

Controlling the

WORLDWORLDWORLDWORLD
from your Armchair.

Sony, Infrared Remote Control Decoding.

Infrared remote control decoding is considered something of a black
art, however, this tutorial will show you that its principals are quite
straightforward, and easy to implement on a PIC microcontroller.

Infrared remote control has been around for a very long time now, and we tend to take it for granted.
Yet it’s a marvel of modern technology, which allows a whole variety of devices to be activated with
the touch of a button. Remote control handsets are so abundant that they may be purchased new
for a few pounds, which makes them viable items for experimentation. There are dedicated chips
available that will decode the signals from a particular handset, however, with the flexibility and cost
effectiveness of the PIC range of microcontrollers we can develop a decoding subroutine that may
be placed into your own programs, or used as a stand-alone infrared to RS232 converter.

Manufacturers Protocols.
Regrettably, remotes do not come in a single flavour, each manufacturer uses a different set of pro-
tocols. The three main ones are RC80, which is used by Panasonic. RC5, which was designed by
Philips and is one of the more popular types, and then there’s the Sony protocol, named S.I.R.C,
which is hugely popular and also one of the simplest to decode. Therefore, I will take the less com-
plex type and endeavour to illustrate how to decode the signals from a Sony remote control hand-
set, using the ever-popular PIC16F84 microcontroller.

Infrared to TTL Converter.
In a bid to eliminate ambient light sources, both natural and manmade, from interfering with the data
stream transmitted by the handset, modulated light is used. This modulation is centred around dif-
ferent frequencies depending on the manufacturer; and varies from 32KHz to 40KHz. In the case of
Sony handsets, the modulation is centred at 40KHz, which means we require a device that can re-
ceive the modulated infrared light and convert it into a TTL signal that the PIC can handle.

There are a number of these devices
available, each having a specific cen-
tre frequency that they’re more sensi-
tive too. The device used for this tuto-
rial is the IS1U60 from Sharp. It has a
centre frequency of 38KHz, which is
close enough to 40KHz so as not to
matter. Figure 1, shows the internal block

As you can see, these deceptively simp
Photodiode. They filter, amplify and dem
put by means of a final comparator stag
which helps stop overloading if the hand
deal cheaper (and easier) than building y

Most IR sensors have an active low out
when an infrared signal is detected. Wit
sumed (2.8mA being typical). In a
B.P.FLimiter Demodulator Integrator Comparator

Vcc

Vout

GND

Fig 1. Internals of the IS1U60.
1

 diagram of one of these devices.

le looking devices are a lot more than a re-packaged IR
odulate the infrared signal. Then give a nice clean TTL out-
e. They also have a built in automatic gain control (AGC),
set is held too close. Using one of these devices is a great
our own discrete version.

put, which means that the PIC is presented with a logic 0
h no signal present, a maximum current of 4.8mA is con-
ddition, the recommended voltage is 4.7V to 5.3V.

Controlling the WORLD from your armchair

Sony Protocol (S.I.R.C).
S.I.R.C (Serial Infra-Red Control) uses a form of pulse width modulation (PWM) to build up a 12-bit
serial interface, known as a packet. This is the most common protocol, but 15 bit and 20-bit versions
are also available. A pulse with a duration of 2.4ms is sent first as a header, this allows the internal
AGC to adjust and also allows the receiver to check if a valid packet is being received. A 1-bit is rep-
resented by a pulse duration of 1.2ms, while a 0-bit has a duration of 0.6ms. A delay of 0.6ms is
placed between every pulse.

The string of pulses build up the 12-bit packet consisting of a 5-bit (0..31) device code, which repre-
sents a TV, Video, Hi-Fi etc (see table 1), and a 7-bit (0..127) button code, which represents the ac-
tual button pressed on the remote (see table 2). The packet is transmitted most significant bit first
(MSB), with the device code being sent, then the button code. Figure 2, illustrates this more clearly.
After the packet is sent, a delay is implemented, which brings the whole transmitted signal to a
length of 45ms. This is repeated for as long as a button is pressed.

Fig 2. 12-bit packet construction

As
Kn
on
is
tio
as
are
the
so
ha
mi
inf
PI
pa
ise

So
bo
als
rou
ing
PI
eit

2.4ms
Header

0.6ms
Delay

1.2ms
1-bit

0.6ms
0-bit

0.6ms
Delay

01001
5-bit Device Code

1000011
7-bit Button Code

1.2ms
1-bit

0.6ms
0-bit

0.6ms
Delay

0.6ms
Delay
Command Device
1 Television
2 VCR 1
4 VCR 2
6 Laser disk player
12 Surround sound unit
16 Cassette deck/tuner
17 CD player
18 Equaliser

Table 1. SIRC device code.
 2

sembler vs. BASIC.
owing the principals behind infrared communications is
e thing, actually writing software based on the information
a whole new ball game. Whenever PICmicros are men-
ned, people tend to think of the rather cryptic language of
sembler, however, this is not the case anymore, as there
 many high level language implementations for use with
 PICmicro, such as C, C++, Pascal, and BASIC. My per-

nal preference is BASIC. The BASIC language in general
s received a lot of bad press since its conception in the
ddle part of the 70’s and is considered to be clumsy and
lexible, yet nothing could be further from the truth. Thanks to
CBASIC compiler range, this language has been brought into
rt, to BASIC’s shallow learning curve, software designs that us
d in a just few hours.

 as to not seem too biased towards either language, I will pre
th assembler and PICBASIC PLUS, which will enable you to
o endeavour to illustrate the pro’s and cons of both languages
tines. This means that both the BASIC and the assembler ver
, which will enable a fairer appraisal of them. It is not my inten

Cmicro, therefore, throughout this article, it is assumed that yo
her assembler or PICBASIC PLUS. And that you have a means

T

Command Function
0-9 Numerals 0 to 9
16 Channel +
17 Channel -
18 Volume +
19 Volume -
20 Mute
21 Power
22 Reset
23 Audio mode
24 Contrast +
25 Contrast -
26 Colour +
27 Colour -
30 Brightness +
31 Brightness -
38 Balance left
39 Balance right
47 Power off

able 2. SIRC TV button code.

the PICBASIC PLUS and melab’s
 the 21st century. Thanks also, in
ed to take weeks can now be real-

sent the software for this article in
 choose your preferred type. I will
 by not using optimised assembler
sions will follow the same structur-
tion to teach you how to program a
u already have some knowledge of
 of programming the PIC16F84.

Controlling the WORLD from your armchair

 3

For more information concerning the PICBASIC PLUS compiler, as well as an assortment of pro-
grammers and information regarding the PICmicro in general, visit Crownhill Associate’s dedicated
web site at www.crownhill.co.uk. For information concerning assembler programming, visit Micro-
chip’s web site at www.microchip.com.

Circuit Description.
In order to demonstrate the principals behind infrared decoding, the circuit in figure 3 is employed.
The PIC circuit incorporates two light emitting diodes, one green and the other, red. The software is
arranged in such a way that by pressing the channel-up button on a TV remote, the green LED will
illuminate and channel-down will illuminate the red LED. As well as illuminating the LED’s, two bytes
are transmitted serially (Async RS232) from bit-3 of PORTA through a 1kΩ current limiting resistor
(R2). The serial data contains the device code as well as the button code and is transmitted at in-
verted 9600 baud (N-8-1). Possible uses for this could be to attach it to the PC’s serial input for re-
motely controlling some software, or for use in a robotics construction. The circuit layout is not too
critical and could easily be built on a piece of stripboard. However, decoupling capacitor C5 should
be placed as close to the IR sensor as possible, and C2 should also be located close to the PIC.

Figure 4 shows a possible layout for the circuit on a solderless breadboard.

Fig 3. Sony, Infrared Remote control decoder circuit.

Fig 4. Possible solderless breadboard layout of above circuit..

RB7VDD
RB6
RB5
RB4
RB3
RB2
RB1
RB0

13

RA4
RA3
RA2
RA1
RA0

MCLR

OSC1

OSC2

VSS

14

PIC16F84

C4
22pf

C1
10uf

C2
0.1uf

R1
4.7k ΩΩΩΩ

+5 Volts

C3
22pf

12

11

10

9

8

7

6

3

2

1

18

17

5

4

16

15

0v

Gnd
Vout
Vcc

Red
LED

Green
LED

C5
0.1uf

R3,R4
470 ΩΩΩΩ

IS1U60
Infrared
DetectorR2

1kΩΩΩΩ

RS232
Serial Data Out

1 2 3
1. Vout (OUTPUT)
2. GROUND
3. Vcc (+5V)

X1
4MHz

IC1

IC2

D1 D2

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 27 28 29 3025

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 26 27 28 29 3025

a
b

c
d

e
f

g
h

i
j

k
l

a
b

c
d

e
f

g
h

i
j

k
l

16F84-04

Microchip

4MHz

22
pF

22
pF

Infrared

100nF

10uF-

+

+5 V

0V

Serial Out

Controlling the WORLD from your armchair

Bsf STATUS,5 ;Point to TRIS reg
Movlw 00000100b ;Set PORTA,2 as IN
Movwf PORTA ;Configure the Port
Bcf STATUS,5 ;Back to Page0
Listing 1. Assembler, Port direction.

Getting down to the coding.
The actual infrared decoding software is presented in the form of a subroutine, named IRIN, which
will ease the inclusion of it into your own programs. The subroutine and subsequent main program
loop may be split into several software tasks. These are outlined below: -

 Task 1………. Configure PORTA for both Inputs and Outputs
 Task 2………. Devise a method of measuring the high to low pulse length received from the

 active low IR sensor.
 Task 3………. Implement task 2 to detect the header and bit pulses and then construct the

 12-bit packet.
 Task 4………. Split the packet into two separate bytes containing the 7-bit button and 5-bit

 device codes.
 Task 5………. Devise a method of transmitting inverted serial RS232 data.
 Task 6………. Construct a main program loop that calls the decoder subroutine and

illuminates the correct LED, as well as using task 5 for transmitting both, the
device and button codes, serially.

 Task 1.

Our first coding task, that of configuring the Port’s
direction, is the easiest to accomplish. The assembler
code for this is shown in listing 1. This will configure bits 0,
1 and 3 of PortA as outputs, for the attachment of the
LEDs as well as the serial output. Bit-2 is made an input
for the attachment of the IR sensor.

The same thing written in PICBASIC PLUS is: -

TRISA = %00000100

Note, that there is no actual need to do this in PICBASIC, as the commands that deal with external
influences automatically set the required pins as inputs or outputs.

 Task 2.
Our second coding task, is a means of
measuring the pulse durations that
signify a header, as well as the
separate ones and zeros that go to
make up the packet. An assembler
version of a routine that will do just this
is shown in listing 2. The high to low
pulse duration is measured at bit-2 of
PortA and the 8-bit value is returned in
the variable P_VAL. Because we’re
using an 8-bit (0..255) variable, it’s
impossible to return a value of 2400 for
a pulse length of 2400 microseconds.
Therefore, the routine has a resolution
of approx 11microseconds when used
in conjunction with a 4MHz crystal. An
11us resolution was chosen as
opposed to 10us, because not all re-
mote handsets stick stringently to the
recommended pulse widths. Therefore,
a header pulse could be more than 2.55m
capacity, i.e. greater than 255.

; Measure the duration of a high to low pulse on PORTA,2
; And leave the result in P_VAL.
; An 11us resolution is achieved with a 4MHz crystal.
Pulsin Clrwdt ; Walk the dog

Clrf Cntr ; Clear the variables used,
Clrf P_Val ; prior to the subroutine

Trans Btfss PORTA,2 ; Wait for a 1-to-0 transition
Goto Edge ; Edge found!
Incfsz P_Val ; Else increment P_VAL until >255
Goto Trans
Incfsz Cntr ; Loop until 255
Goto Trans
Return

Edge Clrf P_Val ; A 1-to-0 transition occurred
Ege_lp Btfsc PORTA,2 ; Count how long it's logic 0

Return
Clrwdt ; Walk the dog
Nop ; Timing loop
Nop
Nop
Nop
Nop
Incfsz P_Val ; Increment P_VAL until > 255
Goto Edge_LP
Return

Listing 2. Assembler, pulse measurement subroutine.
 4

s in length, which would push it beyond a byte’s storage

Controlling the WORLD from your armchair

The values returned in P_VAL for a given pulse length are as follows: -
Header pulse… 2400us will return 220.
One-bit pulse… 1200us will return 110.
Zero-bit pulse… 600us will return 55.

To do the same task in PICBASIC PLUS, requires just one command: -

VARIABLE = PULSIN PORTA.2 , LOW

When used in association with a 4MHz crystal, the compiler’s PULSIN command has a resolution of
10 microseconds. Also, if a 16-bit variable is used to hold the result then a duration of 0.. 65535us
may be measured, where as, if an 8-bit variable is used, this is reduced to 0..255us. We can use
this property to our advantage by detecting the 2400us header pulse with a 16-bit variable, and the
individual 600us or 1200us bit pulses with an 8-bit variable. This will eliminate any problems arising
from a header pulse that is longer than 2.55ms.

The values returned from the PULSIN command are as follows: -

Header pulse…2400us will return 240.
One-bit pulse… 1200us will return 120.
Zero-bit pulse… 600us will return 60.

The end parameter of the PULSIN command HIGH or LOW (1 or 0), determines whether a high-to-
low pulse, or a low-to-high pulse is to be measured. Where a LOW or zero, measures a high-to-low
pulse.

 Task 3.
We now come to one of the two main body
parts that build up the subroutine IRIN, in
which we gather the bit information
received from the IR sensor and construct
the 12-bit packet.

The assembler version of this is shown in
listing 3. The first thing the routine does is
to try and detect a 2.4ms header pulse
using the PULSIN subroutine (task 1). The
result, held in P_VAL is examined to see
whether it’s between the values of 200 and
250. If it does not lie between these val-
ues, then the subroutine is exited with
IR_DEV and IR_BUT holding a value of
255, which signifies an invalid header. If,
however, a valid header IS detected, then
a loop of 12 is set up. Within this loop, the
individual bits are measured using the
subroutine, PULSIN. Depending on the
result returned in P_VAL, the individual
bits of the 16-bit variable PACKET are set
or cleared. This is achieved by splitting the
difference between a one-bit (110), and a
zero bit (55). If the result is greater than or
equal to 80 then it must be a one-bit that’s
been received and if it’s less than 80 then
it must be a zero-bit.
; Receive a signal from a Sony remote control
; If no header then IR_DEV, IR_BUT will hold 255
IRIN Clrwdt ; Walk the dog

Call Pulsin ; Measure the header
; Verify a good header, if its not valid then exit
; ** If PVAL < 200 then return with IR_DEV=255 **

Movlw 200
Subwf P_VAL,W
Btfsc STATUS,C
Goto Next1
Movlw 255
Movwf IR_Dev
Return

; ** If PVAL > 250 then return with IR_DEV=255 **
Next1 Movlw 250

Subwf P_VAL,W
Btfss STATUS,C
Goto PK_Strt
Movlw 255
Movwf IR_Dev
Return

; Build up the packet, by pulling in all 12 bits
PK_Strt Movlw 12 ; Create a loop for 12 bits

Movwf Bitcnt
S_again Call Pulsin ; Get the bit duration

Movlw 80 ; If it’s >= 80 then it's a 1
Subwf P_VAL,W
Btfsc STATUS,C
Goto One
Bcf Packet+1,4 ; Clear the bit
Goto Cont

One Bsf Packet+1,4 ; Set the bit
Cont Rrf Packet+1,F ; Rotate bit into place

Rrf Packet,F
Decfsz Bitcnt ; Have we done 12 bits yet?
Goto S_again ; No! then loop again

Listing 3. Assembler, 12-bit Packet constuction.
 5

Controlling the WORLD from your armchair

' Receive a signal from a Sony remote control, return with the 7-bit
' BUTTON code in the variable IR_BUT and the 5-bit DEVICE code in the
' variable IR_DEV If no header detected then IR_DEV, IR_BUT will hold 255
IRIN: IR_Dev = 255

IR_But = 255 ' Preset the return variables
Header = PULSIN IR_Sensor,LOW ' Measure the header length.
IF Header < 200 then RETURN ' Verify a good header
IF Header > 270 then RETURN ' If not valid then exit

' Receive the 12 data bits and convert them into a packet
Sony_Lp = 0
REPEAT ' Implement a loop for the 12 bits (0 - 11)
Packet.11 = 0 ' Default to a clear bit (zero-bit)
P_Val = PULSIN IR_Sensor,LOW ' Measure the LOW pulse width
IF P_Val >= 90 then Packet.11 = 1 ' If pulse >= 90 then we've

' received a 1
Packet = Packet >> 1 ' Shift the bits right 1 place
INC Sony_Lp ' Increment the loop counter
UNTIL Sony_Lp = 11 ' Close the loop after 12 bits

Listing 4. PICBASIC PLUS, 12-bit Packet constuction.

The PICBASIC PLUS
version of the same
routine is shown in
listing 4. This has
exactly the same
function as the
assembler version,
however, because of
the different values
returned from the
PULSIN command,
the comparisons for a
header and bit pulses
are slightly different.
The resulting 12-bit
packet for both types of routine are held in the variable PACKET, ready for splitting into its separate
codes.

 Task 4.
For the resulting 12-bit packet to be of
any practical use, it must be split into
the 5-bit device code and the 7-bit
button code. This is achieved by a
series of rotations then masking. The
assembler version of this is shown in
listing 5. Within the variable PACKET,
the button code is located, starting at
bit-0. This is now extracted by ANDing
PACKET with 127 (01111111) and the
result is placed into IR_BUT. To extract
the device code, seven right rotations
are performed, which will effectively
move the button code out of the way
and place the device code starting at
bit-0 of PACKET. Again, this is
extracted by ANDing, but this time with
31 (00011111) and placed into
IR_DEV. The PICBASIC PLUS version
of the same routine takes only two lines of

' Split the 7-bit BUTTON code a
IR_But = Packet & %01111111
IR_Dev = %00011111 & (Packet >>

 Task 5.
Our finished decoder could simply bring t
the handset, but a more elegant, and pos
button and the device codes serially. Ther
ing 7 shows the assembler version of an a
from bit-3 of PORTA. The byte to transm
SOUT. As it stands, the baud rate is set a
DLCTR, the higher the value, the longer
value of 44 will lower it to 4800 baud, while
; Split the 7-bit BUTTON code, and the 5-bit DEVICE code
Movf Packet,W ; Mask the 7-bit BUTTON code
Andlw 01111111b
Movwf IR_But

; ** Shift PACKET and PACKET+1, right, 7 times **
Rrf Packet + 1,F
Rrf Packet,F
Rrf Packet + 1,F
Rrf Packet,F
Rrf Packet + 1,F
Rrf Packet,F
Rrf Packet + 1,F
Rrf Packet,F
Rrf Packet + 1,F
Rrf Packet,F
Rrf Packet + 1,F
Rrf Packet,F
Rrf Packet + 1,F
Rrf Packet,F
Movf Packet,W ; Mask the 5-bit DEVICE code
Andlw 00011111b
Movwf IR_Dev
Return
Listing 5. Assembler, Device code splitter.
 6

 code: -

nd the 5-bit DEVICE code
 'Mask the 7 BUTTON bits

 7) 'Move down and mask the 5 DEVICE bits

he eight PORTB pins high for a given button pressed on
sibly more desirable result would be to transmit both the

efore, our fifth task is a subroutine that does just that. List-
sync RS232 transmitter, operating at inverted 9600 baud

it is first loaded into the W register then a call is made to
t 9600, however, to change it, alter the value placed into
the delay, thus, the lower the baud rate. For example, a
 88 will produce 1200 baud.

Controlling the WORLD from your armchair

To do the same task in PICBASIC PLUS, again takes only one command: -

SEROUT PORTA.3 , N9600 , [Variable { , or variables }]

PICBASIC PLUS’s various serial out
commands have a lot more tricks up
their sleeves. Not only do they allow
different baud rates from 300 to
38400; both inverted and non-
inverted, but also output the results
as 8 or 16-bit decimal, hexadecimal,
binary or ASCII strings. This is ideal
for interfacing to the many serially
controlled LCD modules on the
market.

 Task 6.
Our final task is to write the main
program loop which will; call the de-
coder subroutine, serially transmit
both codes, and illuminate the
correct LED for a chosen button
pressed on the handset.

An assembler version of this is
shown in listing 8. Within the loop,
the returning values from IRIN are
examined, if IR_DEV returns
holding 255 then an invalid
header was detected so the proc-
ess is repeated. If a valid header
WAS detected, then both IR_DEV
and IR_BUT are transmitted us-
ing the SOUT subroutine. A check
is than made of IR_DEV, if it’s not
holding a value of one, then it is
not a television remote handset,
and again, the process is re-
peated. If however, the device
code is for a television, IR_BUT is
examined, if it holds a value of 16
(channel-up) then the green LED
is turned on, and the red LED is
turned on if it’s holding 17 (chan-
nel-down).

; Transmit the byte held in W at inverted 9600 baud (8-N-1)
; from bit3 of PORTA.
Sout Movwf Tr_Byte ; Load TR_BYTE with W reg

Movlw 8
Movwf Bit_Cntr ; Create a loop of 8
Bsf PORTA,3 ; Send the start bit
Call Bit_Dly ; Delay one bit time

Xmtlp Rrf Tr_Byte ; Rotate Right, moves data bits
; into Carry, starting with bit-0.

Btfsc STATUS,C ; Is it a One-bit?
Bcf PORTA,3 ; Yes, so send A One
Btfss STATUS,C ; Is it a Zero-bit?
Bsf PORTA,3 ; Yes, so send A Zero
Call Bit_Dly ; Delay one bit time
Decfsz Bit_Cntr ; Have we reached 8-bits yet?
Goto Xmtlp ; No, so loop again
Bcf PORTA,3 ; Yes, so send the stop bit
Call Bit_Dly ; Delay one bit time
Return

; ** Delay 1-bit time subroutine**
Bit_Dly Movlw 22 ; Set Baud to 9600

Movwf Dlctr
Slp Clrwdt ; Walk the dog (1us)

Decfsz Dlctr
Goto Slp
Return

Listing 7. Assembler, Serial output subroutine.
; ** THE MAIN PROGRAM LOOP STARTS HERE **
Again Clrwdt ; Walk the dog

Call IRIN ; Get the IR signal from the handset
Bcf PORTA,0 ; Turn off both LEDs
Bcf PORTA,1
Movlw 255 ; If IR_DEV=255 then look again
Subwf IR_Dev,W
Btfsc STATUS,Z
Goto Again

; ** Transmit the DEVICE code then the BUTTON code serially
; ** at inverted 9600 baud N-8-1 **

Movf IR_Dev,W
Call Sout
Movf IR_But,W
Call Sout

; ** If IR_DEV<>1 (TV device code) then look Again **
Movlw 0
Subwf IR_Dev,W
Btfss STATUS,Z
Goto Again

; ** If IR_But=116 (channel up) then illuminate the green LED
Movlw 16
Subwf IR_But,W
Btfss STATUS,Z
Goto CH_UP
Bsf PORTA,1

; **If IR_BUT=117 (channel down) then illuminate the red LED
CH_UP Movlw 17

Subwf IR_But,W
Btfss STATUS,Z
Goto Exit
Bsf PORTA,0

Exit Call Delay ; Delay for 10ms (optional)
Goto Again

Listing 8. Assembler, Main code loop.
 7

Controlling the WORLD from your armchair

The PICBASIC PLUS version is shown in listing 9. It has exactly the same function as previously
described.

U
B
o

C
I
I
B

C
I
n
g
c
P
s
m
d
s

U
a
s
D
t
c
f
t
w

A
L

' ** THE MAIN PROGRAM LOOP STARTS HERE **
Again: LOW Green_LED

LOW Red_LED ' Extinguish both LED's
GOSUB IRIN ' Receive an IR signal
IF IR_Dev = 255 then Again ' Check for valid header
IF IR_Dev <> 0 then Again ' If not a TV DEVICE code then look again
SEROUT PORTA.3,N9600,[IR_Dev,IR_But] ' Transmit the 2 bytes
IF IR_But = 116 then HIGH Green_LED ' If channel up, then green LED
IF IR_But = 117 then HIGH Red_LED ' If channel down, then red LED
DELAYMS 10 ' Delay for 10ms (optional)
GOTO Again ' Do it forever

Listing 9. PICBASIC PLUS, Main body code.
 8

sing the subroutine, IRIN.
oth versions of the IRIN subroutine may easily be incorporated into your own programs. A brief
utline of the returned variables are: -

ALL or GOSUB IRIN
R_DEV returns holding the DEVICE code (0..31)
R_BUT returns holding the BUTTON code (0..127)
oth IR_DEV and IR_BUT return holding 255 if a valid header was not received.

onclusion.
 hope that I’ve succeeded in illustrating that both, infrared decoding and PICmicro programming
eed not be the exclusive property of the whiz kids or rocket scientists among us. Assembly lan-
uage will never be fully replaced by high level languages, especially if compact or critically timed
ode is required. But with the advent of ever increasing speeds and memory storage on the new
IC ranges being developed, this is fast becoming a non-issue. The one major advantage that as-
embler has, is that it’s free. All the tools required for software development are downloadable from
icrochip’s web site, there are also a plethora of datasheets and application notes, which are

ownloadable from the same site. But this doesn’t detract from the fact that assembly language is
omewhat difficult to learn and sometimes tedious to write.

sing a high level language such as PICBASIC PLUS, not only makes programming a more enjoy-
ble experience, but opens up a whole new aspect of electronics that was previously beyond the
cope of all but the most advanced hobbyist, such as I2C, SPI serial eeprom, Analogue to Digital,
igital to Analogue interfacing among many others, the list is as long as your imagination and crea-

ivity allows. However, it’s not just the hobbyist who can benefit from this remarkable language. Be-
ause, both assembler and BASIC may be freely mixed within the same program, extremely power-
ul and flexible programs may be written that can greatly decrease prototyping time, thus reducing
he overall costs of a commercial product. After all, time is a precious commodity that should not be
asted

bove all else, have fun!
es Johnson.

		2001-09-23T18:47:06+0000
	Les Johnson
	<none>

