start condition on the 2-wire bus.
SEND_STOP
This subroutine is used to generate the Stop condition on the 2-wire bus.
SEND_BYTE
This subroutine sends an 8-bit word, MSB first, over the 2-wire bus with a 9th clock pulse for the Acknowledge
pulse.
READ_BYTE
This subroutine reads an 8-bit word over the 2-wire bus. It checks for the LASTREAD flag to be cleared
indicating when the last read from the slave device is to occur. If it is not the last read, the DS5000 sends an
Acknowledge pulse on the 9th clock and if it is the last read from the slave device, the DS5000 sends a Not-
Acknowledge.
SCL_HIGH
This subroutine transitions the SCL line low-to-high and ensures the SCL line is high before continuing.
DELAY and DELAY_4
These two subroutines have been included to ensure that the 2-wire bus timing is maintained.

The rest of the code included in the appendix is specifically designed to demonstrate the functions of the DS1307. The
functions that are demonstrated are:

Setting Time
The time is read in from the keyboard and stored in the DS5000 scratchpad memory. It is then transferred,
over the 2-wire interface, to the DS1307.

Set RAM
A single hex byte is read in from the keyboard and written to the entire user RAM of the DS1307.

Read Date/Time
The date and time are read, over the 2-wire bus, and stored in the DS5000 scratchpad memory. It is then
written to the screen. This continues until a key is pressed on the keyboard.>

Read RAM
The entire user RAM of the DS1307 is read into the DS5000 scratchpad memory and then written to the PC
monitor.

OSC On/ OSC Off
The DS1307 clock oscillator can be turned on or off.

SQW/OUT On/ SQW/OUT Off
The SQW/OUT can be turned on or off. It will toggle at 1 Hz.

Conclusion

It has been shown that it is very straight forward to interface the DS1307 or any other 2-wire slave device to an 8051-
compatible microcontroller. The only concern must be that the 2-wire timing specification is not violated by the low
level drivers on the microcontroller. The delay subroutines have been inserted into the code for this purpose. The
values in Table 1 are the actual timing parameters observed in the hardware setup used to develop this application
note.

Table 1. AC Electrical Characteristics

SCL Clock Frequency fscL 59

Bus Free Time Between a STOP and START condition tsur 5.7 us
Hold Time (repeated) START Condition typ:stA 6.2 us
LOW Period of SCL Clock tow 10.5 s
HIGH Period of SCL Clock thich 6.5M ps
Set-up Time for a Repeated START Condition tsy:sta 5.3 us
Data Hold Time typ:paT 5.5 us
Data Set-up Time tsy:pat 3.1 us
Set-up Time for STOP Condition tsy:sto 5.4 Mus

Appendix: DS1307.ASM

; Program DS1307. ASM

; This programresponds to comrands received over the serial
; port to set the date/tinme as well as RAM data on the DS1307
; using a DS5000 as a controller

CR EQU ODH

LF EQU OAH

MCON EQU 0C6H

TA EQU OC7H

SCL BIT P0.0

SDA BI T PO. 1

TRIG BI T PO.2
DS1307W EQU ODOH
DS1307R EQU OD1H
FLAGS DATA 20H
LASTREAD BI T FLAGS. 0
12 24 BIT FLAGS. 1
PM AM Bl T FLAGS. 2
OSC BI T FLAGS. 3

SQN BI T FLAGS. 4

ACK BI T FLAGS. 5
BUS_FAULT BI T FLAGS. 6
_2WBUSY BI T FLAGS. 7
BI TCOUNT DATA 21H
BYTECOUNT DATA 22H
BYTE DATA 23H

CSEG AT 0

AIMP START

CSEG AT 30H

EEE R I I 3 b b b b S R I S b b S S S R R I I S b b b S I S R I S O

; *** RESET GOES HERE TO START PROGRAM il

EEE R I I 3 b b b b S R I S S b b S S S R R I I I S b b b S S S I S R R I I O
)

START:

MOV TA, #0AAH ; Ti ned

MOV TA, #55H ; access.

MOV PCON, #0 ; Reset watchdog timer.
MOV MCON, #0F8H ; Turn off CE2 for nenory access.
MOV SP, #70H ; Position stack above buffer.
MOV | E, #0

MOV TMOD, #20H ; Initialize the

MOV TH1, #OFAH ; serial port

MOV TL1, #0FAH ; for 9600

ORL PCON, #80H ; baud.

MOV SCON, #52H

MOV TCON, #40H

; MOV RO, #0

; MOV R1, #0

:DINZ RO, $

:DINZ R1, $-2

SETB SDA ; ENSURE SDA HI GH

LCALL SCL_H GH ; ENSURE SCL H GH
CLR ACK ; CLEAR STATUS FLAGS

CLR BUS_FAULT

CLR _2W BUSY

; THHS IS THE MASTER CONTRCLLER LOCP
MASTER_CONTROLLER:

MOV BYTECCQUNT, #10H

FORM FEED: MOV A, #LF ; CLEAR SCREEN FOR MAI N MENU
LCALL WRI TE_DATA

DINZ BYTECOUNT, FORM _FEED

MOV DPTR, #TEXTO ; PUT MAIN MENU ON SCREEN

LCALL WRI TE_TEXT

MOV DPTR, #TEXT3

LCALL WRI TE_TEXT

LCALL READ _DATA

CLR ACC. 5 ; CONVERT ACC TO UPPER CASE

CINE A # A ,NOTA ; CALL SET CLOCK FUNCTI ON

LCALL SET_CLOCKM

JMP MASTER CONTROLLER ; RETURN TO MAI N MENU

NOTA: CINE A # B ,NOTB ; CALL SET RAM FUNCTI ON AND
LCALL SET_RAM ; CALL READ RAM FUNCTI ON

LCALL READ_RAM

JMP MASTER CONTROLLER ; RETURN TO MAI N MENU

NOTB: CINE A # C ,NOTC ; CALL READ CLOCK FUNCTI ON
LCALL READ_CLOCK

JMP MASTER CONTROLLER ; RETURN TO MAI N MENU

NOTC: CINE A #' D ,NOTD ; CALL READ RAM FUNCTI ON
LCALL READ_RAM

JMP MASTER CONTROLLER ; RETURN TO MAI N MENU

NOTD: CINE A, # E',NOTE ; CALL OSC CONTROL FUNCTI ON
CLR OSC ; CLR OSC FLAG - ON

LCALL OSC_CONTROL

JVMP MASTER _CONTROLLER ; RETURN TO MAI N MENU

NOTE: CINE A # F',NOTF ; CALL OSC CONTROL FUNCTI ON
SETB OSC ; SET OSC FLAG - OFF

LCALL OSC_CONTROL

JVP MASTER _CONTROLLER ; RETURN TO MAI N MENU

NOTF: CINE A # G ,NOTG ; CALL SWQ CONTROL FUNCTI ON
CLR SQW; CLR SQW FLAG - ON

LCALL SQW CONTROL_1HZ

JVP MASTER _CONTROLLER ; RETURN TO MAI N MENU

NOTG CINE A # H ,NOTH ; CALL SWQ CONTROL FUNCTI ON
CLR SQW; CLR SQW FLAG - ON

LCALL SQW CONTROL_4KHZ

JVP MASTER _CONTROLLER ; RETURN TO MAI N MENU

NOTH. CINE A # 1',NOTI ; CALL SWQ CONTROL FUNCTI ON
CLR SQW; CLR SQW FLAG - ON

LCALL SQW CONTROL_8KHZ

JVP MASTER _CONTROLLER ; RETURN TO MAI N MENU

NOTI: CINE A # J',NOTJ ; CALL SWQ CONTROL FUNCTI ON
CLR SQW; CLR SQW FLAG - ON

LCALL SQW CONTROL_32KHZ

JMP MASTER CONTROLLER ; RETURN TO MAI N MENU

NOTJ: CINE A # K ,NOTK : CALL SWQ CONTROL FUNCTI ON
SETB SQW: SET SQW FLAG - OFF

LCALL SQW CONTROL_1HZ

JMP MASTER CONTROLLER

NOTK: CINE A, # L', NOTL

LCALL SET_RAM UNQ

LCALL READ_RAM

NOTL: JMP MASTER CONTROLLER ; RETURN TO MAI N MENU

SEND_START: ;

SETB _2WBUSY ; | NDI CATE THAT 2W RE OPERATI ON | N PROGRESS
CLR ACK ; CLEAR STATUS FLAGS

CLR BUS_FAULT

JNB SCL, FAULT ; CHECK FOR BUS CLEAR

JNB SDA, FAULT ; BEG N START CONDI TI ON

SETB SDA ;

LCALL SCL_H GH ; SDA

CLR SDA

LCALL DELAY ; SCL ~START CONDI TI ON
CLR SCL

RET

FAULT:

SETB BUS_FAULT ; SET FAULT STATUS
RET ; AND RETURN

: THI'S SUB SENDS THE STOP CONDI Tl ON
SEND_STOP:

CLR SDA ; SDA

LCALL SCL_HI CGH ;

SETB SDA ; SCL ~STOP CONDI TI ON

CLR _2W BUSY

RET

SEND BYTE:

MOV BI TCOUNT, #08H ; SET COUNTER FOR 8 BITS
SB_LOCP:

JNB ACC. 7, NOTONE ; CHECK TOSEE IF BIT 7 OF ACCIS A1
SETB SDA ; SET SDA HIGH (1)

JMP ONE

NOTONE:

CLR SDA ; CLR SDA LOW (0)

ONE:

LCALL SCL_H GH ; TRANSITION SCL LOMTO H CGH
RL A ; ROTATE ACC LEFT ONE BIT

CLR SCL ; TRANSITION SCL H GHTO LOW

DINZ BI TCOUNT, SB LOOP ; LOOP FOR 8 BITS
SETB SDA ; SET SDA H GH TO LOOK FOR ACKNOW.EDGE PULSE
LCALL SCL HHGH ; TRASITION SCL LONMTO H GH
CLR ACK ; CLEAR ACKNOW.EDGE FLAG

JNB SDA, SB EX ; CHECK FOR ACK OR NOT ACK
SETB ACK ; SET ACKNOW.EDGE FLAG FOR NOT ACK
SB EX:

LCALL DELAY ; DELAY FOR AN OPERATI ON

CLR SCL ; TRANSITION SCL H GHTO LOW

LCALL DELAY ; DELAY FOR AN OPERATI ON

RET

MOV Bl TCOUNT, #008H ; SET COUNTER FOR 8 BI TS OF DATA
MOV A, #00H ;

SETB SDA ; SET SDA HI GH TO ENSURE LI NE FREE

READ BI TS:

LCALL SCL_ HIGH ; TRANSI TION SCL LOW TO H GH

MOV C, SDA ; MOVE DATA BIT I NTO CARRY BIT \

RLC A ; ROTATE CARRY BIT I NTO ACC. 0

CLR SCL ; TRANSITION SCL H GHTO LOW

DINZ BI TCOUNT, READ BITS ; LOOP FOR 8 BITS

JB LASTREAD, ACKN ; CHECK TO SEE IF THIS | S THE LAST READ
CLR SDA ; I F NOT LAST READ SEND ACKNONLEDGE BI T
ACKN:

LCALL SCL_HIGH ; PULSE SCL TO TRANSIM T ACKNOW.EDGE
CLR SCL ; OR NOT ACKNOW.EDGE BIT

RET

SETB SCL ; SET SCL HI GH
JNB SCL,$; LOOP UNTIL STRONG 1 ON SCL
RET

RET

NOP ; DELAY FOR BUS TI M NG
NOP
NOP

NOP

SET_CLOCKM

MOV R1, #2EH ; SET RL TO SCRATCHPAD MEMORY FOR DATE/ Tl ME
MOV DPTR, #YEAR ; GET THE DATE/ TI ME | NFORMATI ON FROM THE
LCALL WRI TE_TEXT ; USER WRI TE THE DATE/ TI ME TO SCRATCHPAD
LCALL READ BCD ; MEMORY

MV @R1, A

DEC R1

MOV DPTR, #MONTH

LCALL WRI TE_TEXT

LCALL READ BCD

MV @R1, A

DEC R1

MOV DPTR, #DAY

LCALL WRI TE_TEXT

LCALL READ BCD

MV @R1, A

DEC R1

MOV DPTR, #DAYW

LCALL WRI TE_TEXT

LCALL READ BCD

ANL A, #7

MV @R1, A

DEC R1

MOV DPTR, #HOUR

LCALL WRI TE_TEXT

LCALL READ BCD

MV @R1, A

DEC R1

MOV DPTR, #M NUTE

LCALL WRI TE_TEXT

LCALL READ BCD

MV @R1, A

DEC R1

MOV DPTR, #SECOND

LCALL WRI TE_TEXT

LCALL READ BCD

MV @R1, A

MOV R1, #28H ; PO NT TO BEG NNI NG OF CLOCK DATA | N SCRATCHPAD MEMORY
LCALL SEND START : SEND 2W RE START CONDI TI ON

MOV A #DS1307W; SEND DS1307 WRI TE COVMAND

LCALL SEND BYTE

MOV A #00H ; SET DATA PO NTER TO REG STER 00H ON

LCALL SEND BYTE ; THE DS1307

SEND L OOP:

MOV A @1 ; MOVE THE FI RST BYTE OF DATA TO ACC

LCALL SEND BYTE ; SEND DATA ON 2W RE BUT

I NC R1

CINE R1, #2FH, SEND LOOP ; LOOP UNTIL CLOCK DATA SENT TO DS1307
LCALL SEND STOP ; SEND 2W RE STOP CONDI TI ON

RET

MOV R1, #08H ; PO NTER TO BEG NNI NG OF DS1307 USER RAM
MOV DPTR, #TEXT5 ; MESSAGE TO ENTER DATA BYTE

LCALL WRI TE_TEXT ;

LCALL READ BCD ; READ BYTE FROM KEYBQOARD

MOV BYTE, A ; AND STORE I N ' BYTE'

LCALL SEND_START ; SEND 2W RE START CONDI TI ON
MOV A, #DS1307W ; LOAD DS1307 WRI TE COMVAND

LCALL SEND _BYTE ; SEND WRI TE COVMAND

MOV A, #08H ; SET DS1307 DATA PO NTER TO BEGQ NNI NG
LCALL SEND_BYTE ; OF USER RAM - 08H

SEND_LOOP2:

MOV A, BYTE ; WRI TE BYTE TO ENTI RE RAM SPACE
LCALL SEND BYTE ; WHICH IS 08H TO 37H

INC R1

CINE R1, #040H, SEND_LOOP2 ; LOOP UNTIL RAM FI LLED
LCALL SEND_STCP ; SEND 2W RE STOP CONTI ON

RET

. TH'S SUB SETS THE DS1307 USER RAM TO THE UNI QUE PATTERN
SET_RAM_UNQ

MOV RL, #08H ; PO NTER TO BEG NNI NG OF DS1307 USER RAM
LCALL SEND_START ; SEND 2W RE START CONDI Tl ON

MOV A, #DS1307W; LOAD DS1307 WRI TE COVVAND

LCALL SEND BYTE ; SEND WRI TE COVMAND

MOV A #08H ; SET DS1307 DATA PO NTER TO BEG NNI NG
LCALL SEND BYTE ; OF USER RAM - 08H

SEND L OOP3:

LCALL SEND BYTE ; WHICH I'S 08H TO 37H

I NC RL

INC A

CINE R1, #040H, SEND LOOP3 ; LOOP UNTIL RAM FI LLED
LCALL SEND STOP ; SEND 2W RE STOP CONTI ON

RET

MOV DPTR, #TEXT4 ; SEND KEY PRESS MsSG

LCALL WRI TE_TEXT

MOV R1, #30H ; START OF RAM REGS | N SCRATCH PAD
MOV BYTECOUNT, #00H ; COUNTER FOR 56 RAM BYTES
CLR LASTREAD ; FLAG TO CHECK FOR LAST READ

LCALL SEND START ; SEND 2W RE START CONDI TI ON
MOV A, #DS1307W ; SEND DS1307 WRI TE COMVAND

LCALL SEND BYTE

MOV A, #08H ; SET PO NTER TO REG 08H ON

; DS1307

LCALL SEND BYTE

LCALL SEND STOP ; SEND STOP CONDI TI ON

LCALL SEND START ; SEND START CONDI TI ON

MOV A, #DS1307R ; SEND DS1307 READ COVIVAND

LCALL SEND BYTE

READ LOOP2:

MOV A, BYTECOUNT ; CHECK TO SEE OF DA NG LAST READ
CINE A, #37H, NOT_LAST2

SETB LASTREAD ; | F LAST READ SET LASTREAD FLAG
NOT_LAST2:

LCALL READ BYTE ; READ A BYTE OF DATA

MOV @R1, A ; MOVE DATA | NTO SCRATCHPAD NEMORY

INC R1 ; | NC PO NTERS

| NC BYTECOUNT

MOV A, BYTECOUNT

CINE A, #38H, READ LOOP2 ; LOOP FOR ENTI RE DS1307 RAM
LCALL SEND STOP ; SEND 2W RE STOP CONDI TI ON

LCALL DI SP_RAM ; DI SPLAY DATA | N SCRATCHPAD MEMORY
JNB RI,$;WAIT UNTIL A KEY | S PRESSED

CLR RI

DI SP_RAM

MOV R1, #30H ; START OF RAM | N SCRATCHPAD

: MEMORY

MOV Bl TCOUNT, #00H

MOV DPTR, #TEXT6 ; DI SPLAY TABLE HEADI NG

LCALL WRI TE_TEXT

DI SP_ADDR:

LCALL DI SP_LOC ; DI SPLAY VALUE OF CURRENT RAM LOCATI ON
DI S _LOOP:

MOV A @1 ; DI SPLAY RAM DATA SAVED | N SCRATCHPAD

LCALL WRI TE_BCD ; CONVERT TO BCD FORMAT AND DI SPLAY

I NC R1

| NC BI TCOUNT

MOV A, #20H ; SPACE BETWEEN DATA BYTES

LCALL VR TE_DATA

MOV A, BI TCOUNT

CINE A, #08H, DI S LOOP ; LI NE FEED AFTER 8 BYTES OF DATA
MOV Bl TCOUNT, #00H

MOV DPTR, #TEXT3 : ' CR LF

LCALL WRI TE_TEXT

CINE R1, #68H, DI SP_ADDR ; DI SPLAY DATA FOR 56 BYTES OF RAM
RET

: THI'S SUB WRI TES THE RAM LOCATI ON OF THE DATA
DI SP_LOC:

MOV A RL ; DI SPLAY THE HEX VALUE FOR THE DATA
ADD A #-28H ; I N THE DS1307 RAM SPACE

LCALL WRI TE_BCD ; CONVERTS SCRATCHPAD ADDRESS
MOV A #20H ; | NTO DS1307 RAM ADDRESS

LCALL WRI TE_DATA

MOV A, #20H

LCALL WRI TE_DATA

MOV A, #20H

LCALL WRI TE_DATA

RET

MOV DPTR, #TEXT4 ; KEY PRESS MSG
LCALL WRI TE_TEXT

READ_AGAI N:

MOV RL, #28H ; START OF CLOCK REG | N SCRATCHPAD

MOV BYTECOUNT, #00H ; COUNTER UP TO 8 BYTES FOR CLOCK
CLR LASTREAD ; FLAG TO CHECK FOR LAST READ

LCALL SEND_START ; SEND START CONDI Tl ON

MOV A, #DS1307W; SET PO NTER TO REG 00H ON DS1307
LCALL SEND BYTE

MOV A, #00H

LCALL SEND BYTE

LCALL SEND_STOP ; SEND STOP CONDI TI ON

LCALL SEND_START ; SEND START CONDI Tl ON

MOV A, #DS1307R ; SEND READ COMMAND TO DS1307

LCALL SEND BYTE

READ_LOOP:

MOV A, BYTECOUNT ; CHECK TO SEE OF DO NG LAST READ
CINE A, #07H, NOT_LAST

SETB LASTREAD ; SET LASTREAD FLAG

NOT_LAST:

LCALL READ BYTE ; READ A BYTE OF DATA

MOV @RL, A ; MOVE DATA | N SCRATCHPAD MEMORY

MOV A, BYTECOUNT ; CHECK TO SEE | F READI NG SECONDS REG
CINE A, #00H, NOT_FI RST

CLR OSC ; CLR OSC FLAG

MOV A @Rl ; MOVE SECONDS REG | NTO ACC

JNB ACC.7,NOCSC; JUW IFBIT7 OFISAO

SETB OSC ; SET OSC FLAG, BIT7 IS A1

CLR ACC. 7 ; CLEAR BIT 7 FOR DI SPLAY

: PURPCSES

MOV @RL, A ; MOVE DATA BACK TO SCRATCHPAD

NO_OSC;

NOT_FI RST:

INC RL ; | NC COUNTERS

| NC BYTECOUNT

MOV A, BYTECOUNT

CINE A, #08H, READ LOOP ; LOOP FOR ENTI RE CLOCK REG STERS
LCALL SEND STOP ; SEND 2W RE STOP CONDI Tl ON

LCALL DI SP_CLOCK ; DI SPLAY DATE/ TI ME FROM SCRATCHPAD
JNB R, READ_AGAI N ; READ AND DI SPLAY UNTIL A KEY | S PRESSED
CLR Rl

RET

MOV DPTR, #TEXT1 ; DATE:
LCALL WRI TE_TEXT

MOV R1, #2DH ; MONTH
MOV A, @Rl

LCALL WRI TE_BCD

MOV A # '

LCALL WRI TE_DATA

MOV R1, #2CH ; DATE
MOV A, @Rl

LCALL WRI TE_BCD

MOV A # '

LCALL WRI TE_DATA

MOV R1, #2EH ; YEAR
MOV A, @Rl

LCALL WRI TE_BCD

MOV A, #09H ; TAB
LCALL WRI TE_DATA

MOV DPTR, #TEXT2 ; TI ME:
LCALL WRI TE_TEXT

MOV R1, #2AH ; HOURS
MOV A, @Rl

LCALL WRI TE_BCD

MOV A, #3AH ; COLON
LCALL WRI TE_DATA

MOV R1, #29H ; M NUTES
MOV A, @Rl

LCALL WRI TE_BCD

MOV A, #3AH ; COLON
LCALL WRI TE_DATA

MOV R1, #28H ; SECONDS
MOV A, @Rl

LCALL WRI TE_BCD

RET

OSC_CONTROL:

LCALL SEND_START ; SEND START CONDI Tl ON

MOV A, #DS1307W; SET PO NTER TO REG 00H ON DS1307
LCALL SEND_BYTE

MOV A, #00H

LCALL SEND_BYTE

SETB LASTREAD ; SET LAST READ FOR SI NGLE READ
LCALL SEND_STOP ; SEND STOP CONDI TI ON

LCALL SEND_START ; SEND START CONDI Tl ON

MOV A, #DS1307R ; SEND READ COMMVAND TO DS1307
LCALL SEND_BYTE

LCALL READ BYTE ; READ SECONDS REG STER

CLR ACC.7 ; TURN OSC ON

JNB OSC, OSC_SET

SETB ACC.7 ; TURN OSC OFF IF OSC BIT IS SET IN
OSC_SET: ; SECONDS REG STER

PUSH ACC ; SAVE SECONDS DATA ON STACK

LCALL SEND_STOP ; SEND STOP CONDI TI ON

LCALL SEND_START ; SEND START CONDI Tl ON

MOV A, #DS1307W; SET PO NTER TO REG 00H ON DS1307
LCALL SEND_BYTE

MOV A, #00H

LCALL SEND BYTE

POP ACC ; SEND SECONDS REG STER TO CONTROL
LCALL SEND BYTE : OSCl LLATOR ON DS1307

LCALL SEND_STOP

RET

LCALL SEND START ; SEND START CONDI TI ON
MOV A #DS1307W; SET PO NTER TO REG 07H ON DS1307
LCALL SEND BYTE

MOV A, #07H

LCALL SEND BYTE

MOV A, #90H ; SQW QUT ON AT 1HZ

JNB SQW SQNV SET ; JUW IF SQWBIT IS ACTI VE
MOV A, #80H ; TURN SQW QUT OFF - OFF HI GH
SQW SET:

LCALL SEND BYTE

LCALL SEND STOP

RET

. TH'S SUB CONTROLS THE SQW OUTPUT 4KHZ

SQW CONTROL_4KHZ:

LCALL SEND_START ; SEND START CONDI Tl ON

MOV A, #DS1307W; SET PO NTER TO REG 07H ON DS1307
LCALL SEND BYTE

MOV A, #07H

LCALL SEND BYTE

MOV A #91H ; SQWN OUT ON AT 1HZ

JNB SQN SQW SETL ; JUWMP | F SQNBIT IS ACTI VE
MOV A #80H ; TURN SQW OUT OFF - OFF H GH
SQW SET1:

LCALL SEND BYTE

LCALL SEND_STOP

RET

; THI'S SUB CONTROLS THE SQW OQUTPUT 8KHZ

SQW CONTROL_8KHZ:

LCALL SEND_START ; SEND START CONDI Tl ON
MOV A, #DS1307W; SET PO NTER TO REG 07H ON DS1307
LCALL SEND_BYTE

MOV A, #07H

LCALL SEND_BYTE

MOV A, #92H ; SQWN OUT ON AT 1HZ

JNB SQW SQW SET2 ; JUWMP IF SQWBIT IS ACTI VE

MOV A, #80H ; TURN SQW OUT OFF - OFF HI GH

SQW SET2:

LCALL SEND_BYTE

LCALL SEND_STOP

RET

© TH'S SUB CONTROLS THE SQW OUTPUT 32KHZ
SQW_ CONTROL_32KHZ:

LCALL SEND_START ; SEND START CONDI Tl ON

MOV A, #DS1307W; SET PO NTER TO REG 07H ON DS1307
LCALL SEND BYTE

MOV A, #07H

LCALL SEND BYTE

MOV A, #93H ; SQWN OUT ON AT 1HZ

JNB SQN SQWN SET3 ; JUWP | F SQNBIT IS ACTI VE
MOV A, #80H ; TURN SQN OUT OFF - OFF H GH
SQW SET3:

LCALL SEND BYTE

LCALL SEND STOP

RET

CLR TRIG

SETB TRI G

LCALL DELAY_4

CLR TRIG

RET

; THI'S SUB READS DATA FROM THE SCREEN AND CONVERTS I T TO BCD FORM
; DATA SHOULD BE HEX DIATS: 1,2,3...9,A B,C D EF

MOV RO, #0 ; CLEAR RO

BCD_LQOOCP:

LCALL READ DATA ; READ BYTE FROM KEYBQARD
LCALL WRI TE_DATA ; WRI TE BYTE BACK TO SCREEN
CINE A, #0DH, BCD ; CHECK FOR CR

MOV A RO ; MOVE RO TO ACC AND RETURN

RET

BCD:

ADD A, #-30H ; BEG N TO CONVERT TO ACTUAL VALUE
JNB ACC. 4,DIGT ; JUW IF NOT A-F

ADD A, #-07H ; I F A-F SUBTRACT 7

DIAT:

ANL A, #0FH ; ENSURE BI TS 4-7 ARE CLEARED
ANL O, #0FH ; ENSURE BI TS 4-7 ARE CLEARED
XCH A, RO ; EXCHANGE RO AND ACC

SWAP A ; NI BBLE SWAP ACC

ORL A/ RO ; INSERT BITS 0-3 OF RO I NTO ACC
MOV RO, A ; MOVE ACC I NTO RO

SIMP BCD_LOCOP ; LOOP UNTIL CR ENCOUNTERED

; THI'S SUB WRI TES THE BYTE TO THE SCREEN

VRI TE_BCD:

PUSH ACC ; SAVE ACC ON STACK

SWAP A ; NI BBLE SWAP ACC

ANL A #0FH ; CLEAR BITS 4-7 OF ACC

ADD A, #07H ; ADD 7 TO ACC TO CONVERT TO ASCI| HEX
JNB ACC. 4, LESSNINE ; CHECK TO SEE | F LESS THAN NI NE 0-8
CINE A, #10H, NOTNI NE ; JUMP | S GREATER THAN NI NE A-F
LESSNI NE:

ADD A #-07H ; SUBTRACT 7 FOR 0-9

NOTNI NE:

ADD A, #30H ; ADD 30 TO CONVERT TO ASCI | EQUI VALENT
LCALL WRI TE_DATA ; WRI TE BYTE TO SCREEN

POP ACC ; RECALL ACC FROM STACK

ANL A #0FH ; PERFORM CONVERSI ON ON OTHER HALF OF BYTE
ADD A, #07H

JNB ACC. 4, NI NE2

CINE A, #10H, NOTNI NE2

NI NE2:

ADD A, #-07H

NOTNI NE2:

ADD A, #30H

LCALL WRI TE_DATA

RET

READ DATA:

JNB RI, READ DATA ; LOOP WHILE Rl BIT IS LOW

CLR R ;

MOV A, SBUF ; GET DATA BYTE FROM SERI AL BUFFER

RET

VRI TE_DATA:

JNB Tl , WRI TE_DATA ; LOOP VHILE TI BIT IS LOW

CLR TI ;

MOV SBUF, A ; SEND DATA BYTE TO SERI AL

;. BUFFER

RET

WRI TE_TEXT:

PUSH ACC ; SAVE ACC BYTE ON STACK

WI'1:

CLR A ; CLEAR ACC

MOVC A, @ADPTR ; MOVE FI RST BYTE OF STRI NG

;. TO ACC

I NC DPTR ; | NC DATA PO NTER

CINE A, #0, W2 ; CHECK FOR STRI NG

; TERM NATOR - O

POP ACC ; RESTORE ACC

RET ;. RETURN WHEN STRI NG | S SENT

WI2:

LCALL WRI TE_DATA ; SEND BYTE OF STRI NG OVER SERI AL PORT

DB CR LF,' YEAR (0 - 99) : ',0
DB CR LF,' MONTH (1 - 12) : ',0
DB CR LF,' DAY OF MONTH : ', 0

DB CR LF,' DAY OF WEEK : ', 0

DB CR LF,'HOUR (0 - 23) : ',0
M NUTE:

DB CR LF,' MNUTE (0 - 59) : ',0
SECOND:

DB CR LF,' SECOND (0 - 59) : ',0
TR ER

DB CR LF,' PRESS ANY KEY TO SET THIS TIME ',CR LF, 0

CR LF, ' ******* DAL LAS SEM CONDUCTOR ******%*
CR LF,' DS1307 TEST PROGRAM ', CR, LF

CR LF, ' PLEASE CHOOSE AN OPTI ON TO CONTI NUE '
SET TI ME(MANUAL) B. SET RAM'

READ DATE/ TI ME D. READ RAM'*

OsC ON F. OSC OFF '

mo >

G SQWOUT ON-1HZ H. SQW OUT ON- 4KHZ'
|. SQN OUT ON-8KHZ J. SQW OUT ON- 32KHZ'

'K. SQW OUT OFF'
‘L. WRITE RAM UNI QUE PATTERN '
"ESC. TOQUT ',0

TEEEIREEIREE RS

Y3I93I39383983

LI e e e A e

TEXT1:

&
9

"DATE: ', 0

TEXT2:

DB 'TIME: ',0

TEXT3:

DB CR LF, 0

TEXT4:

DB CR, LF,' PRESS ANY KEY TO RETURN
, LF, 0

e

TE
LF, ' ENTER THE BYTE VALUE WHICH WLL FILL THE RAM
LF, O

R

TE

-

F,
F,
ot e el '
, LF, 0

EIE R I S I I S

sk k ok k ENDO: PRm:\)AM *kkkkhkkkkkhkkkk

EEE R R R I I S S I R

END

98399
333353353

Application Note 95: http://www.maxim-ic.com/an95

More Information
For technical questions and support: http://www.maxim-ic.com/support

For samples: http://www.maxim-ic.com/samples
Other questions and comments: http://www.maxim-ic.com/contact

Related Parts
DS1307: QuickView -- Full (PDF) Data Sheet -- Free Samples

DS1339: QuickView -- Full (PDF) Data Sheet

DS1340: QuickView -- Full (PDF) Data Sheet -- Free Samples

AN95, AN 95, APP95, Appnote95, Appnote 95
Copyright © by Maxim Integrated Products

http://www.maxim-ic.com/an95
http://www.maxim-ic.com/support
http://www.maxim-ic.com/samples
http://www.maxim-ic.com/contact
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/2688/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS1307.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS1307&ln=en
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3470/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS1339-DS1339U.pdf
http://www.maxim-ic.com/quick_view2.cfm/qv_pk/3914/ln/en
http://pdfserv.maxim-ic.com/en/ds/DS1340-DS1340C.pdf
http://www.maxim-ic.com/samples/index.cfm?Action=Add&PartNo=DS1340&ln=en

Additional legal notices: http://www.maxim-ic.com/legal

http://www.maxim-ic.com/legal

	maxim-ic.com
	Interfacing the DS1307 with an 8051-Compatible Microcontroller - AN95

