

PIC16F5X Data Sheet

Flash-Based, 8-Bit CMOS Microcontroller Series

© 2004 Microchip Technology Inc.

Note the following details of the code protection feature on Microchip devices:

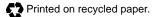
- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.


AmpLab, FilterLab, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2004, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company's quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEEL00® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

PIC16F5X

Flash-Based, 8-Bit CMOS Microcontroller Series

High-Performance RISC CPU

- Only 33 single-word instructions to learn
- All instructions are single cycle except for program branches which are two-cycle
- Two-level deep hardware stack
- Direct, Indirect and Relative Addressing modes for data and instructions
- · Operating speed:
 - DC 20 MHz clock speed
 - DC 200 ns instruction cycle time
- On-chip Flash program memory:
 - 512 x 12 on PIC16F54
 - 2048 x 12 on PIC16F57
 - 2048 x 12 on PIC16F59
- General Purpose Registers (SRAM):
 - 25 x 8 on PIC16F54
 - 72 x 8 on PIC16F57
 - 134 x 8 on PIC16F59

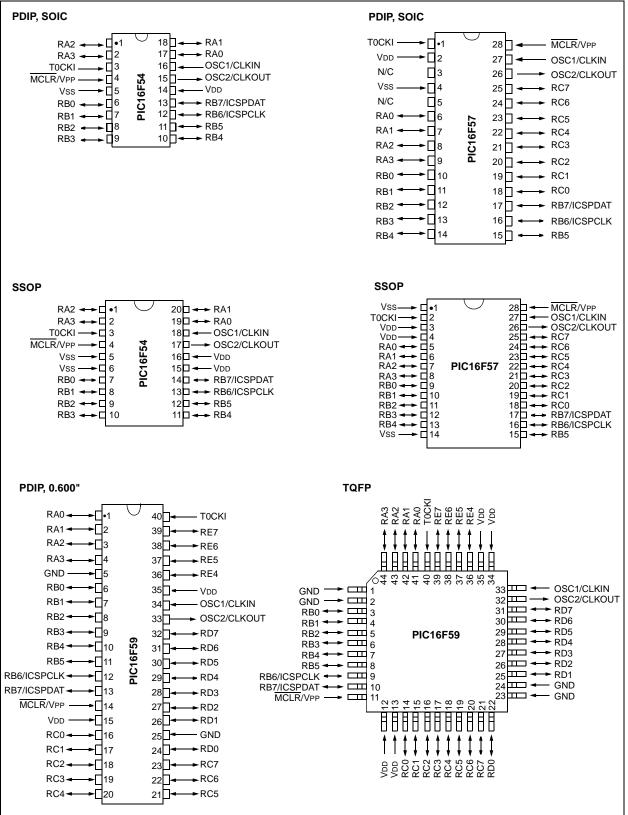
Special Microcontroller Features

- Power-on Reset (POR)
- Device Reset Timer (DRT)
- Watchdog Timer (WDT) with its own on-chip RC oscillator for reliable operation
- Programmable Code Protection
- Power-saving Sleep mode
- In-Circuit Serial Programming[™] (ICSP[™])
- Selectable oscillator options:
 - RC: Low-cost RC oscillator
 - XT: Standard crystal/resonator
 - HS: High-speed crystal/resonator
 - LP: Power-saving, low-frequency crystal
- Packages:
 - 18-pin PDIP and SOIC for PIC16F54
 - 20-pin SSOP for PIC16F54
 - 28-pin PDIP, SOIC and SSOP for PIC16F57
 - 40-pin PDIP for PIC16F59
 - 44-pin TQFP for PIC16F59

Low-Power Features

- Operating Current:
 - 170 μA @ 2V, 4 MHz, typical
 - 15 μA @ 2V, 32 kHz, typical
- Standby Current:
 - 500 nA @ 2V, typical

Peripheral Features


- 12/20/32 I/O pins:
 - Individual direction control
 - High current source/sink
- 8-bit real-time clock/counter (TMR0) with 8-bit programmable prescaler

CMOS Technology

- Wide operating voltage range:
 - Industrial: 2.0V to 5.5V
 - Extended: 2.0V to 5.5V
- Wide temperature range:
 - Industrial: -40°C to 85°C
 - Extended: -40°C to 125°C
- High-endurance Flash:
 - 100K write/erase cycles
 - > 40-year retention

Device	Program Memory	Data Memory	I/O	Timers	
Device	Flash (words)	SRAM (bytes)	1/0	8-bit	
PIC16F54	512	25	12	1	
PIC16F57	2048	72	20	1	
PIC16F59	2048	134	32	1	

Pin Diagrams

Table of Contents

1.0	General Description	5				
2.0	General Description Architectural Overview	7				
3.0	Memory Organization	13				
4.0	Oscillator Configurations	21				
5.0	Reset	23				
6.0	I/O Ports	29				
7.0	Timer0 Module and TMR0 Register	33				
8.0	Special Features of the CPU	37				
9.0	Instruction Set Summary	41				
10.0	Development Support	53				
11.0	Electrical Specifications for PIC16E54/57	59				
12.0	Electrical Specifications for PIC16F59 Packaging Information	60				
13.0	Packaging Information	71				
On-Lir	ne Support	85				
Syster	Systems Information and Upgrade Hot Line					
Reade	Reader Response					
Produ	ct Identification System	87				

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

To determine if an errata sheet exists for a particular device, please check with one of the following:

• Microchip's Worldwide Web site; http://www.microchip.com

• Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at **www.microchip.com** to receive the most current information on all of our products.

NOTES:

1.0 GENERAL DESCRIPTION

The PIC16F5X from Microchip Technology is a family of low-cost, high-performance, 8-bit, fully static, Flashbased CMOS microcontrollers. It employs a RISC architecture with only 33 single-word/single-cycle instructions. All instructions are single cycle except for program branches which take two cycles. The PIC16F5X delivers performance an order of magnitude higher than its competitors in the same price category. The 12-bit wide instructions are highly symmetrical resulting in 2:1 code compression over other 8-bit microcontrollers in its class. The easy-to-use and easyto-remember instruction set reduces development time significantly.

The PIC16F5X products are equipped with special features that reduce system cost and power requirements. The Power-on Reset (POR) and Device Reset Timer (DRT) eliminate the need for external Reset circuitry. There are four oscillator configurations to choose from, including the power-saving LP (Low Power) oscillator and cost saving RC oscillator. Power-saving Sleep mode, Watchdog Timer and code protection features improve system cost, power and reliability.

The PIC16F5X products are supported by a full-featured macro assembler, a software simulator, a low-cost development programmer and a full featured programmer. All the tools are supported on IBM[®] PC and compatible machines.

1.1 Applications

The PIC16F5X series fits perfectly in applications ranging from high-speed automotive and appliance motor control to low-power remote transmitters/receivers, pointing devices and telecom processors. The Flash technology makes customizing application programs codes. motor (transmitter speeds. receiver frequencies, etc.) extremely fast and convenient. The small footprint packages, for through hole or surface mounting, make this microcontroller series perfect for applications with space limitations. Low-cost, lowpower, high performance, ease of use and I/O flexibility make the PIC16F5X series very versatile, even in areas where no microcontroller use has been considered before (e.g., timer functions, replacement of "glue" logic in larger systems, co-processor applications).

Features	PIC16F54	PIC16F57	PIC16F59
Maximum Operation Frequency	20 MHz	20 MHz	20 MHz
Flash Program Memory (x12 words)	512	2K	2K
RAM Data Memory (bytes)	25	72	134
Timer Module(s)	TMR0	TMR0	TMR0
I/O Pins	12	20	32
Number of Instructions	33	33	33
Packages	18-pin DIP, SOIC; 20-pin SSOP	28-pin DIP, SOIC; 28-pin SSOP	40-pin DIP, 44-pin TQFP

TABLE 1-1: PIC16F5X FAMILY OF DEVICES

Note: All PICmicro[®] Family devices have Power-on Reset, selectable Watchdog Timer, selectable code-protect and high I/O current capability.

NOTES:

2.0 ARCHITECTURAL OVERVIEW

The high performance of the PIC16F5X family can be attributed to a number of architectural features commonly found in RISC microprocessors. To begin with, the PIC16F5X uses a Harvard architecture in which program and data are accessed on separate buses. This improves bandwidth over traditional von Neumann architecture where program and data are fetched on the same bus. Separating program and data memory further allows instructions to be sized differently than the 8-bit wide data word. Instruction opcodes are 12-bits wide, making it possible to have all singleword instructions. A 12-bit wide program memory access bus fetches a 12-bit instruction in a single cycle. A two-stage pipeline overlaps fetch and execution of instructions. Consequently, all instructions (33) execute in a single cycle except for program branches.

The PIC16F54 addresses 512 x 12 of program memory, the PIC16F57 and PIC16F59 addresses 2048 x 12 of program memory. All program memory is internal.

The PIC16F5X can directly or indirectly address its register files and data memory. All Special Function Registers (SFR), including the program counter, are mapped in the data memory. The PIC16F5X has a highly orthogonal (symmetrical) instruction set that makes it possible to carry out any operation on any register using any Addressing mode. This symmetrical nature and lack of 'special optimal situations' make programming with the PIC16F5X simple, yet efficient. In addition, the learning curve is reduced significantly.

The PIC16F5X device contains an 8-bit ALU and working register. The ALU is a general purpose arithmetic unit. It performs arithmetic and Boolean functions between data in the working register and any register file.

The ALU is 8-bits wide and capable of addition, subtraction, shift and logical operations. Unless otherwise mentioned, arithmetic operations are two's complement in nature. In two-operand instructions, typically one operand is the W (working) register. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either the W register or a file register.

The W register is an 8-bit working register used for ALU operations. It is not an addressable register.

Depending on the instruction executed, the ALU may affect the values of the Carry (C), Digit Carry (DC) and Zero (Z) bits in the Status Register. The C and DC bits operate as a borrow and digit borrow out bit, respectively, in subtraction. See the SUBWF and ADDWF instructions for examples.

A simplified block diagram is shown in Figure 2-1 with the corresponding device pins described in Table 2-1 (for PIC16F54), Table 2-2 (for PIC16F57) and Table 2-3 (for PIC16F59).

FIGURE 2-1: PIC16F5X SERIES BLOCK DIAGRAM

Name	Function	Input Type	Output Type	Description				
RA0	RA0	TTL	CMOS	Bidirectional I/O pin				
RA1	RA1	TTL	CMOS	Bidirectional I/O pin				
RA2	RA2	TTL	CMOS	Bidirectional I/O pin				
RA3	RA3	TTL	CMOS	Bidirectional I/O pin				
RB0	RB0	TTL	CMOS	Bidirectional I/O pin				
RB1	RB1	TTL	CMOS	Bidirectional I/O pin				
RB2	RB2	TTL	CMOS	Bidirectional I/O pin				
RB3	RB3	TTL	CMOS	Bidirectional I/O pin				
RB4	RB4	TTL	CMOS	Bidirectional I/O pin				
RB5	RB5	TTL	CMOS	Bidirectional I/O pin				
RB6/ICSPCLK	RB6	TTL	CMOS	Bidirectional I/O pin				
	ICSPCLK	ST	_	Serial Programming Clock				
RB7/ICSPDAT	RB7	TTL	CMOS	Bidirectional I/O pin				
	ICSPDAT	ST	CMOS	Serial Programming I/O				
TOCKI	TOCKI	ST	—	Clock input to Timer0. Must be tied to Vss or VDD, if not in use, to reduce current consumption.				
MCLR/Vpp	MCLR	ST	—	Active-low Reset to device. Voltage on the MCLR/VPP pin mus not exceed VDD to avoid unintended entering of Programming mode.				
	Vpp	ΗV	_	Programming voltage input				
OSC1/CLKIN	OSC1	XTAL	—	Oscillator crystal input				
	CLKIN	ST	_	External clock source input				
OSC2/CLKOUT	OSC2	—	XTAL	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.				
	CLKOUT	—	CMOS	In RC mode, OSC2 pin can output CLKOUT, which has 1/4 the frequency of OSC1.				
Vdd	Vdd	Power		Positive supply for logic and I/O pins				
Vss	Vss	Power		Ground reference for logic and I/O pins				
O =	input output Schmitt Trig	ger input	I/O — TT	= input/outputCMOS= CMOS output= Not UsedXTAL= Crystal input/outputL= TTL inputHV= High Voltage				

TABLE 2-1: PIC16F54 PINOUT DESCRIPTION

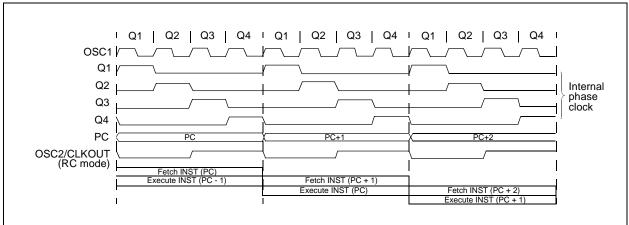
Name	Function	Input Type	Output Type	Description
RA0	RA0	TTL	CMOS	Bidirectional I/O pin
RA1	RA1	TTL	CMOS	Bidirectional I/O pin
RA2	RA2	TTL	CMOS	Bidirectional I/O pin
RA3	RA3	TTL	CMOS	Bidirectional I/O pin
RB0	RB0	TTL	CMOS	Bidirectional I/O pin
RB1	RB1	TTL	CMOS	Bidirectional I/O pin
RB2	RB2	TTL	CMOS	Bidirectional I/O pin
RB3	RB3	TTL	CMOS	Bidirectional I/O pin
RB4	RB4	TTL	CMOS	Bidirectional I/O pin
RB5	RB5	TTL	CMOS	Bidirectional I/O pin
RB6/ICSPCLK	RB6	TTL	CMOS	Bidirectional I/O pin
	ICSPCLK	ST	_	Serial programming clock
RB7/ICSPDAT	RB7	TTL	CMOS	Bidirectional I/O pin
	ICSPDAT	ST	CMOS	Serial programming I/O
RC0	RC0	TTL	CMOS	Bidirectional I/O pin
RC1	RC1	TTL	CMOS	Bidirectional I/O pin
RC2	RC2	TTL	CMOS	Bidirectional I/O pin
RC3	RC3	TTL	CMOS	Bidirectional I/O pin
RC4	RC4	TTL	CMOS	Bidirectional I/O pin
RC5	RC5	TTL	CMOS	Bidirectional I/O pin
RC6	RC6	TTL	CMOS	Bidirectional I/O pin
RC7	RC7	TTL	CMOS	Bidirectional I/O pin
TOCKI	TOCKI	ST	_	Clock input to Timer0. Must be tied to Vss or VDD, if not in use, to reduce current consumption.
MCLR/VPP	MCLR	ST	_	Active-low Reset to device. Voltage on the MCLR/VPP pin must not exceed VDD to avoid unintended entering of Programming mode.
	Vpp	ΗV	_	Programming voltage input
OSC1/CLKIN	OSC1	XTAL	_	Oscillator crystal input
	CLKIN	ST	_	External clock source input
OSC2/CLKOUT	OSC2		XTAL	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.
	CLKOUT	_	CMOS	In RC mode, OSC2 pin outputs CLKOUT, which has 1/4 the frequency of OSC1.
Vdd	Vdd	Power		Positive supply for logic and I/O pins
Vss	Vss	Power	_	Ground reference for logic and I/O pins
N/C	N/C			Unused, do not connect
Legend: I = inp O = ou ST = Sc		input	— =	input/outputCMOS = CMOS outputNot UsedXTAL = Crystal input/outputTTL inputHV = High Voltage

TABLE 2-2: PIC16F57 PINOUT DESCRIPTION

Name	Function	Input Type	Output Type	Description				
RA0	RA0	TTL	CMOS	Bidirectional I/O pin				
RA1	RA1	TTL	CMOS	Bidirectional I/O pin				
RA2	RA2	TTL	CMOS	Bidirectional I/O pin				
RA3	RA3	TTL	CMOS	Bidirectional I/O pin				
RB0	RB0	TTL	CMOS	Bidirectional I/O pin				
RB1	RB1	TTL	CMOS	Bidirectional I/O pin				
RB2	RB2	TTL	CMOS	Bidirectional I/O pin				
RB3	RB3	TTL	CMOS	Bidirectional I/O pin				
RB4	RB4	TTL	CMOS	Bidirectional I/O pin				
RB5	RB5	TTL	CMOS	Bidirectional I/O pin				
RB6/ICSPCLK	RB6	TTL	CMOS	Bidirectional I/O pin				
	ICSPCLK	ST		Serial programming clock				
RB7/ICSPDAT	RB7	TTL	CMOS	Bidirectional I/O pin				
KB//ICGFDAI	ICSPDAT	ST	CMOS	Serial programming I/O				
RC0	RC0	TTL	CMOS	Bidirectional I/O pin				
RC1	RC1	TTL	CMOS	Bidirectional I/O pin				
RC2	RC2	TTL	CMOS	Bidirectional I/O pin				
RC3	RC3	TTL	CMOS	Bidirectional I/O pin				
RC4	RC4	TTL	CMOS	Bidirectional I/O pin				
RC5	RC5	TTL	CMOS	Bidirectional I/O pin				
RC6	RC6	TTL	CMOS	Bidirectional I/O pin				
		TTL						
RC7	RC7		CMOS	Bidirectional I/O pin				
RD0	RD0		CMOS	Bidirectional I/O pin				
RD1	RD1		CMOS	Bidirectional I/O pin				
RD2	RD2		CMOS	Bidirectional I/O pin				
RD3	RD3		CMOS	Bidirectional I/O pin				
RD4	RD4		CMOS	Bidirectional I/O pin				
RD5	RD5		CMOS	Bidirectional I/O pin				
RD6	RD6	TTL	CMOS	Bidirectional I/O pin				
RD7	RD7	TTL	CMOS	Bidirectional I/O pin				
RE4	RE4	TTL	CMOS	Bidirectional I/O pin				
RE5	RE5	TTL	CMOS	Bidirectional I/O pin				
RE6	RE6	TTL	CMOS	Bidirectional I/O pin				
RE7	RE7	TTL	CMOS	Bidirectional I/O pin				
TOCKI	TOCKI	ST	_	Clock input to Timer0. Must be tied to VSS or VDD, if not in use, to reduce current consumption.				
MCLR/VPP	MCLR	ST	—	Active-low Reset to device. Voltage on the $\overline{\text{MCLR}}$ /VPP pin must not exceed VDD to avoid unintended entering of Programming mode.				
	Vpp	HV	_	Programming voltage input				
OSC1/CLKIN	OSC1	XTAL	_	Oscillator crystal input				
	CLKIN	ST	_	External clock source input				
OSC2/CLKOUT	OSC2	_	XTAL	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode.				
	CLKOUT	—	CMOS	DS In RC mode, OSC2 pin outputs CLKOUT, which has 1/4 the frequency of OSC1.				
Vdd	VDD	Power		Positive supply for logic and I/O pins				
Vss	Vss	Power		Ground reference for logic and I/O pins				
Legend: I = inp	out		I/O =	input/output CMOS = CMOS output				
	tput			Not Used XTAL = Crystal input/output				

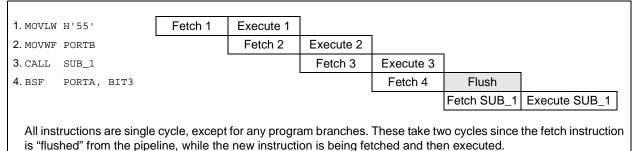
TABLE 2-3: PIC16F59 PINOUT DESCRIPTION

2.1 Clocking Scheme/Instruction Cycle


The clock input (OSC1/CLKIN pin) is internally divided by four to generate four non-overlapping quadrature clocks, namely Q1, Q2, Q3 and Q4. Internally, the Program Counter (PC) is incremented every Q1 and the instruction is fetched from program memory and latched into the instruction register in Q4. It is decoded and executed during the following Q1 through Q4. The clocks and instruction execution flow are shown in Figure 2-2 and Example 2-1.

2.2 Instruction Flow/Pipelining

An instruction cycle consists of four Q cycles (Q1, Q2, Q3 and Q4). The instruction fetch and execute are pipelined such that fetch takes one instruction cycle, while decode and execute takes another instruction cycle. However, due to the pipelining, each instruction effectively executes in one cycle. If an instruction causes the Program Counter to change (e.g., GOTO), then two cycles are required to complete the instruction (Example 2-1).

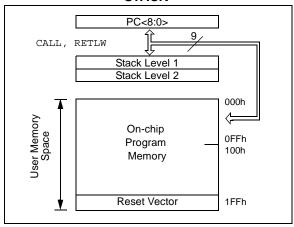

A fetch cycle begins with the Program Counter (PC) incrementing in Q1.

In the execution cycle, the fetched instruction is latched into the instruction register in cycle Q1. This instruction is then decoded and executed during the Q2, Q3 and Q4 cycles. Data memory is read during Q2 (operand read) and written during Q4 (destination write).

FIGURE 2-2: CLOCK/INSTRUCTION CYCLE

EXAMPLE 2-1: INSTRUCTION PIPELINE FLOW

3.0 MEMORY ORGANIZATION


PIC16F5X memory is organized into program memory and data memory. For the PIC16F57 and PIC16F59, which have more than 512 words of program memory, a paging scheme is used. Program memory pages are accessed using one or two Status register bits. For the PIC16F57 and PIC16F59, which have a data memory register file of more than 32 registers, a banking scheme is used. Data memory banks are accessed using the File Selection Register (FSR).

3.1 Program Memory Organization

The PIC16F54 has a 9-bit Program Counter (PC) capable of addressing a 512 x 12 program memory space (Figure 3-1). The PIC16F57 and PIC16F59 have an 11-bit Program Counter capable of addressing a 2K x 12 program memory space (Figure 3-2). Accessing a location above the physically implemented address will cause a wraparound.

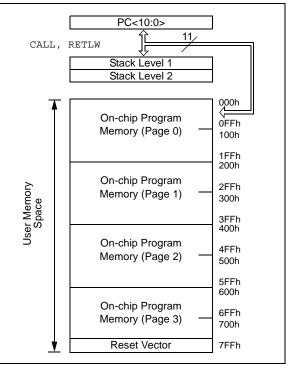

A NOP at the Reset vector location will cause a restart at location 000h. The Reset vector for the PIC16F54 is at 1FFh. The Reset vector for the PIC16F57 and PIC16F59 is at 7FFh. See **Section 3.5 "Program Counter"** for additional information using CALL and GOTO instructions.

FIGURE 3-1: PIC16F54 PROGRAM MEMORY MAP AND STACK

FIGURE 3-2:

PIC16F57/PIC16F59 PROGRAM MEMORY MAP AND STACK

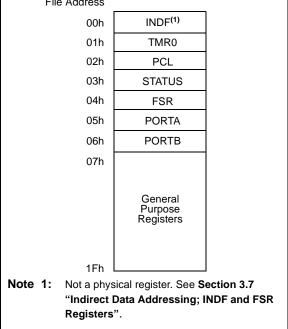
3.2 Data Memory Organization

Data memory is composed of registers or bytes of RAM. Therefore, data memory for a device is specified by its register file. The register file is divided into two functional groups: Special Function Registers (SFR) and General Purpose Registers (GPR).

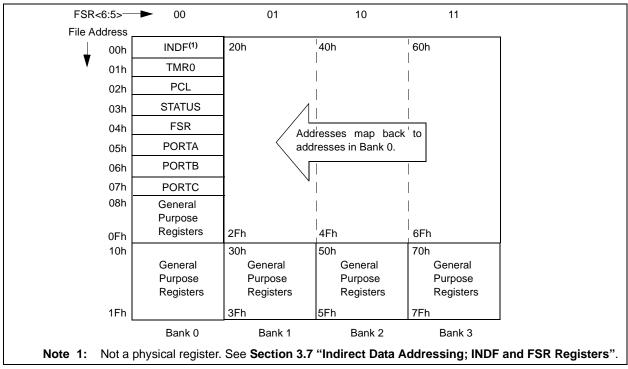
The Special Function Registers include the TMR0 register, the Program Counter (PC), the Status register, the I/O registers (ports) and the File Select Register (FSR). In addition, Special Purpose Registers are used to control the I/O port configuration and prescaler options.

The General Purpose Registers are used for data and control information under command of the instructions.

For the PIC16F54, the register file is composed of 7 Special Function Registers and 25 General Purpose Registers (Figure 3-3).


For the PIC16F57, the register file is composed of 8 Special Function Registers, 8 General Purpose Registers and 64 additional General Purpose Registers that may be addressed using a banking scheme (Figure 3-4).

For the PIC16F59, the register file is composed of 10 Special Function Registers, 6 General Purpose Registers and 128 additional General Purpose Registers that may be addressed using a banking scheme (Figure 3-5).


3.2.1 GENERAL PURPOSE REGISTER FILE

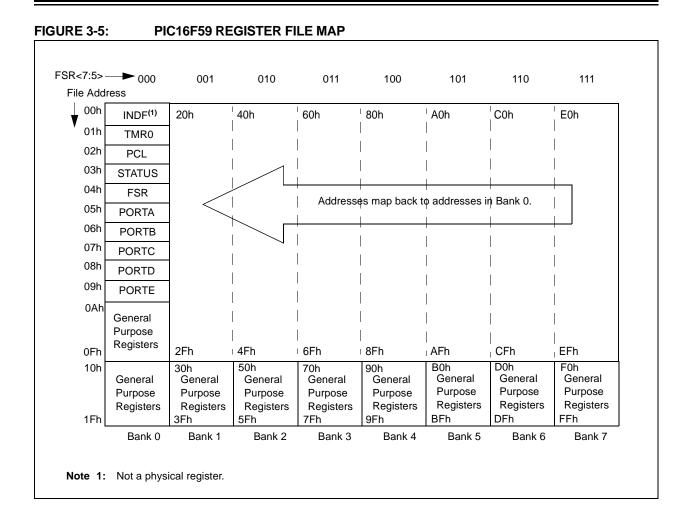

The register file is accessed either directly or indirectly through the File Select Register (FSR). The FSR register is described in **Section 3.7 "Indirect Data Addressing; INDF and FSR Registers"**.

FIGURE 3-3:	PIC16F54 REGISTER FILE MAP
File Address	

FIGURE 3-4: PIC16F57 REGISTER FILE MAP

3.2.2 SPECIAL FUNCTION REGISTERS

The Special Function Registers (SFR) are registers used by the CPU and peripheral functions to control the operation of the device (Table 3-1).

The Special Function Registers can be classified into two sets. The Special Function Registers associated with the "core" functions are described in this section. Those related to the operation of the peripheral features are described in the section for each peripheral feature.

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	Details on Page
N/A	TRIS	I/O Con	trol Reg	isters (T	RISA, T	RISB, TI	RISC, TF	RISD, TF	RISE)	1111 1111	29
N/A	OPTION	Contain prescale		l bits to o	configur	e Timer0) and Tim	ner0/WD	T	11 1111	18
00h	INDF	Uses co register	ses contents of FSR to address data memory (not a physical xxxx xxxx gister)								20
01h	TMR0	Timer0	Module	Register						xxxx xxxx	34
02h	PCL ⁽¹⁾	Low orc	ler 8 bits	of PC						1111 1111	19
03h	STATUS	PA2	PA1	PA0	TO	PD	Z	DC	С	0001 1xxx	17
04h	FSR ⁽³⁾	Indirect	data me	mory ad	dress p	ointer				111x xxxx	20
04h	FSR ⁽⁴⁾	Indirect	data me	mory ad	dress p	ointer				1xxx xxxx	20
04h	FSR ⁽⁵⁾	Indirect	data me	mory ad	dress p	ointer				xxxx xxxx	20
05h	PORTA ⁽⁶⁾	_	_		_	RA3	RA2	RA1	RA0	xxxx	29
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	29
07h	PORTC ⁽²⁾	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	29
08h	PORTD ⁽⁷⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	29
09h	PORTE ^{(6), (7)}	RE7	RE6	RE5	RE4	_	_	_		xxxx	29

Legend: Shaded cells = unimplemented or unused, - = unimplemented, read as '0' (if applicable), x = unknown, u = unchanged

Note 1: The upper byte of the Program Counter is not directly accessible. See **Section 3.5 "Program Counter"** for an explanation of how to access these bits.

- 2: File address 07h is a General Purpose Register on the PIC16F54.
- **3:** PIC16F54 only.
- 4: PIC16F57 only.
- 5: PIC16F59 only.
- 6: Unimplemented bits are read as '0's.
- 7: File address 08h and 09h are General Purpose Registers on the PIC16F54 and PIC16F57.

3.3 **Status Register**

This register contains the arithmetic status of the ALU, the Reset status and the page preselect bits for program memories larger than 512 words.

The Status register can be the destination for any instruction, as with any other register. If the Status register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. Furthermore, the TO and PD bits are not writable. Therefore, the result of an instruction with the Status register as destination may be different than intended.

For example, CLRF STATUS will clear the upper three bits and set the Z bit. This leaves the Status register as 000u uluu (where u = unchanged).

Therefore, it is recommended that only BCF, BSF, MOVWF and SWAPF instructions be used to alter the Status register because these instructions do not affect the Z, DC or C bits from the Status register. For other instructions which do affect Status bits, see Section 9.0 "Instruction Set Summary".

REGISTER 3-1: STATUS REGISTER (ADDRESS: 03h)

	R/W-0	R/W-0	R/W-0	R-1	R-	-1	R/W-x	R/W-x	R/W-x
	PA2	PA1	PA0	TO	PI	D	Z	DC	С
	bit 7								bit 0
bit 7	Use of the P	ved, do not us A2 bit as a ge ⁄ with future p	eneral purpos	se read/write I	oit is not	recomm	nended, sind	ce this may af	fect upward
bit 6-5	00 = Page 0 01 = Page 1 10 = Page 2 11 = Page 3 Each page i	rogram Page) (000h-1FFh l (200h-3FFh 2 (400h-5FFh 3 (600h-7FFh s 512 words. n for program lots.))) Using the P/	A<1:0> bits as	s genera	l purpos			
bit 4		ut bit wer-up, CLRV time-out occu		on or SLEEP	instructio	on			
bit 3		Down bit wer-up or by aution of the s							
bit 2		ult of an arith	-			D			
bit 1	 0 = The result of an arithmetic or logic operation is not zero DC: Digit Carry/Borrow bit (for ADDWF and SUBWF instructions) <u>ADDWF</u> 1 = A carry to the 4th low order bit of the result occurred 0 = A carry from the 4th low order bit of the result did not occur <u>SUBWF</u> 1 = A borrow to the 4th low order bit of the result did not occur 0 = A borrow to the 4th low order bit of the result did not occur 								
bit 0	ADDWF 1 = A carry	rrow bit (for A occurred did not occur	<u>SUBWI</u> 1 = A b		occur	<u>RRF o</u>		or MSb, respe	ectively
	Legend:								
	R = Readab	ole bit	W = W	/ritable bit	U =	Unimple	emented bit	, read as '0'	
	- n = Value a	at POR	'1' = B	it is set	ʻ0' =	Bit is c	leared	x = Bit is un	known

3.4 Option Register

The Option register is a 6-bit wide, write-only register which contains various control bits to configure the Timer0/WDT prescaler and Timer0.

By executing the <code>OPTION</code> instruction, the contents of the W register will be transferred to the Option register. A Reset sets the Option<5:0> bits.

REGISTER 3-2: OPTION REGISTER

U-0	U-0	W-1	W-1	W-1	W-1	W-1	W-1
		TOCS	T0SE	PSA	PS2	PS1	PS0
bit 7							bit 0

bit 7-6 Unimplemented: Read as '0'

bit 5	TOCS: Timer0 Clock Source Select bit									
	1 = Transition on T0CKI pin									
	0 = Internal in:	structi	on cycle clocł	< (CLKOUT)						
bit 4	TOSE: Timer0	T0SE: Timer0 Source Edge Select bit								
		 1 = Increment on high-to-low transition on T0CKI pir 0 = Increment on low-to-high transition on T0CKI pir 								
bit 3	PSA: Prescale	er Ass	ignment bit							
	1 = Prescaler	assigr	ned to the WD	т						
	0 = Prescaler assigned to Timer0									
bit 2-0	PS<2:0> : Pres	scaler	rate select bi	ts						
	Bit V	alue	Timer0 Rate	WDT Rate						
	00	00	1:2	1:1						
	00	01	1:4	1:2						

1:2	1:1
1:4	1:2
1:8	1:4
1:16	1:8
1:32	1:16
1:64	1:32
1 : 128	1:64
1 : 256	1 : 128
	1 : 4 1 : 8 1 : 16 1 : 32 1 : 64 1 : 128

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented	bit, read as '0'
- n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

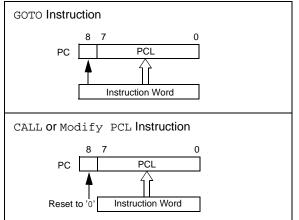
3.5 Program Counter

As a program instruction is executed, the Program Counter (PC) will contain the address of the next program instruction to be executed. The PC value is increased by one, every instruction cycle, unless an instruction changes the PC.

For a GOTO instruction, bits 8:0 of the PC are provided by the GOTO instruction word. The PC Latch (PCL) is mapped to PC<7:0> (Figure 3-6 and Figure 3-7).

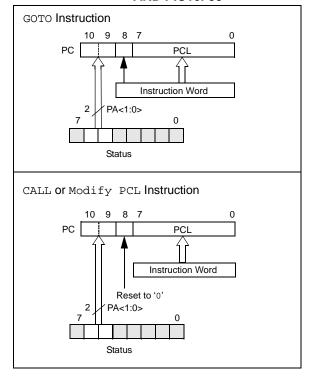
For the PIC16F57 and PIC16F59, a page number must be supplied as well. Bit 5 and bit 6 of the Status register provide page information to bit 9 and bit 10 of the PC (Figure 3-6 and Figure 3-7).

For a CALL instruction, or any instruction where the PCL is the destination, bits 7:0 of the PC again are provided by the instruction word. However, PC<8> does not come from the instruction word, but is always cleared (Figure 3-6 and Figure 3-7).


Instructions where the PCL is the destination or modify PCL instructions, include <code>MOVWF PCL</code>, <code>ADDWF PCL</code>, and <code>BSF PCL</code>, <code>5</code>.

For the PIC16F57 and PIC16F59, a page number again must be supplied. Bit 5 and bit 6 of the Status register provide page information to bit 9 and bit 10 of the PC (Figure 3-6 and Figure 3-7).

Note:	Because PC<8> is cleared in the CALL
	instruction or any modified PCL instruc-
	tion, all subroutine calls or computed
	jumps are limited to the first 256 locations
	of any program memory page (512 words
	long).


FIGURE 3-6:

LOADING OF PC BRANCH INSTRUCTIONS-PIC16F54

FIGURE 3-7:

LOADING OF PC BRANCH INSTRUCTIONS-PIC16F57 AND PIC16F59

3.5.1 PAGING CONSIDERATIONS PIC16F57 AND PIC16F59

If the PC is pointing to the last address of a selected memory page, when it increments, it will cause the program to continue in the next higher page. However, the page preselect bits in the Status register will not be updated. Therefore, the next GOTO, CALL or MODIFY PCL instruction will send the program to the page specified by the page preselect bits (PA0 or PA<1:0>).

For example, a NOP at location 1FFh (page 0) increments the PC to 200h (page 1). A GOTO xxx at 200h will return the program to address xxh on page 0 (assuming that PA<1:0> are clear).

To prevent this, the page preselect bits must be updated under program control.

3.5.2 EFFECTS OF RESET

The PC is set upon a Reset, which means that the PC addresses the last location in the last page (i.e., the Reset vector).

The Status register page preselect bits are cleared upon a Reset, which means that page 0 is preselected.

Therefore, upon a Reset, a GOTO instruction at the Reset vector location will automatically cause the program to jump to page 0.

3.6 Stack

The PIC16F54 device has a 9-bit wide, two-level hardware PUSH/POP stack. The PIC16F57 and PIC16F59 devices have an 11-bit wide, two-level hardware PUSH/POP stack.

A CALL instruction will PUSH the current value of stack 1 into stack 2 and then PUSH the current program counter value, incremented by one, into stack level 1. If more than two sequential CALL's are executed, only the most recent two return addresses are stored.

A RETLW instruction will POP the contents of stack level 1 into the program counter and then copy stack level 2 contents into level 1. If more than two sequential RETLW's are executed, the stack will be filled with the address previously stored in level 2.

Note:	The W register will be loaded with the
	literal value specified in the instruction.
	This is particularly useful for the
	implementation of data look-up tables
	within the program memory.

For the RETLW instruction, the PC is loaded with the Top-of-Stack (TOS) contents. All of the devices covered in this data sheet have a two-level stack. The stack has the same bit width as the device PC, therefore, paging is not an issue when returning from a subroutine.

3.7 Indirect Data Addressing; INDF and FSR Registers

The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR Register (FSR is a *pointer*). This is indirect addressing.

EXAMPLE 3-1: INDIRECT ADDRESSING

- Register file 08 contains the value 10h
- Register file 09 contains the value 0Ah
- · Load the value 08 into the FSR register
- A read of the INDF register will return the value of 10h
- Increment the value of the FSR register by one (FSR = 09h)
- A read of the INDF register now will return the value of 0Ah.

Reading INDF itself indirectly (FSR = 0) will produce 00h. Writing to the INDF register indirectly results in a no-operation (although Status bits may be affected).

A simple program to clear RAM locations 10h-1Fh using indirect addressing is shown in Example 3-2.

EXAMPLE 3-2: HOW TO CLEAR RAM USING INDIRECT ADDRESSING

NEXT	MOVWF CLRF INCF	,	<pre>;initialize pointer ;to RAM ;clear INDF Register ;inc pointer ;all done?</pre>
	GOTO	NEXT	;NO, clear next
CONTINUE			
	:		;YES, continue

The FSR is either a 5-bit (PIC16F54), 7-bit (PIC16F57) or 8-bit (PIC16F59) wide register. It is used in conjunction with the INDF register to indirectly address the data memory area.

The FSR<4:0> bits are used to select data memory addresses 00h to 1Fh.

PIC16F54: This does not use banking. FSR<7:5> bits are unimplemented and read as '1's.

PIC16F57: FSR<7> bit is unimplemented and read as '1'. FSR<6:5> are the bank select bits and are used to select the bank to be addressed (00 = Bank 0, 01 = Bank 1, 10 = Bank 2, 11 = Bank 3).

PIC16F59: FSR<7:5> are the bank select bits and are used to select the bank to be addressed (000 = Bank 0, 001 = Bank 1, 010 = Bank 2, 011 = Bank 3, 100 = Bank 4, 101 = Bank 5,

110 = Bank 6, 111 = Bank 7.

Note: A CLRF FSR instruction may not result in an FSR value of 00h if there are unimplemented bits present in the FSR.

4.0 OSCILLATOR CONFIGURATIONS

4.1 Oscillator Types

The PIC16F5X devices can be operated in four different oscillator modes. The user can program two configuration bits (FOSC1:FOSC0) to select one of these four modes:

- LP: Low-power Crystal
- XT: Crystal/Resonator
- HS: High-speed Crystal/Resonator
- RC: Resistor/Capacitor

4.2 Crystal Oscillator/Ceramic Resonators

In XT, LP or HS modes, a crystal or ceramic resonator is connected to the OSC1/CLKIN and OSC2/CLKOUT pins to establish oscillation (Figure 4-1). The PIC16F5X oscillator design requires the use of a parallel cut crystal. Use of a series cut crystal may give a frequency outside of the crystal manufacturers specifications. When in XT, LP or HS modes, the device can have an external clock source drive the OSC1/CLKIN pin (Figure 4-2).

FIGURE 4-1: CRYSTAL/CERAMIC RESONATOR OPERATION (HS, XT OR LP OSC CONFIGURATION)

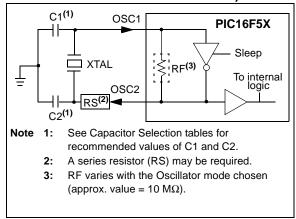
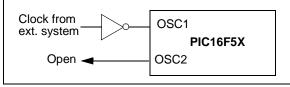



FIGURE 4-2: EXTERNAL CLOCK INPUT OPERATION (HS, XT OR LP OSC CONFIGURATION)

TABLE 4-1:CAPACITOR SELECTION FOR
CERAMIC RESONATORS

Osc Type	Resonator Freq.	Cap. Range C1	Cap. Range C2
XT	455 kHz	68-100 pF	68-100 pF
	2.0 MHz	15-33 pF	15-33 pF
	4.0 MHz	10-22 pF	10-22 pF
HS	8.0 MHz	10-22 pF	10-22 pF
	16.0 MHz	10 pF	10 pF

These values are for design guidance only. Since each resonator has its own characteristics, the user should consult the resonator manufacturer for appropriate values of external components.

TABLE 4-2: CAPACITOR SELECTION FOR CRYSTAL OSCILLATOR

Crystal Freq.	Cap.Range C1	Cap. Range C2
32 kHz ⁽¹⁾	15 pF	15 pF
100 kHz	15-30 pF	200-300 pF
200 kHz	15-30 pF	100-200 pF
455 kHz	15-30 pF	15-100 pF
1 MHz	15-30 pF	15-30 pF
2 MHz	15 pF	15 pF
4 MHz	15 pF	15 pF
4 MHz	15 pF	15 pF
8 MHz	15 pF	15 pF
20 MHz	15 pF	15 pF
	Freq. 32 kHz ⁽¹⁾ 100 kHz 200 kHz 455 kHz 1 MHz 2 MHz 4 MHz 4 MHz 8 MHz	Freq. C1 32 kHz ⁽¹⁾ 15 pF 100 kHz 15-30 pF 200 kHz 15-30 pF 455 kHz 15-30 pF 1 MHz 15-30 pF 2 MHz 15 pF 4 MHz 15 pF 4 MHz 15 pF 8 MHz 15 pF

Note 1: For VDD > 4.5V, C1 = C2 \approx 30 pF is recommended.

These values are for design guidance only. Rs may be required in HS mode, as well as XT mode, to avoid overdriving crystals with low drive level specifications. Since each crystal has its own characteristics, the user should consult the crystal manufacturer for appropriate values of external components.

2: The user should verify that the device oscillator starts and performs as expected. Adjusting the loading capacitor values and/or the Oscillator mode may be required.

Note 1: This device has been designed to perform to the parameters of its data sheet. It has been tested to an electrical specification designed to determine its conformance with these parameters. Due to process differences in the manufacture of this device, this device may have different performance characteristics than its earlier version. These differences may cause this device to perform differently in your application than the earlier version of this device.

4.3 External Crystal Oscillator Circuit

Either a pre-packaged oscillator or a simple oscillator circuit with TTL gates can be used as an external crystal oscillator circuit. Pre-packaged oscillators provide a wide operating range and better stability. A well designed crystal oscillator will provide good performance with TTL gates. Two types of crystal oscillator circuits can be used: one with parallel resonance or one with series resonance.

Figure 4-3 shows an implementation example of a parallel resonant oscillator circuit. The circuit is designed to use the fundamental frequency of the crystal. The 74AS04 inverter performs the 180° phase shift that a parallel oscillator requires. The 4.7 k Ω resistor provides the negative feedback for stability. The 10 k Ω potentiometers bias the 74AS04 in the linear region. This circuit could be used for external oscillator designs.

FIGURE 4-3:

RESONANT CRYSTAL OSCILLATOR CIRCUIT (USING XT, HS OR LP OSCILLATOR MODE)

EXTERNAL PARALLEL

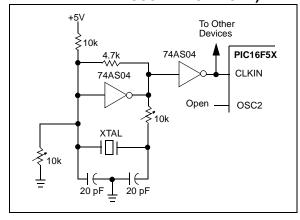
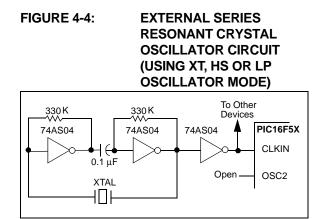
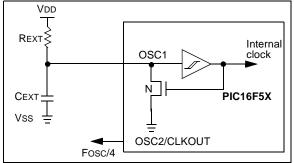



Figure 4-4 shows a series resonant oscillator circuit. This circuit is also designed to use the fundamental frequency of the crystal. The inverters perform a 360° phase shift in a series resonant oscillator circuit. The 330 k Ω resistors provide the negative feedback to bias the inverters in their linear region.

4.4 RC Oscillator


For applications where precise timing is not a requirement, the RC oscillator option is available. The operation and functionality of the RC oscillator is dependent upon a number of variables. The RC oscillator frequency is a function of:

- Supply voltage
- Resistor (REXT) and capacitor (CEXT) values
- Operating temperature.

The oscillator frequency will vary from unit to unit due to normal process parameter variation. The difference in lead frame capacitance between package types will also affect the oscillation frequency, especially for low CEXT values. The user also needs to account for the tolerance of the external R and C components. Figure 4-5 shows how the R/C combination is connected.

The oscillator frequency, divided by 4, is available on the OSC2/CLKOUT pin and can be used for test purposes or to synchronize other logic.

5.0 RESET

The PIC16F5X devices may be reset in one of the following ways:

- Power-on Reset (POR)
- MCLR Reset (normal operation)
- MCLR Wake-up Reset (from Sleep)
- WDT Reset (normal operation)
- WDT Wake-up Reset (from Sleep)

Table 5-1 shows these Reset conditions for the PCL and Status registers.

Some registers are not affected in any Reset condition. Their status is unknown on POR and unchanged in any other Reset. Most other registers are reset to a "Reset state" on Power-on Reset (POR), MCLR or WDT Reset. A MCLR or WDT wake-up from Sleep also results in a device Reset and not a continuation of operation before Sleep. The $\overline{\text{TO}}$ and $\overline{\text{PD}}$ bits (Status <4:3>) are set or cleared depending on the different Reset conditions (Table 5-1). These bits may be used to determine the nature of the Reset.

Table 5-3 lists a full description of Reset states of all registers. Figure 5-1 shows a simplified block diagram of the on-chip Reset circuit.

TABLE 5-1:STATUS BITS AND THEIR SIGNIFICANCE

Condition	то	PD
Power-on Reset	1	1
MCLR Reset (normal operation)	u	u
MCLR Wake-up (from Sleep)	1	0
WDT Reset (normal operation)	0	1
WDT Wake-up (from Sleep)	0	0

Legend: u = unchanged, x = unknown, - = unimplemented read as '0'.

TABLE 5-2: SUMMARY OF REGISTERS ASSOCIATED WITH RESET

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on POR	<u>Value</u> on MCLR and WDT Reset
03h	STATUS	PA2	PA1	PA0	TO	PD	Z	DC	С	0001 1xxx	000q quuu

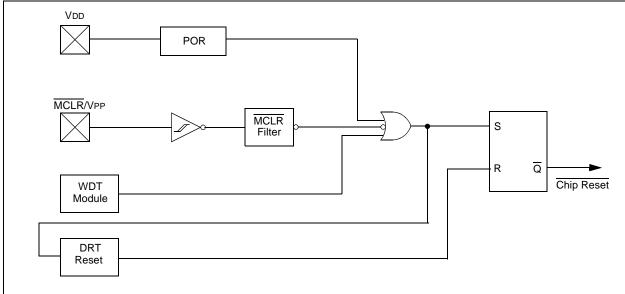
Legend: u = unchanged, x = unknown, q = see Table 5-1 for possible values.

TABLE 5-3:	RESET CONDITIONS FOR ALL REGISTERS
------------	------------------------------------

Register	Address	Power-on Reset	MCLR or WDT Reset	
W	N/A	xxxx xxxx	սսսս սսսս	
TRIS	N/A	1111 1111	1111 1111	
OPTION	N/A	11 1111	11 1111	
INDF	00h	xxxx xxxx	uuuu uuuu	
TMR0	01h	XXXX XXXX	uuuu uuuu	
PCL	02h	1111 1111	1111 1111	
STATUS	03h	0001 1xxx	000q quuu	
FSR ⁽¹⁾	04h	111x xxxx	111u uuuu	
FSR ⁽²⁾	04h	1xxx xxxx	luuu uuuu	
FSR ⁽³⁾	04h	xxxx xxxx	uuuu uuuu	
PORTA	05h	xxxx	uuuu	
PORTB	06h	xxxx xxxx	uuuu uuuu	
PORTC ⁽⁴⁾	07h	xxxx xxxx	սսսս սսսս	
PORTD ⁽⁵⁾	08h	xxxx xxxx	uuuu uuuu	
PORTE ⁽⁵⁾	09h	xxxx	uuuu	

Legend: u = unchanged, x = unknown, — = unimplemented, read as '0', q = see tables in Table 5-1 for possible values.

Note 1: PIC16F54 only.


2: PIC16F57 only.

3: PIC16F59 only.

4: General purpose register file on PIC16F54.

5: General purpose register file on PIC16F54 and PIC16F57.

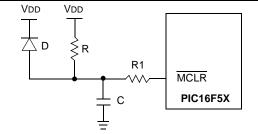
FIGURE 5-1: SIMPLIFIED BLOCK DIAGRAM OF ON-CHIP RESET CIRCUIT

5.1 Power-on Reset (POR)

The PIC16F5X family of devices incorporate on-chip Power-on Reset (POR) circuitry which provides an internal chip Reset for most power-up <u>situations</u>. To use this feature, the user merely ties the MCLR/VPP pin to VDD. A simplified block diagram of the on-chip Power-on Reset circuit is shown in Figure 5-1.

The Power-on Reset circuit and the Device Reset Timer (Section 5.2) circuit are closely related. On power-up, the Reset latch is set and the DRT is reset. The DRT timer begins counting once it detects MCLR to be high. After the time-out period, which is typically 18 ms, it will reset the Reset latch and thus end the onchip Reset signal.

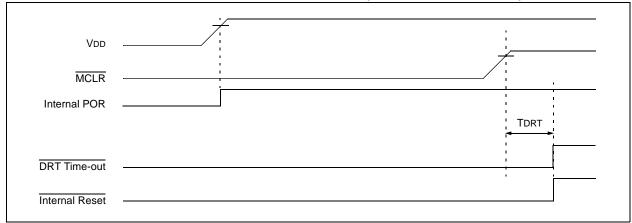
A power-up example where MCLR is not tied to VDD is shown in Figure 5-3. VDD is allowed to rise and stabilize before bringing MCLR high. The chip will actually come out of Reset TDRT msec after MCLR goes high.

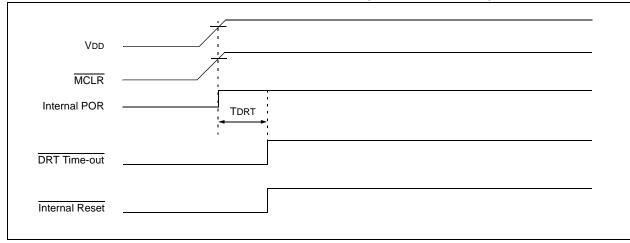

In Figure 5-4, the on-chip Power-on Reset feature is being used (MCLR and VDD are tied together). The VDD is stable before the start-up timer times out and there is no problem in getting a proper Reset. However, Figure 5-5 depicts a problem situation where VDD rises too slowly. The time between when the DRT senses a high on the MCLR/VPP pin and the MCLR/VPP pin (and VDD) actually reach their full value is too long. In this situation, when the start-up timer times out, VDD has not reached the VDD (min) value and the chip is, therefore, not ensured to function correctly. For such situations, we recommend that external RC circuits be used to achieve longer POR delay times (Figure 5-2).

- Note 1: When the device starts normal operation (exits the Reset condition), device operating parameters (voltage, frequency, temperature, etc.) must be met to ensure operation. If these conditions are not met, the device must be held in Reset until the operating conditions are met.
 2: The POR is disabled when the device is
 - **2:** The POR is disabled when the device is in Sleep.

For more information on the PIC16F5X POR, see Application Note AN522, "*Power-Up Considerations*" at www.microchip.com.

FIGURE 5-2:


EXTERNAL POWER-ON RESET CIRCUIT (FOR SLOW VDD POWER-UP)


- External Power-on Reset circuit is required only if VDD power-up is too slow. The diode D helps discharge the capacitor quickly when VDD powers down.
- R < 40 kΩ is recommended to make sure that voltage drop across R does not violate the device electrical specification.
- R1 = 100Ω to 1 k Ω will limit any current flowing into \overline{MCLR} from external capacitor C in the event of \overline{MCLR} pin breakdown due to Electrostatic Discharge (ESD) or Electrical Overstress (EOS).

PIC16F5X

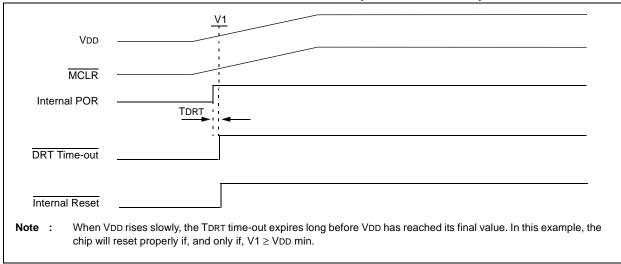


FIGURE 5-4: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): FAST VDD RISE TIME

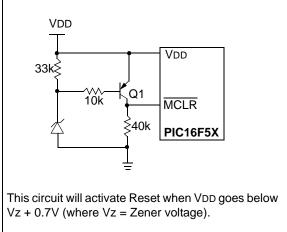
FIGURE 5-5: TIME-OUT SEQUENCE ON POWER-UP (MCLR TIED TO VDD): SLOW VDD RISE TIME

5.2 Device Reset Timer (DRT)

The Device Reset Timer (DRT) provides an 18 ms nominal time-out on Reset regardless of the oscillator mode used. The DRT operates on an internal RC oscillator. The processor is kept in Reset as long as the DRT is active. The DRT delay allows VDD to rise above VDD min. and for the chosen oscillator to stabilize.

Oscillator circuits, based on crystals or ceramic resonators, require a certain time after power-up to establish a stable oscillation. The on-chip DRT keeps the device in a Reset condition for approximately 18 ms after the voltage on the MCLR/VPP pin has reached a logic high (VIH) level. Thus, external RC networks connected to the MCLR input are not required in most cases, allowing for savings in cost-sensitive and/or space restricted applications.

The device Reset time delay will vary from chip-to-chip due to VDD, temperature and process variation. See AC parameters for details.


The DRT will also be triggered upon a Watchdog Timer time-out. This is particularly important for applications using the WDT to wake the PIC16F5X from Sleep mode automatically.

5.3 Reset on Brown-Out

A Brown-out is a condition where device power (VDD) dips below its minimum value, but not to zero, and then recovers. The device should be reset in the event of a Brown-out.

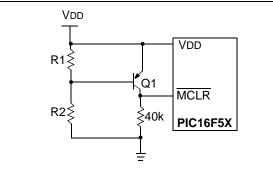
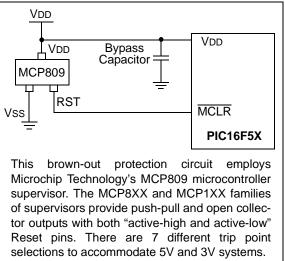

To reset PIC16F5X devices when a Brown-out occurs, external Brown-out protection circuits may be built, as shown in Figure 5-6, Figure 5-7 and Figure 5-8.

FIGURE 5-7:

EXTERNAL BROWN-OUT PROTECTION CIRCUIT 2



This brown-out circuit is less expensive, although less accurate. Transistor Q1 turns off when VDD is below a certain level such that:

$$VDD \bullet \frac{R1}{R1 + R2} = 0.7V$$

EXTERNAL BROWN-OUT PROTECTION CIRCUIT 3

NOTES:

6.0 I/O PORTS

As with any other register, the I/O registers can be written and read under program control. However, read instructions (e.g., MOVF PORTB, W) always read the I/O pins independent of the pin's Input/Output modes. On Reset, all I/O ports are defined as input (inputs are at high-impedance), since the I/O control registers (TRISA, TRISB, TRISC, TRISD and TRISE) are all set.

6.1 PORTA

PORTA is a 4-bit I/O register. Only the low order 4 bits are used (PORTA<3:0>). The high order 4 bits (PORTA<7:4>) are unimplemented and read as '0's.

6.2 PORTB

PORTB is an 8-bit I/O register (PORTB<7:0>).

6.3 PORTC

PORTC is an 8-bit I/O register (PORTC<7:0>) for the PIC16F57 and PIC16F59.

PORTC is a General Purpose Register for the PIC16F54.

6.4 PORTD

PORTD is an 8-bit I/O register (PORTD<7:0>) for the PIC16F59.

PORTD is a General Purpose Register for the PIC16F54 and PIC16F57.

6.5 PORTE

PORTE is an 4-bit I/O register for the PIC16F59. Only the high order 4 bits are used (PORTE<7:4>). The low order 4 bits (PORTE<3:0>) are unimplemented and read as '0's.

PORTE is a General Purpose Register for the PIC16F54 and PIC16F57.

6.6 TRIS Registers

The output driver control registers are loaded with the contents of the W register by executing the TRIS f instruction. A '1' from a TRIS register bit puts the corresponding output driver in a High-impedance (Input) mode. A '0' puts the contents of the output data latch on the selected pins, enabling the output buffer.

Note:	A read of the ports reads the pins, not the
	output data latches. That is, if an output
	driver on a pin is enabled and driven high,
	but the external system is holding it low, a
	read of the port will indicate that the pin is
	low.

The TRIS registers are "write-only" and are set (output drivers disabled) upon Reset.

6.7 I/O Interfacing

The equivalent circuit for an I/O port pin is shown in Figure 6-1. All ports may be used for both input and output operation. For input operations, these ports are non-latching. Any input must be present until read by an input instruction (e.g., MOVF PORTB, W). The outputs are latched and remain unchanged until the output latch is rewritten. To use a port pin as output, the corresponding direction control bit (in TRISA, TRISB, TRISC, TRISD and TRISE) must be cleared (= 0). For use as an input, the corresponding TRIS bit must be set. Any I/O pin can be programmed individually as input or output.

FIGURE 6-1:

EQUIVALENT CIRCUIT FOR A SINGLE I/O PIN

TABLE 6-1: SUMMARY OF PORT REGISTERS

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	<u>Value</u> on MCLR and WDT Reset
N/A	TRIS	I/O Con	trol Regi	sters (TI	RISA, TF	RISB, TR	ISC, TR	ISD and	TRISE)	1111 1111	1111 1111
05h	PORTA	_			_	RA3	RA2	RA1	RA0	xxxx	uuuu
06h	PORTB	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx xxxx	uuuu uuuu
07h	PORTC ⁽¹⁾	RC7	RC6	RC5	RC4	RC3	RC2	RC1	RC0	xxxx xxxx	uuuu uuuu
08h	PORTD ⁽²⁾	RD7	RD6	RD5	RD4	RD3	RD2	RD1	RD0	xxxx xxxx	uuuu uuuu
09h	PORTE ⁽²⁾	RE7	RE6	RE5	RE4	_	_	_	_	xxxx	uuuu

Legend: Shaded cells = unimplemented, read as '0', — = unimplemented, read as '0', x = unknown, u = unchanged

Note 1: File address 07h is a General Purpose Register on the PIC16F54.

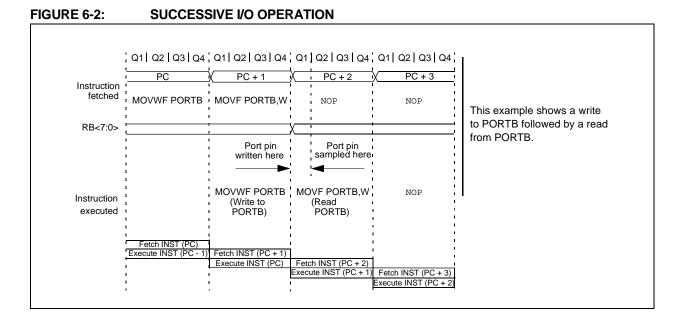
2: File address 08h and 09h are General Purpose Registers on the PIC16F54 and PIC16F57.

6.8 I/O Programming Considerations

6.8.1 BIDIRECTIONAL I/O PORTS

Some instructions operate internally as read followed by write operations. The BCF and BSF instructions, for example, read the entire port into the CPU, execute the bit operation and re-write the result. Caution must be used when these instructions are applied to a port where one or more pins are used as input/outputs. For example, a BSF operation on bit 5 of PORTB will cause all eight bits of PORTB to be read into the CPU, bit 5 to be set and the PORTB value to be written to the output latches. If another bit of PORTB is used as a bidirectional I/O pin (say bit '0'), and it is defined as an input at this time, the input signal present on the pin itself would be read into the CPU and rewritten to the data latch of this particular pin, overwriting the previous content. As long as the pin stays in the Input mode, no problem occurs. However, if bit '0' is switched into Output mode later on, the content of the data latch may now be unknown

Example 6-1 shows the effect of two sequential read-modify-write instructions (e.g., ${\tt BCF}, \ {\tt BSF}, \mbox{etc.})$ on an I/O port.


A pin actively outputting a high or a low should not be driven from external devices at the same time in order to change the level on this pin ("wired-or", "wired-and"). The resulting high output currents may damage the chip.

EXAMPLE 6-1: READ-MODIFY-WRITE INSTRUCTIONS ON AN I/O PORT

;Initial PORT Settings										
;PORTB<7:4> Inputs										
;PORTB<3:0> Outputs										
;PORTB<7:6> have external pull-ups and are										
inot connected to other circuitry										
;										
; PORT latch PORT pins										
;										
BCF PORTB, 7 ;01pp pppp 11pp pppp										
BCF PORTB, 6 ;10pp pppp 11pp pppp										
MOVLW H'3F' ;										
TRIS PORTE ;10pp pppp 10pp pppp										
;										
;Note that the user may have expected the										
pin										
;values to be 00pp pppp. The 2nd BCF caused										
;RB7 to be latched as the pin value (High).										

6.8.2 SUCCESSIVE OPERATIONS ON I/O PORTS

The actual write to an I/O port happens at the end of an instruction cycle, whereas for reading, the data must be valid at the beginning of the instruction cycle (see Figure 6-2). Therefore, care must be exercised if a write followed by a read operation is carried out on the same I/O port. The sequence of instructions should allow the pin voltage to stabilize (load dependent) before the next instruction, which causes that file to be read into the CPU, is executed. Otherwise, the previous state of that pin may be read into the CPU rather than the new state. When in doubt, it is better to separate these instructions with a NOP or another instruction not accessing this I/O port.

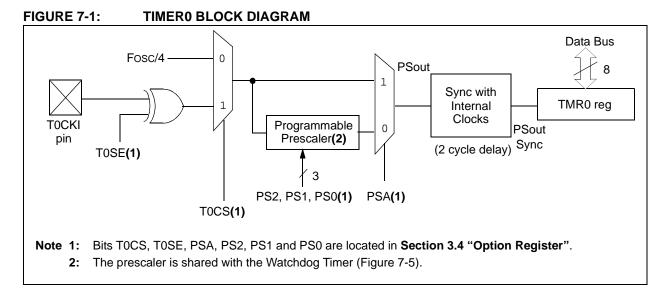
NOTES:

7.0 TIMER0 MODULE AND TMR0 REGISTER

The Timer0 module has the following features:

- 8-bit Timer/Counter register, TMR0
 - Readable and writable
- 8-bit software programmable prescaler
- Internal or external clock select
 - Edge select for external clock

Figure 7-1 is a simplified block diagram of the Timer0 module.


Timer mode is selected by clearing the TOCS bit (OPTION<5>). In Timer mode, the Timer0 module will increment every instruction cycle (without prescaler). If TMR0 register is written, the increment is inhibited for the following two cycles (Figure 7-2 and Figure 7-3). The user can work around this by writing an adjusted value to the TMR0 register.

Counter mode is selected by setting the T0CS bit (OPTION<5>). In this mode, Timer0 will increment either on every rising or falling edge of pin T0CKI. The incrementing edge is determined by the source edge select bit T0SE (OPTION<4>). Clearing the T0SE bit selects the rising edge. Restrictions on the external clock input are discussed in detail in **Section 7.1** "Using Timer0 with an External Clock".

Note: The prescaler may be used by either the Timer0 module or the Watchdog Timer, but not both.

The prescaler assignment is controlled in software by the control bit PSA (OPTION<3>). Clearing the PSA bit will assign the prescaler to Timer0. The prescaler is not readable or writable. When the prescaler is assigned to the Timer0 module, prescale values of 1:2, 1:4,..., 1:256 are selectable. **Section 7.2 "Prescaler"** details the operation of the prescaler.

A summary of registers associated with the Timer0 module is found in Table 7-1.

PC (Program	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
Counter)	PC - 1	PC	(PC + 1)	PC + 2	PC + 3	(PC + 4	PC + 5)	PC + 6
Instruction Fetch	 	MOVWF TMR0	MOVF TMR0,W	MOVF TMR0,W	MOVF TMR0,W	MOVF TMR0,W	MOVF TMR0,W	
Timer0 Instruction Executed	Το χ	<u>Τ0+1</u> χ	T0 + 2 X ↓ Write TMR0 executed	NT0 X	NT0 X	NT0 X	NT0 + 1 X	NT0 + 2 X Read TMR0 reads NT0 + 2

FIGURE 7-3: TIMER0 TIMING: INTERNAL CLOCK/PRESCALER 1:2

PC (Program	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4	Q1 Q2 Q3 Q4
Counter)	PC - 1	PC PC	(PC + 1)	PC + 2	PC + 3	PC + 4	PC + 5	PC + 6
Instruction Fetch		MOVWF TMR0	MOVF TMR0,W					
Timer0	ΤΟ χ	T0 + 1			NTO			NT0 + 1
Instruction Execute		1 1 1 1	Write TMR0 executed	Read TMR0 reads NT0 + 1				

TABLE 7-1:REGISTERS ASSOCIATED WITH TIMER0

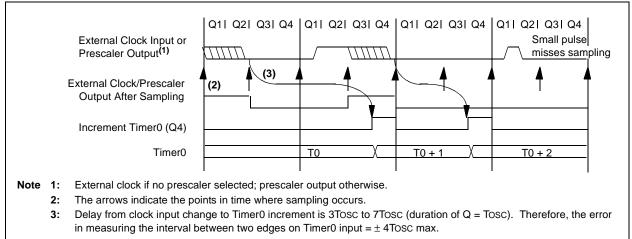
Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	<u>Value</u> on MCLR and WDT Reset
01h	TMR0	Timer0	Timer0 - 8-bit real-time clock/counter								uuuu uuuu
N/A	OPTION	_	—	TOCS	T0SE	PSA	PS2	PS1	PS0	11 1111	11 1111

Legend: Shaded cells not used by Timer0, - = unimplemented, x = unknown, u = unchanged.

7.1 Using Timer0 with an External Clock

When an external clock input is used for Timer0, it must meet certain requirements. The external clock requirement is due to internal phase clock (Tosc) synchronization. Also, there is a delay in the actual incrementing of Timer0 after synchronization.

7.1.1 EXTERNAL CLOCK SYNCHRONIZATION


When no prescaler is used, the external clock is the Timer0 input. The synchronization of T0CKI with the internal phase clocks is accomplished by sampling the prescaler output on the Q2 and Q4 cycles of the internal phase clocks (Figure 7-4). Therefore, it is necessary for T0CKI to be high for at least 2Tosc (and a small RC delay of 20 ns) and low for at least 2Tosc (and a small RC delay of 20 ns). Refer to the electrical specification of the desired device.

When a prescaler is used, the external clock input is divided by the asynchronous ripple counter-type prescaler so that the prescaler output is symmetrical. For the external clock to meet the sampling requirement, the ripple counter must be taken into account. Therefore, it is necessary for TOCKI to have a period of at least 4Tosc (and a small RC delay of 40 ns) divided by the prescaler value. The only requirement on TOCKI high and low time is that they do not violate the minimum pulse width requirement of 10 ns. Refer to parameters 40, 41 and 42 in the electrical specification of the desired device.

7.1.2 TIMER0 INCREMENT DELAY

Since the prescaler output is synchronized with the internal clocks, there is a small delay from the time the external clock edge occurs to the time the Timer0 module is actually incremented. Figure 7-4 shows the delay from the external clock edge to the timer incrementing.

7.2 Prescaler

An 8-bit counter is available as a prescaler for the Timer0 module, or as a postscaler for the Watchdog Timer (WDT), respectively (**Section 8.2.1** "**WDT Period**"). For simplicity, this counter is being referred to as "prescaler" throughout this data sheet. Note that the prescaler may be used by either the Timer0 module or the WDT, but not both. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the WDT, and vice-versa.

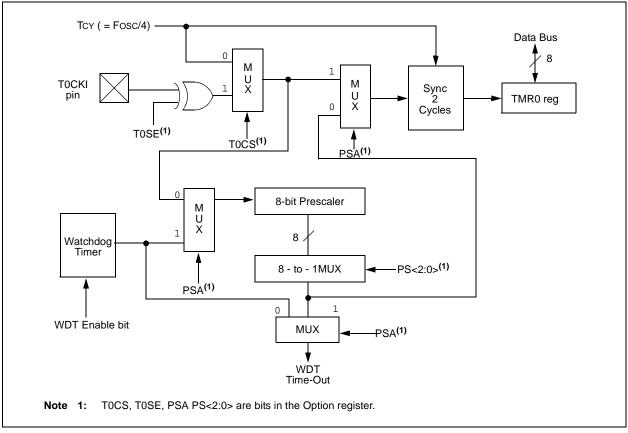
The PSA and PS<2:0> bits (OPTION<3:0>) determine prescaler assignment and prescale ratio.

When assigned to the Timer0 module, all instructions writing to the TMR0 register (e.g., CLRF 1, MOVWF 1, BSF 1, x, etc.) will clear the prescaler. When assigned to WDT, a CLRWDT instruction will clear the prescaler along with the WDT. The prescaler is neither readable nor writable. On a Reset, the prescaler contains all '0's.

7.2.1 SWITCHING PRESCALER ASSIGNMENT

The prescaler assignment is fully under software control (i.e., it can be changed "on-the-fly" during program execution). To avoid an unintended device Reset, the following instruction sequence (Example 7-1) must be executed when changing the prescaler assignment from Timer0 to the WDT.

EXAMPLE 7-1: CHANGING PRESCALER (TIMER0 \rightarrow WDT)


	<u> </u>	,
CLRWDT		;Clear WDT
CLRF	TMR0	;Clear TMR0 & ;Prescaler
MOVLW	B'00xx1111'	;Last 3 instructions
		; in this example
OPTION		;are required only if
		;desired
CLRWDT		;PS<2:0> are 000 or 001
MOVLW	B'00xx1xxx′	;Set Prescaler to
OPTION		;desired WDT rate

To change prescaler from the WDT to the Timer0 module, use the sequence shown in Example 7-2. This sequence must be used even if the WDT is disabled. A CLRWDT instruction should be executed before switching the prescaler.

EXAMPLE 7-2:	CHANGING PRESCALER
	(WDT→TIMER0)

CLRWDT		;Clear WDT and
		;prescaler
MOVLW	B'xxxx0xxx'	;Select TMR0, new
		;prescale value and
		;clock source
OPTION		

FIGURE 7-5: BLOCK DIAGRAM OF THE TIMER0/WDT PRESCALER

8.0 SPECIAL FEATURES OF THE CPU

What sets a microcontroller apart from other processors are special circuits that deal with the needs of realtime applications. The PIC16F5X family of microcontrollers have a host of such features intended to maximize system reliability, minimize cost through elimination of external components, provide powersaving operating modes and offer code protection. These features are:

- Oscillator Selection
- Reset
- Power-on Reset
- Device Reset Timer
- Watchdog Timer (WDT)
- Sleep
- Code protection
- User ID locations
- In-Circuit Serial Programming[™] (ICSP[™])

The PIC16F5X family has a Watchdog Timer which can be shut off only through configuration bit WDTE. It runs off of its own RC oscillator for added reliability. There is an 18 ms delay provided by the Device Reset Timer (DRT), intended to keep the chip in Reset until the crystal oscillator is stable. With this timer on-chip, most applications need no external Reset circuitry.

REGISTER 8-1: CONFIGURATION WORD FOR PIC16F5X

—	—	—	—	_	_	—	_	CP	WDTE	FOSC1	FOSC0
bit 11											bit 0
bit 11-4:	Unimpleme	ented:	Read as ':	1'							
bit 3:	CP: Code F	Protection	on bit.								
	1 = Code p	orotectio	on off								
	0 = Code p	protectio	on on								
bit 2:	WDTE: Wa	tchdog	Timer Ena	able bit							
	1 = WDT e										
	0 = WDT d										
bit 1-0:	FOSC1:FO		scillator S	Selection b	oits						
	00 = LP oscillations										
	01 = XT os 10 = HS os										
	10 = HC 03										
	Note 1:	Refer t	o the PIC1	6F54. PI	C16F57 ar	nd PIC16F	59 Progra	mmina Sc	ecification	ns to deter	mine how
		to acce		onfiguratio		hese docu					
	Legend:										
	R = Readat	ole bit	V	V = Writab	ole bit	U =	Unimpler	nented bit	, read as '	0'	
	-n = Value a	at POR	، .	1' = bit is s	set	'O' =	= bit is clea	ared	x = bi	t is unknow	wn

The Sleep mode is designed to offer a very low-current Power-down mode. The user can wake-up from Sleep through external Reset or through a Watchdog Timer time-out. Several oscillator options are also made available to allow the part to fit the application. The RC oscillator option saves system cost, while the LP crystal option saves power. A set of configuration bits are used to select various options.

8.1 Configuration Bits

Configuration bits can be programmed to select various device configurations. Two bits are for the selection of the oscillator type; one bit is the Watchdog Timer enable bit; one bit is for code protection for the PIC16F5X devices (Register 8-1).

8.2 Watchdog Timer (WDT)

The Watchdog Timer (WDT) is a free running on-chip RC oscillator which does not require any external components. This RC oscillator is separate from the RC oscillator of the OSC1/CLKIN pin. That means that the WDT will run even if the clock on the OSC1/CLKIN and OSC2/CLKOUT pins have been stopped, for example, by execution of a SLEEP instruction. During normal operation or Sleep, a WDT Reset or Wake-up Reset generates a device Reset.

The $\overline{\text{TO}}$ bit (Status<4>) will be cleared upon a Watchdog Timer Reset (Section 3.3 "Status Register").

The WDT can be permanently disabled by programming the configuration bit WDTE as a '0' (Section 8.1 "Configuration Bits"). Refer to the PIC16F54 and PIC16F57 Programming Specifications to determine how to access the Configuration Word. These documents can be found on the Microchip web site at www.microchip.com.

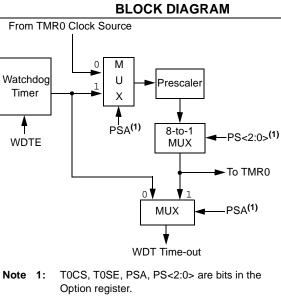
8.2.1 WDT PERIOD

An 8-bit counter is available as a prescaler for the Timer0 module (**Section 7.2** "**Prescaler**"), or as a postscaler for the Watchdog Timer (WDT), respectively. For simplicity, this counter is being referred to as "prescaler" throughout this data sheet.

Note: The prescaler may be used by either the Timer0 module or the WDT, but not both. Thus, a prescaler assignment for the Timer0 module means that there is no prescaler for the WDT, and vice-versa.

The PSA and PS<2:0> bits (OPTION<3:0>) determine prescaler assignment and prescale ratio (**Section 3.4** "**Option Register**").

The WDT has a nominal time-out period of 18 ms (with no prescaler). If a longer time-out period is desired, a prescaler with a division ratio of up to 1:128 can be assigned to the WDT (under software control) by writing to the Option register. Thus time-out, a period of a nominal 2.3 seconds, can be realized. These periods vary with temperature, VDD and part-to-part process variations (see Device Characterization).


Under worst case conditions (VDD = Min., Temperature = Max., WDT prescaler = 1:128), it may take several seconds before a WDT time-out occurs.

8.2.2 WDT PROGRAMMING CONSIDERATIONS

The CLRWDT instruction clears the WDT and the prescaler, if assigned to the WDT, and prevents it from timing out and generating a device Reset.

The SLEEP instruction resets the WDT and the prescaler, if assigned to the WDT. This gives the maximum Sleep time before a WDT Wake-up Reset.

FIGURE 8-1: WATCHDOG TIMER

TABLE 8-1: SUMMARY OF REGISTERS ASSOCIATED WITH THE WATCHDOG TIMER

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Value on Power-on Reset	<u>Value</u> on MCLR and WDT Reset
N/A	OPTION			TOCS	T0SE	PSA	PS2	PS1	PS0	11 1111	11 1111

Legend: Shaded cells not used by Watchdog Timer, - = unimplemented, read as '0', u = unchanged

8.3 Power-Down Mode (Sleep)

A device may be powered down (Sleep) and later powered up (wake-up from Sleep).

8.3.1 SLEEP

The Power-down mode is entered by executing a SLEEP instruction.

If enabled, the Watchdog Timer will be cleared but keeps running, the TO bit (Status<4>) is set, the PD bit (Status<3>) is cleared and the oscillator driver is turned off. The I/O ports maintain the status they had before the SLEEP instruction was executed (driving high, driving low or high-impedance).

It should be noted that a Reset generated by a WDT time-out does not drive the MCLR/VPP pin low.

For lowest current consumption while powered down, the T0CKI input should be at VDD or Vss and the \underline{MCLR}/VPP pin must be at a logic high level ($\underline{MCLR} = VIH$).

8.3.2 WAKE-UP FROM SLEEP

The device can wake-up from Sleep through one of the following events:

- 1. An external Reset input on MCLR/VPP pin.
- 2. A Watchdog Timer time-out Reset (if WDT was enabled).

Both of these events cause a device Reset. The \overline{TO} and \overline{PD} bits can be used to determine the cause of device Reset. The \overline{TO} bit is cleared if a WDT time-out occurred (and caused wake-up). The \overline{PD} bit, which is set on power-up, is cleared when SLEEP is invoked.

The WDT is cleared when the device wakes from Sleep, regardless of the wake-up source.

8.4 Program Verification/Code Protection

If the code protection bit has not been programmed, the on-chip program memory can be read out for verification purposes.

Once code protection is enabled, all program memory locations above 0x3F read all '0's. Program memory locations 0x00-0x3F are always unprotected. The user ID locations and the Configuration Word read out in an unprotected fashion. It is possible to program the user ID locations and the Configuration Word after code protect is enabled.

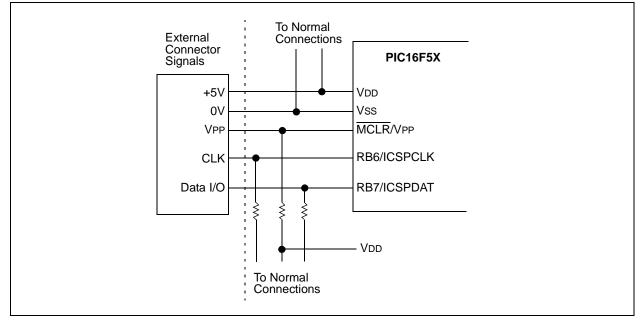
8.5 User ID Locations

Four memory locations are designated as user ID locations where the user can store checksum or other code-identification numbers. These locations are not accessible during normal execution, but are readable and writable during Program/Verify.

Use only the lower 4 bits of the user ID locations and always program the upper 8 bits as '1's.

Note:	Microchip will assign a unique pattern
	number for QTP and SQTP requests. This
	pattern number will be unique and trace-
	able to the submitted code.

8.6 In-Circuit Serial Programming[™] (ICSP[™])


The PIC16F5X microcontrollers can be serially programmed while in the end application circuit. This is simply done with two lines for clock and data, and three other lines for power, ground and programming voltage. This allows customers to manufacture boards with unprogrammed devices and then program the microcontroller just before shipping the product. Thus, the most recent firmware or custom firmware can be programmed.

The device is placed into a Program/Verify mode by holding the RB6 and RB7 pins low while raising the MCLR (VPP) pin from VIL to VIHH (see programming specification). RB6 becomes the programming clock and RB7 becomes the programming data. Both RB6 and RB7 are Schmitt Trigger inputs in this mode.

A 6-bit command is then supplied to the device. Depending on the command, 14 bits of program data are then supplied to or from the device, depending if the command was a Load or a Read. For complete details of serial programming, please refer to the respective Programming Specifications: *"PIC16F54 Memory Programming Specification"* (DS41207), *"PIC16F57 Memory Programming Specification"* (DS41208), and *"PIC16F59 Memory Programming Specification"* (DS41243).

A typical In-Circuit Serial Programming connection is shown in Figure 8-1.

FIGURE 8-1: TYPICAL IN-CIRCUIT SERIAL PROGRAMMING[™] CONNECTION

9.0 INSTRUCTION SET SUMMARY

Each PIC16F5X instruction is a 12-bit word divided into an opcode, which specifies the instruction type, and one or more operands which further specify the operation of the instruction. The PIC16F5X instruction set summary in Table 9-2 groups the instructions into byteoriented, bit-oriented, and literal and control operations. Table 9-1 shows the opcode field descriptions.

For **byte-oriented** instructions, 'f' represents a file register designator and 'd' represents a destination designator. The file register designator is used to specify which one of the 32 file registers in that bank is to be used by the instruction.

The destination designator specifies where the result of the operation is to be placed. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed in the file register specified in the instruction.

For **bit-oriented** instructions, 'b' represents a bit field designator which selects the number of the bit affected by the operation, while 'f' represents the number of the file in which the bit is located.

For **literal and control** operations, 'k' represents an 8- or 9-bit constant or literal value.

TABLE 9-1:	OPCODE FIELD
	DESCRIPTIONS

	DESCRIPTIONS
Field	Description
f	Register file address (0x00 to 0x1F)
W	Working register (accumulator)
b	Bit address within an 8-bit file register
k	Literal field, constant data or label
x	Don't care location (= 0 or 1)
	The assembler will generate code with
	x = 0. It is the recommended form of use
	for compatibility with all Microchip
	software tools.
d	Destination select;
	d = 0 (store result in W)
	d = 1 (store result in file register 'f')
	Default is $d = 1$
label	Label name
TOS	Top-of-Stack
PC	Program Counter
WDT	Watchdog Timer Counter
TO	Time-out bit
PD	Power-down bit
dest	Destination, either the W register or the
	specified register file location
[]	Options
()	Contents
\rightarrow	Assigned to
< >	Register bit field
E	In the set of
italics	User defined term

All instructions are executed within one single instruction cycle, unless a conditional test is true or the program counter is changed as a result of an instruction. In this case, the execution takes two instruction cycles. One instruction cycle consists of four oscillator periods. Thus, for an oscillator frequency of 4 MHz, the normal instruction execution time would be 1 μ s. If a conditional test is true or the program counter is changed as a result of an instruction, the instruction execution time would be 2 μ s.

Figure 9-1 shows the three general formats that the instructions can have. All examples in the figure use the following format to represent a hexadecimal number:

0xhhh

where 'h' signifies a hexadecimal digit.

FIGURE 9-1: GENERAL FORMAT FOR INSTRUCTIONS

Byte-oriented file register operations							
<u>11 6 5 4 0</u>							
OPCODE d f (FILE #)							
d = 0 for destination W d = 1 for destination f f = 5-bit file register address							
Bit-oriented file register operations							
11 8 7 5 4 0							
OPCODE b (BIT #) f (FILE #)							
 b = 3-bit bit address f = 5-bit file register address Literal and control operations (except GOTO) 							
<u>11 8 7 0</u>							
OPCODE k (literal)							
k = 8-bit immediate value							
Literal and control operations - GOTO instruction							
<u>11 9 8 0</u>							
OPCODE k (literal)							
k = 9-bit immediate value							

TABLE 9-2:	INSTRUCTION SET	SUMMARY
-------------------	-----------------	---------

Mnemonic,		Description	Cycles	12-1	Bit Opc	ode	Status	Natas
Opera		Description		MSb		LSb	Affected	Notes
ADDWF	f, d	Add W and f	1	0001	11df	ffff	C,DC,Z	1, 2, 4
ANDWF	f, d	AND W with f	1	0001	01df	ffff	Z	2, 4
CLRF	f	Clear f	1	0000	011f	ffff	Z	4
CLRW	—	Clear W	1	0000	0100	0000	Z	
COMF	f, d	Complement f	1	0010	01df	ffff	Z	
DECF	f, d	Decrement f	1	0000	11df	ffff	Z	2, 4
DECFSZ	f, d	Decrement f, Skip if 0	1 ⁽²⁾	0010	11df	ffff	None	2, 4
INCF	f, d	Increment f	1	0010	10df	ffff	Z	2, 4
INCFSZ	f, d	Increment f, Skip if 0	1 ⁽²⁾	0011	11df	ffff	None	2, 4
IORWF	f, d	Inclusive OR W with f	1	0001	00df	ffff	Z	2, 4
MOVF	f, d	Move f	1	0010	00df	ffff	Z	2, 4
MOVWF	f	Move W to f	1	0000	001f	ffff	None	1, 4
NOP	_	No Operation	1	0000	0000	0000	None	
RLF	f, d	Rotate left f through Carry	1	0011	01df	ffff	С	2, 4
RRF	f, d	Rotate right f through Carry	1	0011	00df	ffff	С	2,4
SUBWF	f, d	Subtract W from f	1	0000	10df	ffff	C,DC,Z	1, 2, 4
SWAPF	f, d	Swap f	1	0011	10df	ffff	None	2, 4
XORWF	f, d	Exclusive OR W with f	1	0001	10df	ffff	Z	2, 4
BIT-ORIEN	TED FIL	E REGISTER OPERATIONS	•					
BCF	f, b	Bit Clear f	1	0100	bbbf	ffff	None	2, 4
BSF	f, b	Bit Set f	1	0101	bbbf	ffff	None	2, 4
BTFSC	f, b	Bit Test f, Skip if Clear	1 ⁽²⁾	0110	bbbf	ffff	None	
BTFSS	f, b	Bit Test f, Skip if Set	1 ⁽²⁾	0111	bbbf	ffff	None	
LITERAL A		ITROL OPERATIONS	-	-				
ANDLW	k	AND literal with W	1	1110	kkkk	kkkk	Z	
CALL	k	Subroutine Call	2	1001	kkkk	kkkk	None	1
CLRWDT	—	Clear Watchdog Timer	1	0000	0000	0100	TO, PD	
GOTO	k	Unconditional branch	2	101k	kkkk	kkkk	None	
IORLW	k	Inclusive OR Literal with W	1	1101	kkkk	kkkk	Z	
MOVLW	k	Move Literal to W	1	1100	kkkk	kkkk	None	
OPTION	_	Load OPTION register	1	0000	0000	0010	None	
RETLW	k	Return, place Literal in W	2	1000	kkkk	kkkk	None	
SLEEP	_	Go into Standby mode	1	0000	0000	0011	TO, PD	
TRIS	f	Load TRIS register	1	0000	0000	Offf	None	3
XORLW	k	Exclusive OR Literal to W	1	1111	kkkk	kkkk	Z	
Note 1:	The 9th h	it of the program counter will be forced to a '0	' hy any i	nstructio	n that v	writes to	the PC ex	Cont for

Note 1: The 9th bit of the program counter will be forced to a '0' by any instruction that writes to the PC except for GOTO (see Section 3.5 "Program Counter" for more on program counter).

2: When an I/O register is modified as a function of itself (e.g., MOVF PORTB, 1), the value used will be that value present on the pins themselves. For example, if the data latch is '1' for a pin configured as input and is driven low by an external device, the data will be written back with a '0'.

3: The instruction TRIS f, where f = 5, 6 or 7 causes the contents of the W register to be written to the tri-state latches of PORTA, B or C respectively. A '1' forces the pin to a high-impedance state and disables the output buffers.

4: If this instruction is executed on the TMR0 register (and, where applicable, d = 1), the prescaler will be cleared (if assigned to TMR0).

ADDWF	Add W	and f	
Syntax:	[label] A	\DDWF	f, d
Operands:	$\begin{array}{l} 0 \leq f \leq 3^{\prime} \\ d \in \left[0,1\right] \end{array}$		
Operation:	(W) + (f)	\rightarrow (dest)	
Status Affected:	C, DC, Z		
Encoding:	0001	11df	ffff
Description:	and registresult is	ster 'f'. If ' stored in t the result	of the W register d' is '0', the the W register. If is stored back in
Words:	1		
Cycles:	1		
Example:	ADDWF	TEMP_RE	G, 0
Before Instr W TEMP_I After Instruc W TEMP_I	= REG = ction =	0x17 0xC2 0xD9 0xC2	

ANDWF	AND W with f
Syntax:	[<i>label</i>] ANDWF f, d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \left[0,1 \right] \end{array}$
Operation:	(W) .AND. (f) \rightarrow (dest)
Status Affected:	Z
Encoding:	0001 01df ffff
Description:	The contents of the W register are AND'ed with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example:	ANDWF TEMP_REG, 1
Before Instru W TEMP_ After Instruc W TEMP_	= 0x17 REG = 0xC2 tion = 0x17

ANDLW	AND literal with W	
Syntax:	[label] ANDLW k	
Operands:	$0 \leq k \leq 255$	
Operation:	(W).AND. (k) \rightarrow (W)	
Status Affected:	Z	
Encoding:	1110 kkkk kkkk]
Description:	The contents of the W regi AND'ed with the eight-bit li The result is placed in the register.	teral 'k'.
Words:	1	
Cycles:	1	
Example:	ANDLW H'5F'	
Before Instru	iction	
W =	0/1/10	
After Instruc		
W =	0x03	

BCF	Bit Clea	r f		
Syntax:	[label]	BCF f,	b	
Operands:	$0 \le f \le 3^{\prime}$ $0 \le b \le 7$	-		
Operation:	$0 \rightarrow (f < b$	>)		
Status Affected:	None			
Encoding:	0100	bbbf	ffff	
Description:	Bit 'b' in	register 'f	' is cleare	d.
Words:	1			
Cycles:	1			
Example:	BCF	FLAG_RE	EG, 7	
After Instruc	REG = tion	0xC7		
FLAG_F	REG =	0x47		

BSF	Bit Set f			
Syntax:	[label]	BSF f, b)	
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$			
Operation:	$1 \rightarrow (f < b >)$			
Status Affected:	None			
Encoding:	0101	bbbf	ffff	
Description:	Bit 'b' in i	register 'f	' is set.	
Words:	1			
Cycles:	1			
Example:	BSF	FLAG_RE	G, 7	
Before Instruction FLAG_REG = 0x0A After Instruction FLAG_REG = 0x8A				

BTFSC	Bit Test f, Skip if Clear	
Syntax:	[label] BTFSC f, b	
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b \leq 7 \end{array}$	
Operation:	skip if (f) = 0	
Status Affected:	None	
Encoding:	0110 bbbf ffff	
Description:	If bit 'b' in register 'f' is '0', then the next instruction is skipped. If bit 'b' is '0', then the next instruc- tion fetched during the current instruction execution is discarded and a NOP is executed instead, making this a two-cycle instruction.	
Words:	1	
Cycles:	1(2)	
<u>Example</u> :	HERE BTFSC FLAG,1 FALSE GOTO PROCESS_CODE TRUE • • •	
Before Instru PC After Instruct	= address (HERE)	
if FLAG PC if FLAG PC	<1> = 0, = address (TRUE); <1> = 1, = address(FALSE)	

BTFSS	Bit Test	f, Skip if	Set	
Syntax:	[<i>label</i>] BTFSS f, b			
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ 0 \leq b < 7 \end{array}$			
Operation:	skip if (f<	b>) = 1		
Status Affected:	None			
Encoding:	0111	bbbf	ffff	
Description:	next instr If bit 'b' is tion fetch instructio and a NO	ruction is s '1', then ed during n executi P is exec	the next	instruc- ent carded ead,
Words:	1			
Cycles:	1(2)			
<u>Example</u> :	HERE FALSE TRUE	BTFSS GOTO •	FLAG,1 PROCESS	
Before Insti PC	ruction =	addres	SS (HERE)
After Instruc If FLAG PC if FLAG PC	<1> =	1,	SS (FALS	

CALL	Subroutine Call
Syntax:	[<i>label</i>] CALL k
Operands:	$0 \le k \le 255$
Operation:	$\begin{array}{l} (\text{PC}) + 1 \rightarrow \text{TOS}; \\ k \rightarrow \text{PC} < 7:0 >; \\ (\text{Status} < 6:5 >) \rightarrow \text{PC} < 10:9 >; \\ 0 \rightarrow \text{PC} < 8 > \end{array}$
Status Affected:	None
Encoding:	1001 kkkk kkkk
Description:	Subroutine call. First, return address (PC + 1) is pushed onto the stack. The eight-bit immediate address is loaded into PC bits <7:0>. The upper bits PC<10:9> are loaded from Status<6:5>, PC<8> is cleared. CALL is a two-cycle instruction.
Words:	1
Cycles:	2
Example:	HERE CALL THERE
After Instruc	address (HERE) tion address (THERE)

CI	DE	
υL		

[label]	CLRF f	
$0 \le f \le 3^{-1}$	1	
$00h \rightarrow (f 1 \rightarrow Z$);	
Z		
0000	011f	ffff
		0
1		
1		
CLRF	FLAG_RE	G
ction EG = ion EG = =	0x5A 0x00 1	
	$0 \le f \le 3$ $00h \rightarrow (f = 3)$ $1 \rightarrow Z$ Z 0000 The continue of the content	Z 0000 011f The contents of re cleared and the Z 1 1 CLRF FLAG_RE ction EG = 0x5A ion

CLRW	
Syntax:	[label] CLRW
Operands:	None
Operation:	$\begin{array}{l} 00h \rightarrow (W); \\ 1 \rightarrow Z \end{array}$
Status Affected:	Z
Encoding:	0000 0100 0000
Description:	The W register is cleared. Zero bit (Z) is set.
Words:	1
Cycles:	1
Example:	CLRW
Before Instru	
W =	0.1071
After Instruct W =	
Z =	
CLRWDT	Clear Watchdog Timer
Syntax:	[label] CLRWDT
Operanda	N1
Operands:	None
Operation:	None $00h \rightarrow WDT;$ $0 \rightarrow WDT$ prescaler (if assigned); $1 \rightarrow \overline{TO};$ $1 \rightarrow \overline{PD}$
-	00h \rightarrow WDT; 0 \rightarrow WDT prescaler (if assigned); 1 \rightarrow TO;
Operation:	$\begin{array}{l} 00h \rightarrow WDT; \\ 0 \rightarrow \underline{WDT} \text{ prescaler (if assigned);} \\ 1 \rightarrow \overline{TO}; \\ 1 \rightarrow \overline{PD} \end{array}$
Operation: Status Affected:	$\begin{array}{l} 00h \rightarrow WDT; \\ 0 \rightarrow WDT \mbox{ prescaler (if assigned);} \\ 1 \rightarrow \overline{TO}; \\ 1 \rightarrow \overline{PD} \\ \overline{TO}, \mbox{ PD} \end{array}$
Operation: Status Affected: Encoding:	$\begin{array}{l} 00h \rightarrow WDT; \\ 0 \rightarrow WDT \mbox{ prescaler (if assigned);} \\ 1 \rightarrow \overline{TO}; \\ 1 \rightarrow \overline{PD} \\ \hline TO, \mbox{ PD} \\ \hline \hline 0000 \ 0000 \ 0100 \\ \hline \hline The \ CLRWDT \ instruction \ resets \ the \\ WDT. \ It \ also \ resets \ the \ prescaler \ if \\ the \ prescaler \ is \ assigned \ to \ the \\ \hline WDT \ and \ not \ Timer0. \ Status \ bits \end{array}$
Operation: Status Affected: Encoding: Description:	$\begin{array}{l} 00h \rightarrow WDT;\\ 0 \rightarrow WDT \mbox{ prescaler (if assigned);}\\ 1 \rightarrow \overline{TO};\\ 1 \rightarrow \overline{PD}\\ \hline \overline{TO}, \mbox{ PD}\\ \hline \hline \hline 0000 \ 0000 \ 0100\\ \hline \hline \hline The \ CLRWDT \ instruction \ resets \ the \ WDT. \ It \ also \ resets \ the \ prescaler \ if \ the \ prescaler \ is \ assigned \ to \ the \ WDT \ and \ not \ Timer0. \ Status \ bits \ \overline{TO} \ and \ \overline{PD} \ are \ set. \end{array}$
Operation: Status Affected: Encoding: Description: Words:	$\begin{array}{l} 00h \rightarrow WDT;\\ 0 \rightarrow WDT \mbox{ prescaler (if assigned);}\\ 1 \rightarrow \overline{TO};\\ 1 \rightarrow \overline{PD}\\ \hline TO, \mbox{ PD}\\ \hline \hline 0000 \ 0000 \ 0100\\ \hline \hline The \ CLRWDT \ instruction \ resets \ the \ WDT. \ It \ also \ resets \ the \ prescaler \ if \ the \ prescaler \ is \ assigned \ to \ the \ WDT \ and \ not \ Timer0. \ Status \ bits \ \overline{TO} \ and \ \overline{PD} \ are \ set. \ 1 \end{array}$
Operation: Status Affected: Encoding: Description: Words: Cycles: <u>Example</u> : Before Instruc WDT co After Instruc WDT co	$\begin{array}{l} 00h \rightarrow WDT;\\ 0 \rightarrow WDT \mbox{ prescaler (if assigned);}\\ 1 \rightarrow TO;\\ 1 \rightarrow PD\\ \hline TO, PD\\ \hline \hline D, PD\\ \hline D, $

COMF	Complement f
Syntax:	[label] COMF f, d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$
Operation:	$(\overline{f}) \rightarrow (dest)$
Status Affected:	Z
Encoding:	0010 01df ffff
Description:	The contents of register 'f' are complemented. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.
Words:	1
Cycles:	1
Example:	COMF REG1,0
Before Instru REG1 After Instruct REG1 W	= 0x13

DECF	Decrement f				
Syntax:	[label	[label] DECF f, d			
Operands:	0 ≤ f ≤ d ∈ [0				
Operation:	(f) – 1	\rightarrow (des	st)		
Status Affected:	Z				
Encoding:	0000) 110	lf	ffff]
Description:	Decrement register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.				
Words:	1				
Cycles:	1				
Example:	DECF	CN	т,	1	
Before Instru CNT Z After Instruct CNT Z	=	0x01 0 0x00 1			
-		•			

DECFSZ	Decrement f, Skip if 0			
Syntax:	[label] DECFSZ f, d			
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \left[0,1\right] \end{array}$			
Operation:	$(f) - 1 \rightarrow d;$ skip if result = 0			
Status Affected:	None			
Encoding:	0010 11df ffff			
Description:	The contents of register 'f' are decremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1'. the result is placed back in register 'f'. If the result is '0', the next instruction, which is already fetched, is discarded and a NOP is executed instead making it a two-cycle instruction.			
Words:	1			
Cycles:	1(2)			
Example:	HERE DECFSZ CNT, 1 GOTO LOOP CONTINUE •			
	•			
• Before Instruction PC = address(HERE) After Instruction				
CNT if CNT PC if CNT PC	<pre>= CNT - 1; = 0, = address (CONTINUE); ≠ 0, = address (HERE+1)</pre>			

GOTO	Unconditional Branch			
Syntax:	[label] GC	DTO k		
Operands:	$0 \le k \le 511$			
Operation:	$k \rightarrow PC < 8:0$; Status<6:5> $\rightarrow PC < 10:9$ >			
Status Affected:	None			
Encoding:	101k kk	kk kkkk		
Description:	GOTO is an unconditional branch. The 9-bit immediate value is loaded into PC bits <8:0>. The upper bits of PC are loaded from Status<6:5>. GOTO is a two-cycle instruction.			
Words:	1			
Cycles:	2			
Example:	GOTO THERE			
After Instruct PC =		THERE)		

INCF	Increment f			
Syntax:	[label] INCF f, d			
Operands:	$0 \le f \le 31$ $d \in [0,1]$			
Operation:	(f) + 1 \rightarrow (dest)			
Status Affected:	Z			
Encoding:	0010 10df ffff			
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.			
Words:	1			
Cycles:	1			
Example:	INCF CNT, 1			
Before Instru CNT Z After Instruct CNT Z	= 0xFF = 0			

INCFSZ	Increment f, Skip if 0			
Syntax:	[label] INCFSZ f, d			
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \left[0,1\right] \end{array}$			
Operation:	(f) + 1 \rightarrow (dest), skip if result = 0			
Status Affected:	None			
Encoding:	0011 11df ffff			
Description:	The contents of register 'f' are incremented. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'. If the result is '0', then the next instruction, which is already fetched, is discarded and a NOP is executed instead making it a two-cycle instruction.			
Words:	1			
Cycles:	1(2)			
Example:	HERE INCFSZ CNT, 1 GOTO LOOP CONTINUE • •			
Before Instruct PC After Instructi CNT if CNT PC if CNT PC	= address (HERE)			

IORLW	Inclusive OR literal with W
Syntax:	[<i>label</i>] IORLW k
Operands:	$0 \le k \le 255$
Operation:	(W) .OR. (k) \rightarrow (W)
Status Affected:	Z
Encoding:	1101 kkkk kkkk
Description:	The contents of the W register are OR'ed with the eight-bit literal 'k'. The result is placed in the W register.
Words:	1
Cycles:	1
Example:	IORLW 0x35
Before Instru W = After Instruc W =	0x9A tion
Z =	0

IORWF	Inclusive OR W with f			
Syntax:	[<i>label</i>] IORWF f, d			
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$			
Operation:	(W).OR. (f) \rightarrow (dest)			
Status Affected:	Z			
Encoding:	0001 00df ffff			
Description:	Inclusive OR the W register with register 'f'. If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'.			
Words:	1			
Cycles:	1			
Example:	IORWF RESULT, 0			
Before Instru RESUL W After Instruc RESUL W Z	$ \begin{aligned} \Gamma &= 0x13 \\ &= 0x91 \\ \text{tion} \end{aligned} $			

MOVF	Move f			
Syntax:	[<i>label</i>] MOVF f, d			
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$			
Operation:	$(f) \rightarrow (dest)$			
Status Affected:	Z			
Encoding:	0010 00df ffff			
Description:	The contents of register 'f' is moved to destination 'd'. If 'd' is '0', destination is the W register. If 'd' is '1', the destination is file register 'f'. 'd' is '1' is useful to test a file register since Status flag Z is affected.			
Words:	1			
Cycles:	1			
Example:	MOVF FSR, 0			
After Instruc W =	tion - value in FSR register			

MOVLW	Move Literal to W			
Syntax:	[label]	MOVLW	k	
Operands:	$0 \le k \le 2$	55		
Operation:	$k \rightarrow (W)$			
Status Affected:	None			
Encoding:	1100	kkkk	kkkk	
Description:	0	t-bit litera V register		ded
Words:	1			
Cycles:	1			
Example:	MOVLW	0x5A		
After Instruct W =	ion 0x5A			

MOVWF	Move W to f
Syntax:	[<i>label</i>] MOVWF f
Operands:	$0 \le f \le 31$
Operation:	$(W) \rightarrow (f)$
Status Affected:	None
Encoding:	0000 001f ffff
Description:	Move data from the W register to register 'f'.
Words:	1
Cycles:	1
Example:	MOVWF TEMP_REG
Before Instru TEMP_F W After Instruct TEMP_F W	REG = 0xFF $= 0x4F$

NOP	No Operation			
Syntax:	[label]	NOP		
Operands:	None			
Operation:	No opera	ation		
Status Affected:	None			
Encoding:	0000	0000	0000	
Description:	No operation.			
Words:	1			
Cycles:	1			
Example:	NOP			

OPTION	Load Ol		egister	
Syntax:	[label]	OPTIO	N	
Operands:	None			
Operation:	$(W) \rightarrow C$	PTION		
Status Affected:	None			
Encoding:	0000	0000	0010	
Description:	The content of the W register is loaded into the Option register.			
Words:	1			
Cycles:	1			
Example:	OPTION			
Before Instruction				
W	= 0x	07		
After Instructi OPTION	-	.07		

RETLW	Return with Literal in W							
Syntax:	[<i>label</i>] RETLW k							
Operands:	$0 \le k \le 255$							
Operation:	$\begin{array}{l} k \rightarrow (W);\\ TOS \rightarrow PC \end{array}$							
Status Affected:	None							
Encoding:	1000 kkkk kkkk							
Description:	The W register is loaded with the eight-bit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.							
Words:	1							
Cycles:	2							
<u>Example</u> :	CALL TABLE;W contains ;table offset ;value. • ;W now has table • ;value.							
TABLE	<pre>ADDWF PC ;W = offset RETLW k1 ;Begin table RETLW k2 ;</pre>							
Before Instru								
W After Instruct	= 0x07							
W	= value of k8							

RLF	Rotate Left f through Carry							
Syntax:	[label] RLF	F f, e	d				
Operands:	$\begin{array}{l} 0\leq f\leq 31\\ d\in \ [0,1] \end{array}$							
Operation:	See description below							
Status Affected:	С							
Encoding:	0011	01	df	ffff				
Description:	The contents of register 'f' are rotated one bit to the left through the Carry Flag (Status<0>). If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is stored back in register 'f'.							
Words:	1							
Cycles:	1							
Example:	RLF	REG	;1,0					
Before Instru REG1 C After Instruct REG1	= = ion =	1110 0 1110 1100	0110	0				
W	=	1 1 (1()						

RRF	Rotate Right f through Carry							
Syntax:	[<i>label</i>] RRF f, d							
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$							
Operation:	See description below							
Status Affected:	С							
Encoding:	0011 00df ffff							
Description:	The contents of register 'f' are rotated one bit to the right through the Carry Flag (Status<0>). If 'd' is '0', the result is placed in the W register. If 'd' is '1', the result is placed back in register 'f'							
Words:	1							
Cycles:	1							
Example:	RRF REG1,0							
Before Instru REG1 C After Instruc	$= 1110 0110 \\= 0$							
REG1	= 1110 0110							
W C	= 0111 0011 = 0							

Sleep	Go into Standby Mode							
Syntax:	[label]	Sleep						
Operands:	None							
Operation:	$\begin{array}{l} 00h \rightarrow WDT; \\ 0 \rightarrow WDT \ prescaler; \ if \ assigned \\ 1 \rightarrow \overline{TO}; \\ 0 \rightarrow \overline{PD} \end{array}$							
Status Affected:	TO, PD							
Encoding:	0000	0000	0011					
Description:	Time-out Status bit (TO) is set. The power-down Status bit (PD) is cleared. The WDT and its prescaler are cleared. The processor is put into Sleep mode with the oscillator stopped. See section on Sleep for more details.							
Words:	1							
Cycles:	1							
Example:	SLEEP							

SUBWF	Subtract W from f								
Syntax:	[<i>label</i>] SUBWF f, d								
Operands:	$0 \le f \le 31$								
•	d ∈ [0,1]								
Operation:	$(f) - (W) \rightarrow (dest)$								
Status Affected:	C, DC, Z								
Encoding:	0000 10df ffff								
Description:	Subtract (2's complement method) the W register from register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.								
Words:	1								
Cycles:	1								
Example 1:	SUBWF REG1, 1								
Before Instru REG1 W C After Instruct REG1 W C Example 2: Before Instruct REG1 W C After Instruct REG1 W C Example 3: Before Inst	action = 3 = 2 = ? tion = 1 = 2 = 1 ; result is positive action = 2 = ? tion = 2 = ? tion = 2 = ? tion = 1 ; result is positive action = 1 = 2 = 1 ; result is positive action = 2 = ? tion = ? tion = 2 = ? tion = ? = ? tion = ? = ? tion = ? = ? = ? = ? = ? = ? = ? = ?								
REG1 W C After Instruct REG1 W C	= 1 = 2 = ? tion = 0xFF = 2 = 0 ; result is negative								

SWAPF	Swap Nibbles in f
Syntax:	[label] SWAPF f, d
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \ [0,1] \end{array}$
Operation:	$(f<3:0>) \rightarrow (dest<7:4>);$ $(f<7:4>) \rightarrow (dest<3:0>)$
Status Affected:	None
Encoding:	0011 10df ffff
Description:	The upper and lower nibbles of register 'f' are exchanged. If 'd' is '0', the result is placed in W register. If 'd' is '1', the result is placed in register 'f'.
Words:	1
Cycles:	1
Example:	SWAPF REG1, 0
REG1 W	= 0xA5 = 0x5A
_	Load TRIS Register
Syntax:	[<i>label</i>] TRIS f
Operands:	f = 5, 6, 7, 8 or 9
Operation: Status Affected:	$(W) \rightarrow TRIS$ register f
Encoding:	None
Description:	TRIS register 'f' (f = 5, 6 or 7) is loaded with the contents of the W register.
Words:	1
Cycles:	1
Example:	TRIS PORTB
Before Instruc W After Instructi	= 0xA5

XORLW	Exclusive OR literal with W						
Syntax:	[<i>label</i>] XORLW k						
Operands:	$0 \le k \le 255$						
Operation:	(W) .XOR. $k \rightarrow$ (W)						
Status Affected:	Z						
Encoding:	1111 kkkk kkkk						
Description:	The contents of the W register are XOR'ed with the eight-bit literal 'k'. The result is placed in the W register.						
Words:	1						
Cycles:	1						
Example:	XORLW OxAF						
Before Instru W = After Instruct W =	0xB5						

XORWF	Exclusive OR W with f						
Syntax:	[label] XORWF f, d						
Operands:	$\begin{array}{l} 0 \leq f \leq 31 \\ d \in \left[0,1\right] \end{array}$						
Operation:	(W) .XOR. (f) \rightarrow (dest)						
Status Affected:	Z						
Encoding:	0001 10df ffff						
Description:	Exclusive OR the contents of the W register with register 'f'. If 'd' is '0', the result is stored in the W register. If 'd' is '1', the result is stored back in register 'f'.						
Words:	1						
Cycles:	1						
Example:	XORWF REG,1						
Before Instru REG W After Instruct REG W	= 0xAF = 0xB5						

10.0 DEVELOPMENT SUPPORT

The PICmicro $^{\mbox{\tiny B}}$ microcontrollers are supported with a full range of hardware and software development tools:

- Integrated Development Environment
 - MPLAB® IDE Software
- Assemblers/Compilers/Linkers
 - MPASM[™] Assembler
 - MPLAB C17 and MPLAB C18 C Compilers
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB C30 C Compiler
 - MPLAB ASM30 Assembler/Linker/Library
- Simulators
 - MPLAB SIM Software Simulator
 - MPLAB dsPIC30 Software Simulator
- Emulators
 - MPLAB ICE 2000 In-Circuit Emulator
 - MPLAB ICE 4000 In-Circuit Emulator
- In-Circuit Debugger
- MPLAB ICD 2
- Device Programmers
 - PRO MATE® II Universal Device Programmer
 - PICSTART® Plus Development Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration Boards
 - PICDEM[™] 1 Demonstration Board
 - PICDEM.net[™] Demonstration Board
 - PICDEM 2 Plus Demonstration Board
 - PICDEM 3 Demonstration Board
 - PICDEM 4 Demonstration Board
 - PICDEM 17 Demonstration Board
 - PICDEM 18R Demonstration Board
 - PICDEM LIN Demonstration Board
 - PICDEM USB Demonstration Board
- Evaluation Kits
 - KEELOQ[®] Security ICs
 - PICDEM MSC
 - microID[®] RFID
 - CAN
 - PowerSmart® Battery Management
 - Analog

10.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16-bit microcontroller market. The MPLAB IDE is a Windows[®] based application that contains:

- An interface to debugging tools
 - simulator
 - programmer (sold separately)
 - emulator (sold separately)
 - in-circuit debugger (sold separately)
- · A full-featured editor with color coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Mouse over variable inspection
- Extensive on-line help

The MPLAB IDE allows you to:

- Edit your source files (either assembly or C)
- One touch assemble (or compile) and download to PICmicro emulator and simulator tools (automatically updates all project information)
- Debug using:
 - source files (assembly or C)
 - mixed assembly and C
 - machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increasing flexibility and power.

10.2 MPASM Assembler

The MPASM assembler is a full-featured, universal macro assembler for all PICmicro MCUs.

The MPASM assembler generates relocatable object files for the MPLINK object linker, Intel[®] standard hex files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM assembler features include:

- Integration into MPLAB IDE projects
- · User defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

10.3 MPLAB C17 and MPLAB C18 C Compilers

The MPLAB C17 and MPLAB C18 Code Development Systems are complete ANSI C compilers for Microchip's PIC17CXXX and PIC18CXXX family of microcontrollers. These compilers provide powerful integration capabilities, superior code optimization and ease of use not found with other compilers.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

10.4 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK object linker combines relocatable objects created by the MPASM assembler and the MPLAB C17 and MPLAB C18 C compilers. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB object librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

10.5 MPLAB C30 C Compiler

The MPLAB C30 C compiler is a full-featured, ANSI compliant, optimizing compiler that translates standard ANSI C programs into dsPIC30F assembly language source. The compiler also supports many command line options and language extensions to take full advantage of the dsPIC30F device hardware capabilities and afford fine control of the compiler code generator.

MPLAB C30 is distributed with a complete ANSI C standard library. All library functions have been validated and conform to the ANSI C library standard. The library includes functions for string manipulation, dynamic memory allocation, data conversion, timekeeping and math functions (trigonometric, exponential and hyperbolic). The compiler provides symbolic information for high-level source debugging with the MPLAB IDE.

10.6 MPLAB ASM30 Assembler, Linker and Librarian

MPLAB ASM30 assembler produces relocatable machine code from symbolic assembly language for dsPIC30F devices. MPLAB C30 compiler uses the assembler to produce it's object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- Support for the entire dsPIC30F instruction set
- Support for fixed-point and floating-point data
- Command line interface
- Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

10.7 MPLAB SIM Software Simulator

The MPLAB SIM software simulator allows code development in a PC hosted environment by simulating the PICmicro series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any pin. The execution can be performed in Single-Step, Execute Until Break or Trace mode.

The MPLAB SIM simulator fully supports symbolic debugging using the MPLAB C17 and MPLAB C18 C Compilers, as well as the MPASM assembler. The software simulator offers the flexibility to develop and debug code outside of the laboratory environment, making it an excellent, economical software development tool.

10.8 MPLAB SIM30 Software Simulator

The MPLAB SIM30 software simulator allows code development in a PC hosted environment by simulating the dsPIC30F series microcontrollers on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a file, or user defined key press, to any of the pins.

The MPLAB SIM30 simulator fully supports symbolic debugging using the MPLAB C30 C Compiler and MPLAB ASM30 assembler. The simulator runs in either a Command Line mode for automated tasks, or from MPLAB IDE. This high-speed simulator is designed to debug, analyze and optimize time intensive DSP routines.

10.9 MPLAB ICE 2000 High-Performance Universal In-Circuit Emulator

The MPLAB ICE 2000 universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for PICmicro microcontrollers. Software control of the MPLAB ICE 2000 in-circuit emulator is advanced by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICE 2000 is a full-featured emulator system with enhanced trace, trigger and data monitoring features. Interchangeable processor modules allow the system to be easily reconfigured for emulation of different processors. The universal architecture of the MPLAB ICE in-circuit emulator allows expansion to support new PICmicro microcontrollers.

The MPLAB ICE 2000 in-circuit emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft[®] Windows 32-bit operating system were chosen to best make these features available in a simple, unified application.

10.10 MPLAB ICE 4000 High-Performance Universal In-Circuit Emulator

The MPLAB ICE 4000 universal in-circuit emulator is intended to provide the product development engineer with a complete microcontroller design tool set for highend PICmicro microcontrollers. Software control of the MPLAB ICE in-circuit emulator is provided by the MPLAB Integrated Development Environment, which allows editing, building, downloading and source debugging from a single environment.

The MPLAB ICD 4000 is a premium emulator system, providing the features of MPLAB ICE 2000, but with increased emulation memory and high-speed performance for dsPIC30F and PIC18XXXX devices. Its advanced emulator features include complex triggering and timing, up to 2 Mb of emulation memory and the ability to view variables in real-time.

The MPLAB ICE 4000 in-circuit emulator system has been designed as a real-time emulation system with advanced features that are typically found on more expensive development tools. The PC platform and Microsoft Windows 32-bit operating system were chosen to best make these features available in a simple, unified application.

10.11 MPLAB ICD 2 In-Circuit Debugger

Microchip's In-Circuit Debugger, MPLAB ICD 2, is a powerful, low-cost, run-time development tool, connecting to the host PC via an RS-232 or high-speed USB interface. This tool is based on the Flash PICmicro MCUs and can be used to develop for these and other PICmicro microcontrollers. The MPLAB ICD 2 utilizes the in-circuit debugging capability built into the Flash devices. This feature, along with Microchip's In-Circuit Serial Programming[™] (ICSP[™]) protocol, offers cost effective in-circuit Flash debugging from the graphical user interface of the MPLAB Integrated Development Environment. This enables a designer to develop and debug source code by setting breakpoints, single-stepping and watching variables, CPU status and peripheral registers. Running at full speed enables testing hardware and applications in real-time. MPLAB ICD 2 also serves as a development programmer for selected PICmicro devices.

10.12 PRO MATE II Universal Device Programmer

The PRO MATE II is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features an LCD display for instructions and error messages and a modular detachable socket assembly to support various package types. In Stand-Alone mode, the PRO MATE II device programmer can read, verify and program PICmicro devices without a PC connection. It can also set code protection in this mode.

10.13 MPLAB PM3 Device Programmer

The MPLAB PM3 is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular detachable socket assembly to support various package types. The ICSP[™] cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 device programmer can read, verify and program PICmicro devices without a PC connection. It can also set code protection in this mode. MPLAB PM3 connects to the host PC via an RS-232 or USB cable. MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an SD/MMC card for file storage and secure data applications.

10.14 PICSTART Plus Development Programmer

The PICSTART Plus development programmer is an easy-to-use, low-cost, prototype programmer. It connects to the PC via a COM (RS-232) port. MPLAB Integrated Development Environment software makes using the programmer simple and efficient. The PICSTART Plus development programmer supports most PICmicro devices up to 40 pins. Larger pin count devices, such as the PIC16C92X and PIC17C76X, may be supported with an adapter socket. The PICSTART Plus development programmer is CE compliant.

10.15 PICDEM 1 PICmicro Demonstration Board

The PICDEM 1 demonstration board demonstrates the capabilities of the PIC16C5X (PIC16C54 to PIC16C58A), PIC16C61, PIC16C62X, PIC16C71, PIC16C8X, PIC17C42, PIC17C43 and PIC17C44. All necessary hardware and software is included to run basic demo programs. The sample microcontrollers provided with the PICDEM 1 demonstration board can be programmed with a PRO MATE II device programmer or a PICSTART Plus development programmer. The PICDEM 1 demonstration board can be connected to the MPLAB ICE in-circuit emulator for testing. A prototype area extends the circuitry for additional application components. Features include an RS-232 interface, a potentiometer for simulated analog input, push button switches and eight LEDs.

10.16 PICDEM.net Internet/Ethernet Demonstration Board

The PICDEM.net demonstration board is an Internet/ Ethernet demonstration board using the PIC18F452 microcontroller and TCP/IP firmware. The board supports any 40-pin DIP device that conforms to the standard pinout used by the PIC16F877 or PIC18C452. This kit features a user friendly TCP/IP stack, web server with HTML, a 24L256 Serial EEPROM for Xmodem download to web pages into Serial EEPROM, ICSP/MPLAB ICD 2 interface connector, an Ethernet interface, RS-232 interface and a 16 x 2 LCD display. Also included is the book and CD-ROM *"TCP/IP Lean, Web Servers for Embedded Systems,"* by Jeremy Bentham

10.17 PICDEM 2 Plus Demonstration Board

The PICDEM 2 Plus demonstration board supports many 18, 28 and 40-pin microcontrollers, including PIC16F87X and PIC18FXX2 devices. All the necessary hardware and software is included to run the demonstration programs. The sample microcontrollers provided with the PICDEM 2 demonstration board can be programmed with a PRO MATE II device programmer, PICSTART Plus development programmer, or MPLAB ICD 2 with a Universal Programmer Adapter. The MPLAB ICD 2 and MPLAB ICE in-circuit emulators may also be used with the PICDEM 2 demonstration board to test firmware. A prototype area extends the circuitry for additional application components. Some of the features include an RS-232 interface, a 2 x 16 LCD display, a piezo speaker, an on-board temperature sensor, four LEDs and sample PIC18F452 and PIC16F877 Flash microcontrollers.

10.18 PICDEM 3 PIC16C92X Demonstration Board

The PICDEM 3 demonstration board supports the PIC16C923 and PIC16C924 in the PLCC package. All the necessary hardware and software is included to run the demonstration programs.

10.19 PICDEM 4 8/14/18-Pin Demonstration Board

The PICDEM 4 can be used to demonstrate the capabilities of the 8, 14 and 18-pin PIC16XXXX and PIC18XXXX MCUs, including the PIC16F818/819, PIC16F87/88, PIC16F62XA and the PIC18F1320 family of microcontrollers. PICDEM 4 is intended to showcase the many features of these low pin count parts, including LIN and Motor Control using ECCP. Special provisions are made for low-power operation with the supercapacitor circuit and jumpers allow onboard hardware to be disabled to eliminate current draw in this mode. Included on the demo board are provisions for Crystal, RC or Canned Oscillator modes, a five volt regulator for use with a nine volt wall adapter or battery, DB-9 RS-232 interface, ICD connector for programming via ICSP and development with MPLAB ICD 2, 2 x 16 liquid crystal display, PCB footprints for H-Bridge motor driver, LIN transceiver and EEPROM. Also included are: header for expansion, eight LEDs, four potentiometers, three push buttons and a prototyping area. Included with the kit is a PIC16F627A and a PIC18F1320. Tutorial firmware is included along with the User's Guide.

10.20 PICDEM 17 Demonstration Board

The PICDEM 17 demonstration board is an evaluation board that demonstrates the capabilities of several Microchip microcontrollers, including PIC17C752, PIC17C756A, PIC17C762 and PIC17C766. A programmed sample is included. The PRO MATE II device programmer, or the PICSTART Plus development programmer, can be used to reprogram the device for user tailored application development. The PICDEM 17 demonstration board supports program download and execution from external on-board Flash memory. A generous prototype area is available for user hardware expansion.

10.21 PICDEM 18R PIC18C601/801 Demonstration Board

The PICDEM 18R demonstration board serves to assist development of the PIC18C601/801 family of Microchip microcontrollers. It provides hardware implementation of both 8-bit Multiplexed/Demultiplexed and 16-bit Memory modes. The board includes 2 Mb external Flash memory and 128 Kb SRAM memory, as well as serial EEPROM, allowing access to the wide range of memory types supported by the PIC18C601/801.

10.22 PICDEM LIN PIC16C43X Demonstration Board

The powerful LIN hardware and software kit includes a series of boards and three PICmicro microcontrollers. The small footprint PIC16C432 and PIC16C433 are used as slaves in the LIN communication and feature on-board LIN transceivers. A PIC16F874 Flash microcontroller serves as the master. All three micro-controllers are programmed with firmware to provide LIN bus communication.

10.23 PICkit[™] 1 Flash Starter Kit

A complete "development system in a box", the PICkit Flash Starter Kit includes a convenient multi-section board for programming, evaluation and development of 8/14-pin Flash PIC[®] microcontrollers. Powered via USB, the board operates under a simple Windows GUI. The PICkit 1 Starter Kit includes the User's Guide (on CD ROM), PICkit 1 tutorial software and code for various applications. Also included are MPLAB[®] IDE (Integrated Development Environment) software, software and hardware "Tips 'n Tricks for 8-pin Flash PIC[®] Microcontrollers" Handbook and a USB interface cable. Supports all current 8/14-pin Flash PIC microcontrollers, as well as many future planned devices.

10.24 PICDEM USB PIC16C7X5 Demonstration Board

The PICDEM USB Demonstration Board shows off the capabilities of the PIC16C745 and PIC16C765 USB microcontrollers. This board provides the basis for future USB products.

10.25 Evaluation and Programming Tools

In addition to the PICDEM series of circuits, Microchip has a line of evaluation kits and demonstration software for these products.

- KEELOQ evaluation and programming tools for Microchip's HCS Secure Data Products
- CAN developers kit for automotive network applications
- Analog design boards and filter design software
- PowerSmart battery charging evaluation/ calibration kits
- IrDA[®] development kit
- microID development and rfLab[™] development software
- SEEVAL[®] designer kit for memory evaluation and endurance calculations
- PICDEM MSC demo boards for Switching mode power supply, high-power IR driver, delta sigma ADC and flow rate sensor

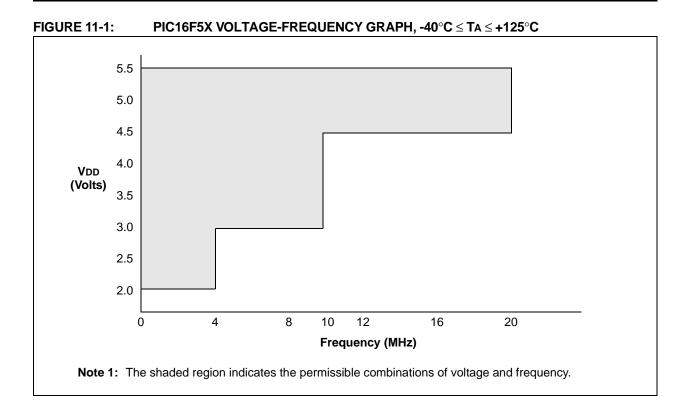
Check the Microchip web page and the latest Product Selector Guide for the complete list of demonstration and evaluation kits. NOTES:

11.0 ELECTRICAL SPECIFICATIONS FOR PIC16F54/57

Absolute Maximum Ratings^(†)

Ambient Temperature under bias	40°C to +125°C
Storage Temperature	65°C to +150°C
Voltage on VDD with respect to VSS	0V to +6.5V
Voltage on MCLR with respect to Vss ⁽¹⁾	0V to +13.5V
Voltage on all other pins with respect to Vss	0.6V to (VDD + 0.6V)
Total power dissipation ⁽²⁾	
Max. current out of Vss pin	
Max. current into VDD pin	100 mA
Max. current into an input pin (T0CKI only)	±500 μA
Input clamp current, Iк (Vi < 0 or Vi > VDD)	±20 mA
Output clamp current, IOK (Vo < 0 or Vo > VDD)	±20 mA
Max. output current sunk by any I/O pin	25 mA
Max. output current sourced by any I/O pin	25 mA
Max. output current sourced by a single I/O port (PORTA, B or C)	
Max. output current sunk by a single I/O port (PORTA, B or C)	50 mA
Note 4. Maltered as the balance Man ADD and the MOLD and the second second	

- **Note 1:** Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50 to 100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.
 - 2: Power Dissipation is calculated as follows: Pdis = VDD x {IDD Σ IOH} + Σ {(VDD VOH) x IOH} + Σ (VOL x IOL)


†NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

11.0 ELECTRICAL SPECIFICATIONS FOR PIC16F59 (continued)

	-
Absolute Maximum Ratings ^(†)	
Ambient Temperature under bias	40°C to +125°C
Storage Temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0V to +6.5V
Voltage on MCLR with respect to Vss ⁽¹⁾	0V to +13.5V
Voltage on all other pins with respect to Vss	0.6V to (VDD + 0.6V)
Total power dissipation ⁽²⁾	900 mW
Max. current out of Vss pins	250 mA
Max. current into VDD pins	200 mA
Max. current into an input pin (T0CKI only)	±500 μA
Input clamp current, Iк (Vi < 0 or Vi > Voo)	±20 mA
Output clamp current, IOK (VO < 0 or VO > VDD)	±20 mA
Max. output current sunk by any I/O pin	25 mA
Max. output current sourced by any I/O pin	25 mA
Max. output current sourced by a single I/O port (PORTA, B, C, D or E)	100 mA
Max. output current sunk by a single I/O port (PORTA, B, C, D or E)	100 mA
Note 1. Voltage epiker below Voe at the \overline{MCLP} pip inducing surroute greater then	

- **Note 1:** Voltage spikes below Vss at the MCLR pin, inducing currents greater than 80 mA, may cause latch-up. Thus, a series resistor of 50 to 100Ω should be used when applying a "low" level to the MCLR pin rather than pulling this pin directly to Vss.
 - 2: Power Dissipation is calculated as follows: Pdis = VDD x {IDD Σ IOH} + Σ {(VDD VOH) x IOH} + Σ (VOL x IOL)

†NOTICE: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

11.1 DC Characteristics: PIC16F5X (Industrial)

		Standard Operating Conditions (unless otherwise specified) Operating Temperature -40°C \leq TA \leq +85°C for industrial					
Param No.	Sym	Characteristic/Device	Min	Тур†	Max	Units	Conditions
D001	Vdd	Supply Voltage	2.0	—	5.5	V	
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾		1.5*	_	V	Device in Sleep mode
D003	Vpor	VDD Start Voltage to ensure Power-on Reset	_	Vss		V	See Section 5.1 "Power-on Reset (POR)" for details on Power-on Reset
D004	SVDD	VDD Rise Rate to ensure Power-on Reset	0.05*	—	_	V/ms	See Section 5.1 "Power-on Reset (POR)" for details on Power-on Reset
D010	Idd	Supply Current ⁽²⁾					
			_	170	350	μΑ	Fosc = 4 MHz, VDD = 2.0V, XT or RC mode ⁽³⁾
			—	0.4	1.0		Fosc = 10 MHz, VDD = 3.0V, HS mode
			—	1.7	5.0		Fosc = 20 MHz, VDD = 5.0V, HS mode
			—	15	22.5	μA	Fosc = 32 kHz, VDD = 2.0V, LP mode, WDT disabled
D020	IPD	Power-down Current ⁽²⁾	•				•
				1.0	6.0	μΑ	VDD = 2.0V, WDT enabled
				0.5	2.5	μΑ	VDD = 2.0V, WDT disabled

* These parameters are characterized but not tested.

† Data in "Typ" column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature, also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss, T0CKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in Sleep mode. The Power-down Current in Sleep mode does not depend on the oscillator type.
- 3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

			•	-			
DC CHARACTERISTICS		Standard Operating Conditions (unless otherwise specified) Operating Temperature $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Param No.	Sym	Characteristic/Device	Min Typ† Max Units Conditions			Conditions	
D001	Vdd	Supply Voltage	2.0	_	5.5	V	
D002	Vdr	RAM Data Retention Voltage ⁽¹⁾	—	1.5*	—	V	Device in Sleep mode
D003	Vpor	VDD Start Voltage to ensure Power-on Reset	—	Vss	_	V	See Section 5.1 "Power-on Reset (POR)" for details on Power-on Reset
D004	Svdd	VDD Rise Rate to ensure Power-on Reset	0.05*	—	—	V/ms	See Section 5.1 "Power-on Reset (POR)" for details on Power-on Reset
D010	Idd	Supply Current ⁽²⁾					
			_	170	450	μA	Fosc = 4 MHz, VDD = 2.0V, XT or RC

11.2 DC Characteristics: PIC16F5X (Extended)

* These parameters are characterized but not tested.

Power-down Current⁽²⁾

D020

IPD

† Data in "Typ" column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

0.4

1.7

15

1.0

0.5

2.0

7.0

40

15.0

8.0

mΑ

mΑ

μΑ

μΑ μΑ mode⁽³⁾

WDT disabled

VDD = 2.0V, WDT enabled

VDD = 2.0V, WDT disabled

Fosc = 10 MHz, VDD = 3.0V, HS mode

Fosc = 20 MHz, VDD = 5.0V, HS mode

Fosc = 32 kHz, VDD = 2.0V, LP mode,

Note 1: This is the limit to which VDD can be lowered in Sleep mode without losing RAM data.

- 2: The supply current is mainly a function of the operating voltage and frequency. Other factors such as bus loading, oscillator type, bus rate, internal code execution pattern and temperature, also have an impact on the current consumption.
 - a) The test conditions for all IDD measurements in Active Operation mode are: OSC1 = external square wave, from rail-to-rail; all I/O pins tri-stated, pulled to Vss, TOCKI = VDD, MCLR = VDD; WDT enabled/ disabled as specified.
 - b) For standby current measurements, the conditions are the same, except that the device is in Sleep mode. The Power-down Current in Sleep mode does not depend on the oscillator type.
- 3: Does not include current through REXT. The current through the resistor can be estimated by the formula: IR = VDD/2REXT (mA) with REXT in k Ω .

11.3 DC Characteristics PIC16F5X

ARAC	TERISTICS	$\begin{array}{llllllllllllllllllllllllllllllllllll$							
Sym	Characteristic	Characteristic Min Typ† Max Units		Units	Conditions				
VIL	Input Low Voltage								
	I/O Ports	Vss	_	0.8V	V	$4.5V < VDD \le 5.5V$			
	I/O Ports	Vss	—	0.15 Vdd	V	$VDD \le 4.5V$			
		Vss	—		V				
		Vss	—	0.15 Vdd	V				
		Vss	—		-	RC mode ⁽³⁾			
	OSC1		—			HS mode			
			—		-	XT mode			
		Vss	_	0.3	V	LP mode			
Vih	Input High Voltage								
	I/O ports	2.0	—	Vdd	V	$4.5V < VDD \leq 5.5V$			
	I/O ports	0.25 VDD + 0.8	—	Vdd	V	$VDD \leq 4.5V$			
		0.85 Vdd	—	Vdd	V				
			—	Vdd					
			—			RC mode ⁽³⁾			
	OSC1		—			HS mode			
			—			XT mode			
			—	VDD	V	LP mode			
lı∟	Input Leakage Current ^(1, 2)								
	I/O ports	—	—	±1.0	μA	$VSS \leq VPIN \leq VDD,$			
						pin at high-impedance			
	-	—	—	±5.0	μA	$VSS \leq VPIN \leq VDD$			
		—	—		•	$VSS \leq VPIN \leq VDD$			
	OSC1	—	—	±5.0	μA	$Vss \leq VPIN \leq VDD,$			
						XT, HS and LP modes			
Vol		I		1					
		—	—	0.6	V	IOL = 8.5 mA, VDD = 4.5V			
		—	—	0.6	V	IOL = 1.6 mA, VDD = 4.5V			
Vон		1			1	1			
		VDD - 0.7	_	_	V	ІОН = -3.0 mA, VDD = 4.5V			
	OSC2/CLKOUT (RC mode)	VDD - 0.7	—	—	v	IOH = -1.3 mA, VDD = 4.5 V			
	Sym VIL VIH	VIL Input Low Voltage I/O Ports I/O Ports MCLR (Schmitt Trigger) TOCKI (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1 (Schmitt Trigger) VIH Input High Voltage I/O ports I/O ports MCLR (Schmitt Trigger) OSC1 VIH Input High Voltage I/O ports MCLR (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1 (Schmitt Trigger) OSC1 (Schmitt Trigger) IIL Input Leakage Current ⁽¹⁾ I/O ports MCLR TOCKI OSC1 VOL Output Low Voltage I/O ports OSC2/CLKOUT VOL Output High Voltage ⁽²⁾ I/O ports ⁽²⁾ OSC2/CLKOUT	ARACTERISTICS Operating Temp Sym Characteristic Min VIL Input Low Voltage Vss I/O Ports Vss MCLR (Schmitt Trigger) Vss OSC1 (Schmitt Trigger) Vss OSC1 (Schmitt Trigger) Vss VIH Input High Voltage I/O ports 2.0 OSC1 (Schmitt Trigger) Vss VIH Input High Voltage I/O ports 2.0 I/O ports 0.25 VDD + 0.8 MCLR (Schmitt Trigger) 0.85 VDD OSC1 (Schmitt Trigger) 0.85 VDD	ARACTERISTICS Operating Temperature Sym Characteristic Min Typ† VIL Input Low Voltage Vss - I/O Ports Vss - Vss - I/O Ports Vss - Vss - MCLR (Schmitt Trigger) Vss - - Vss - OSC1 (Schmitt Trigger) Vss - Vss - - VIH Input High Voltage 2.0 - - Vss - I/O ports 2.0 - - Vss - - - - - 0.25 VbD + 0.8 - - - - - 0.25 VbD + 0.8 - - - 0.25 VbD + 0.8 - - - 0.25 VbD - 0.25 VbD + 0.8 - - 0.85 VbD - 0.7 VbD - 1.6 - 1.6 - 1.6 - - 1.6 - - - 0.20 C1 C1 C1 C1 C1 C1 C1 C1 C1 C	ARACTERISTICS Operating Temperature -40°C : -40°C : -40°C : Sym Characteristic Min Typ† Max VIL Input Low Voltage 0.8V 0.15 VDD I/O Ports VSS - 0.15 VDD MCLR (Schmitt Trigger) VSS - 0.15 VDD OSC1 (Schmitt Trigger) VSS - 0.3 VDD VIH Input High Voltage VSS - 0.3 VDD VOC 2.0 - VDD 0.3 VDD OSC1 (Schmitt Trigger) VSS - 0.3 VDD I/O ports 0.25 VDD + 0.8 - VDD 0.3 VIH Input High Voltage 0.85 VDD - VDD 0SC1 (Schmitt Trigger) 0.85 VDD - VDD 0.7 VDD 0SC1 (Schmitt Trigger) 0.85 VDD - VDD 1.6 - VDD 0SC1 (Schmitt Trigger) 0.85 VDD - VDD 1.6 - VDD IIL Input Leakage Current ^(1, 2) -	ARACTERISTICS Operating Temperature $-40^{\circ}C \le TA \le 4$ Sym Characteristic Min Typ† Max Units VIL Input Low Voltage Vss - 0.8V V I/O Ports Vss - 0.8V V V I/O Ports Vss - 0.15 Vop V MCLR (Schmitt Trigger) Vss - 0.15 Vop V OSC1 (Schmitt Trigger) Vss - 0.15 Vop V VSS - 0.15 Vop V Vss - 0.15 Vop V OSC1 (Schmitt Trigger) Vss - 0.15 Vop V Vss - 0.3 Vop V VIH Input High Voltage 2.0 - VDD V Vss - 0.3 Vop V VIH Input High Voltage 2.0 - VDD V 0.25 Vop + 0.8 - Vop V VICK (Schmitt Trigger) 0.85 Vop - Vop V 1.6 - Vop V 0SC1 (Schmitt Trigger) 0.85 V			

* These parameters are characterized but not tested.

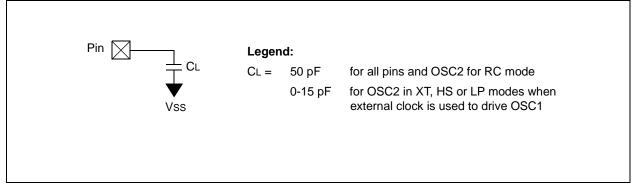
† Data in the Typical ("Typ") column is based on characterization results at 25°C. This data is for design guidance only and is not tested.

Note 1: The leakage current on the MCLR/VPP pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltage.

2: Negative current is defined as coming out of the pin.

3: For the RC mode, the OSC1/CLKIN pin is a Schmitt Trigger input. It is not recommended that the PIC16F5X be driven with external clock in RC mode.

11.4 Timing Parameter Symbology and Load Conditions


The timing parameter symbols have been created with one of the following formats:

1. TppS2ppS

2. TppS

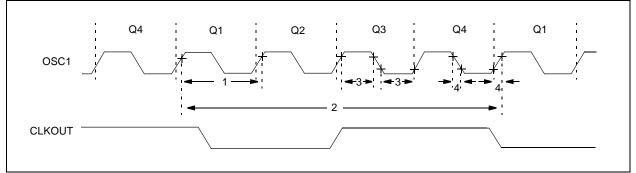

2. Ip	pS	
т		
F	Frequency	T Time
Lowe	rcase letters (pp) and their meanings:	
рр		
2	to	mc MCLR
ck	CLKOUT	osc oscillator
су	cycle time	os OSC1
drt	device reset timer	t0 T0CKI
io	I/O port	wdt watchdog timer
Uppe	rcase letters and their meanings:	
S		
F	Fall	P Period
н	High	R Rise
I	Invalid (High-impedance)	V Valid
L	Low	Z High-impedance

FIGURE 11-2: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS – PIC16F5X

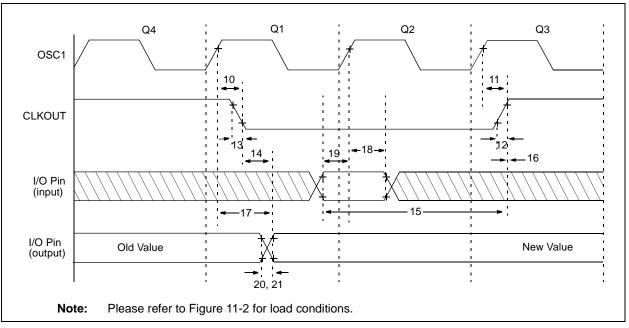
11.5 Timing Diagrams and Specifications

FIGURE 11-3: EXTERNAL CLOCK TIMING

TABLE 11-1		NAL CLOCK TIMING REQUIR		-					
AC CHARAC	CTERISTICS	Standard Operating Conditions (unless otherwise specified)Operating Temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended							
Parameter No.	Sym	Characteristic I		in Typ† Max		x Units	Conditions		
	Fosc	External CLKIN Frequency ⁽¹⁾	DC		4.0	MHz	XT Osc mode		
			DC	—	20	MHz	HS Osc mode		
			DC	—	200	kHz	LP Osc mode		
		Oscillator Frequency ⁽¹⁾	DC	_	4.0	MHz	RC Osc mode		
			0.1	—	4.0	MHz	XT Osc mode		
			4.0	—	20	MHz	HS Osc mode		
			5.0	—	200	kHz	LP Osc mode		
1	Tosc	External CLKIN Period ⁽¹⁾	250	_	_	ns	XT Osc mode		
			50	—	—	ns	HS Osc mode		
			5.0	—	—	μs	LP Osc mode		
		Oscillator Period ⁽¹⁾	250			ns	RC Osc mode		
			250	—	10,000	ns	XT Osc mode		
			50	—	250	ns	HS Osc mode		
			5.0	_	_	μs	LP Osc mode		
2	Тсү	Instruction Cycle Time ⁽²⁾		4/Fosc		_			
3	TosL, TosH	Clock in (OSC1) Low or High	50*			ns	XT oscillator		
		Time	20*	—	—	ns	HS oscillator		
			2.0*	_	_	μs	LP oscillator		
4	TosR, TosF	Clock in (OSC1) Rise or Fall			25*	ns	XT oscillator		
		Time	—	—	5*	ns	HS oscillator		
			—	—	50*	ns	LP oscillator		

TABLE 11-1: EXTERNAL CLOCK TIMING REQUIREMENTS

* These parameters are characterized but not tested.


† Data in the Typical ("Typ") column is at 5V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

Note 1: All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption.

When an external clock input is used, the "max" cycle time limit is "DC" (no clock) for all devices.

2: Instruction cycle period (TCY) equals four times the input oscillator time base period.

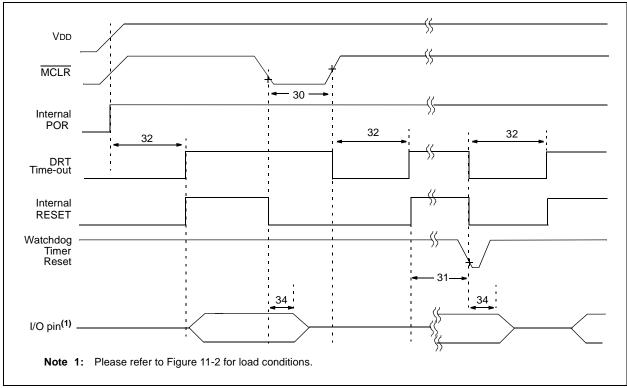
Param No.	Sym	Characteristic	Min	Тур†	Мах	Units
10	TosH2CKL	OSC1↑ to CLKOUT↓ ⁽¹⁾		15	30**	ns
11	TosH2CKH	OSC1↑ to CLKOUT↑ ⁽¹⁾	—	15	30**	ns
12	ТскR	CLKOUT rise time ⁽¹⁾		5.0	15**	ns
13	ТскF	CLKOUT fall time ⁽¹⁾		5.0	15**	ns
14	TckL2IoV	CLKOUT↓ to Port out valid ⁽¹⁾	—	_	40**	ns
15	ТюV2скН	Port in valid before CLKOUT ⁽¹⁾	0.25 Tcy+30*	_		ns
16	TckH2iol	Port in hold after CLKOUT↑ ⁽¹⁾	0*	_		ns
17	TosH2IoV	OSC1 [↑] (Q1 cycle) to Port out valid ⁽²⁾		_	100*	ns
18	TosH2ıol	OSC1 [↑] (Q2 cycle) to Port input invalid (I/O in hold time)	TBD	—	_	ns
19	TioV2osH	Port input valid to OSC1↑ (I/O in setup time)	TBD	—	_	ns
20	TIOR	Port output rise time ^(2, 3)	_	10	25**	ns
20	TIOR	Port output rise time ^(2, 4)		10	50**	ns
21	TIOF	Port output fall time ^(2, 3)		10	25**	ns
21	TIOF	Port output fall time ^(2, 4)	_	10	50**	ns

TABLE 11-2: CLKOUT AND I/O TIMING REQUIREMENTS - PIC16F5X

Legend: TBD = To Be Determined.

* These parameters are characterized but not tested.

** These parameters are design targets and are not tested. No characterization data available at this time.


† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

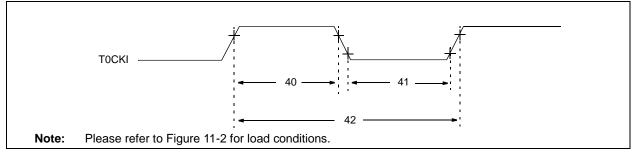
Note 1: Measurements are taken in RC mode where CLKOUT output is 4 x Tosc.

2: Please refer to Figure 11-2 for load conditions.

3: PIC16F54/57 only.

4: PIC16F59 only.

FIGURE 11-5: RESET, WATCHDOG TIMER, AND DEVICE RESET TIMER TIMING -- PIC16F5X


TABLE 11-3: RESET, WATCHDOG TIMER AND DEVICE RESET TIMER – PIC16F5X

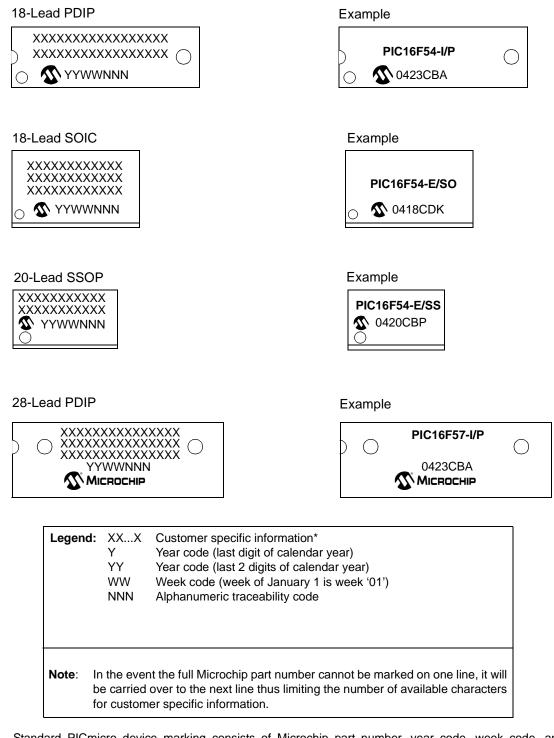
			Standard Operating Conditions (unless otherwise specifieOperating Temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Param No. Sym Characteristic		Characteristic	Min	Тур†	Max	Units	Conditions	
30	TMCL	MCLR Pulse Width (low)	2000*			ns	Vdd = 5.0V	
31	Twdt	Watchdog Timer Time-out Period (No Prescaler)	9.0* 9.0*	18* 18*	30* 40*	ms	VDD = 5.0V (industrial) VDD = 5.0V (extended)	
32	Tdrt	Device Reset Timer Period	9.0* 9.0*	18* 18*	30* 40*	ms	VDD = 5.0V (industrial) VDD = 5.0V (extended)	
34	Tioz	I/O high-impedance from MCLR	100*	300*	2000*	ns		

* These parameters are characterized but not tested.

† Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for design guidance only and are not tested.

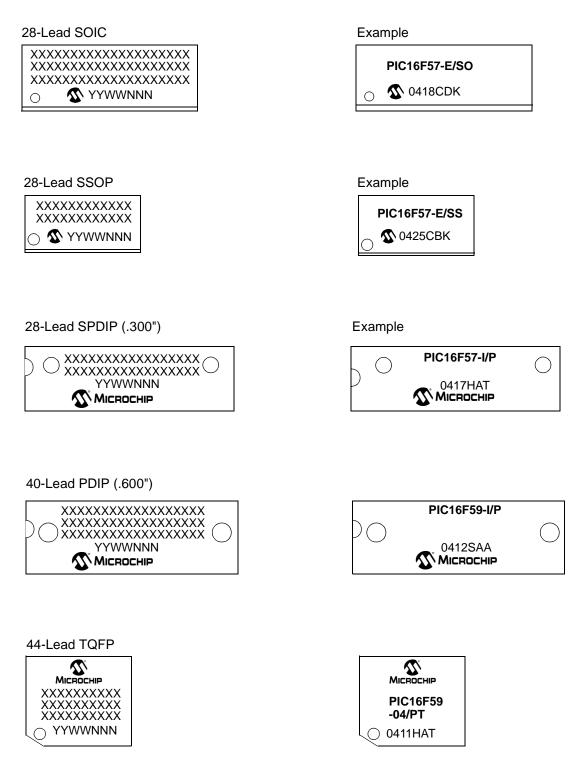
TABLE 11-4: TIMER0 CLOCK REQUIREMENTS – PIC16F5X

AC CHARACTERISTICS			Standard Operating Conditions (unless otherwise specified)Operating Temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for extended					
Param No. Sym Characteristic			Min	Тур†	Max	Units	Conditions	
40	Tt0H	T0CKI High Pulse Width: No Prescaler With Prescaler	0.5 Tcy + 20* 10*		_	ns ns		
41	TtOL	T0CKI Low Pulse Width: No Prescaler With Prescaler	0.5 Tcy + 20* 10*		_	ns ns		
42	Tt0P	T0CKI Period	20 or <u>Tcy + 40</u> * N			ns	Whichever is greater. N = Prescale Value (1, 2, 4,, 256)	

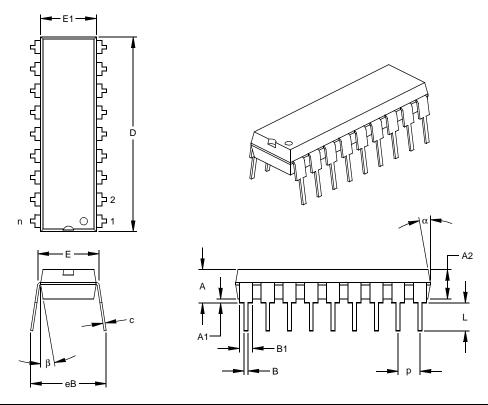

These parameters are characterized but not tested.

Data in the Typical ("Typ") column is at 5.0V, 25°C unless otherwise stated. These parameters are for † design guidance only and are not tested.

NOTES:


12.0 PACKAGING INFORMATION

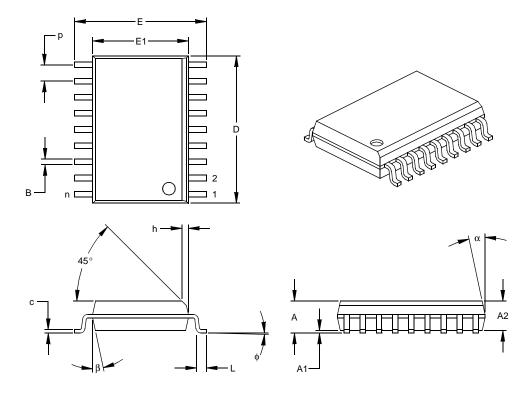
12.1 Package Marketing Information



* Standard PICmicro device marking consists of Microchip part number, year code, week code, and traceability code. For PICmicro device marking beyond this, certain price adders apply. Please check with your Microchip Sales Office. For QTP devices, any special marking adders are included in QTP price.

Package Marking Information (Continued)

18-Lead Plastic Dual In-line (P) – 300 mil Body (PDIP)

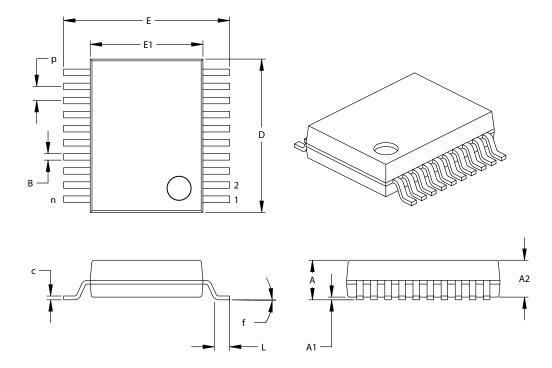

	Units	INCHES*		N	1ILLIMETERS		
Dimensio	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.155	.170	3.56	3.94	4.32
Molded Package Thickness	A2	.115	.130	.145	2.92	3.30	3.68
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.300	.313	.325	7.62	7.94	8.26
Molded Package Width	E1	.240	.250	.260	6.10	6.35	6.60
Overall Length	D	.890	.898	.905	22.61	22.80	22.99
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.045	.058	.070	1.14	1.46	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.310	.370	.430	7.87	9.40	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-001 Drawing No. C04-007

18-Lead Plastic Small Outline (SO) – Wide, 300 mil Body (SOIC)


	Units	INCHES*			MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		18			18	
Pitch	р		.050			1.27	
Overall Height	Α	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	Е	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.291	.295	.299	7.39	7.49	7.59
Overall Length	D	.446	.454	.462	11.33	11.53	11.73
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle	¢	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.012	0.23	0.27	0.30
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15

* Controlling Parameter § Significant Characteristic

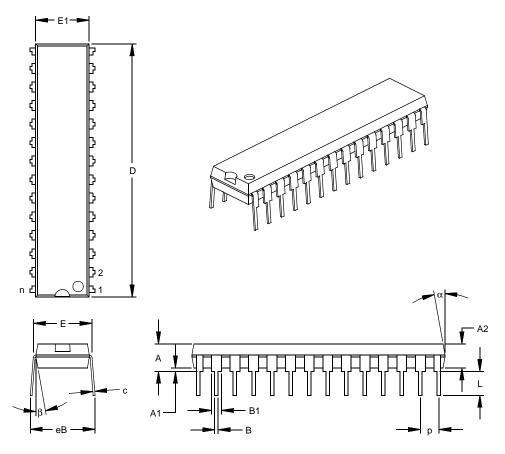
Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-013 Drawing No. C04-051

20-Lead Plastic Shrink Small Outline (SS) – 209 mil, 5.30 mm (SSOP)

	Units		INCHES		М	ILLIMETERS*	
Dimension Limi	ts	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		20			20	
Pitch	р		.026			0.65	
Overall Height	А	-	-	.079	-	-	2.00
Molded Package Thickness	A2	.065	.069	.073	1.65	1.75	1.85
Standoff	A1	.002	-	-	0.05	-	-
Overall Width	E	.291	.307	.323	7.40	7.80	8.20
Molded Package Width	E1	.197	.209	.220	5.00	5.30	5.60
Overall Length	D	.272	.283	.289	.295	7.20	7.50
Foot Length	L	.022	.030	.037	0.55	0.75	0.95
Lead Thickness	с	.004	-	.010	0.09	-	0.25
Foot Angle	f	0°	4°	8°	0°	4°	8°
Lead Width	В	.009	-	.015	0.22	-	0.38

*Controlling Parameter

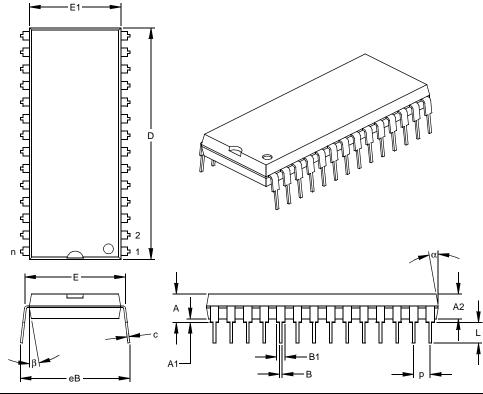

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MO-150 Drawing No. C04-072

Revised 11/03/03

28-Lead Skinny Plastic Dual In-line (SP) – 300 mil Body (PDIP)

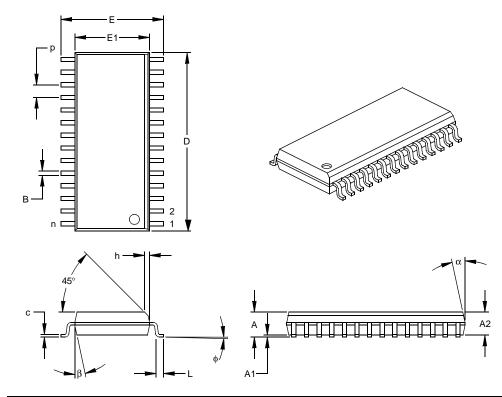


	Units	INCHES*			М	IILLIMETERS	
Dimensi	on Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.140	.150	.160	3.56	3.81	4.06
Molded Package Thickness	A2	.125	.130	.135	3.18	3.30	3.43
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	E	.300	.310	.325	7.62	7.87	8.26
Molded Package Width	E1	.275	.285	.295	6.99	7.24	7.49
Overall Length	D	1.345	1.365	1.385	34.16	34.67	35.18
Tip to Seating Plane	L	.125	.130	.135	3.18	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.040	.053	.065	1.02	1.33	1.65
Lower Lead Width	В	.016	.019	.022	0.41	0.48	0.56
Overall Row Spacing	èB	.320	.350	.430	8.13	8.89	10.92
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15

* Controlling Parameter § Significant Characteristic Notes:

Dimension D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-095 Drawing No. C04-070

28-Lead Plastic Dual In-line (P) – 600 mil Body (PDIP)



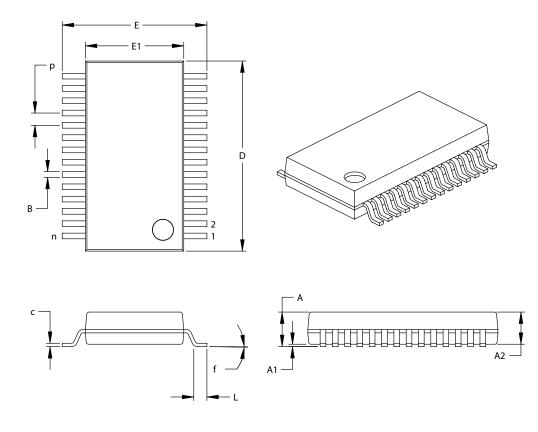
	Units		INCHES*		N	MILLIMETERS		
Dimension	n Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		28			28		
Pitch	р		.100			2.54		
Top to Seating Plane	А	.160	.175	.190	4.06	4.45	4.83	
Molded Package Thickness	A2	.140	.150	.160	3.56	3.81	4.06	
Base to Seating Plane	A1	.015			0.38			
Shoulder to Shoulder Width	Е	.595	.600	.625	15.11	15.24	15.88	
Molded Package Width	E1	.505	.545	.560	12.83	13.84	14.22	
Overall Length	D	1.395	1.430	1.465	35.43	36.32	37.21	
Tip to Seating Plane	L	.120	.130	.135	3.05	3.30	3.43	
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38	
Upper Lead Width	B1	.030	.050	.070	0.76	1.27	1.78	
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56	
Overall Row Spacing §	eB	.620	.650	.680	15.75	16.51	17.27	
Mold Draft Angle Top	α	5	10	15	5	10	15	
Mold Draft Angle Bottom	β	5	10	15	5	10	15	

* Controlling Parameter § Significant Characteristic

Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MO-011 Drawing No. C04-079

28-Lead Plastic Small Outline (SO) - Wide, 300 mil Body (SOIC)

	Units	INCHES*		MILLIMETERS			
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.050			1.27	
Overall Height	Α	.093	.099	.104	2.36	2.50	2.64
Molded Package Thickness	A2	.088	.091	.094	2.24	2.31	2.39
Standoff §	A1	.004	.008	.012	0.10	0.20	0.30
Overall Width	Е	.394	.407	.420	10.01	10.34	10.67
Molded Package Width	E1	.288	.295	.299	7.32	7.49	7.59
Overall Length	D	.695	.704	.712	17.65	17.87	18.08
Chamfer Distance	h	.010	.020	.029	0.25	0.50	0.74
Foot Length	L	.016	.033	.050	0.41	0.84	1.27
Foot Angle Top	φ	0	4	8	0	4	8
Lead Thickness	С	.009	.011	.013	0.23	0.28	0.33
Lead Width	В	.014	.017	.020	0.36	0.42	0.51
Mold Draft Angle Top	α	0	12	15	0	12	15
Mold Draft Angle Bottom	β	0	12	15	0	12	15


* Controlling Parameter § Significant Characteristic

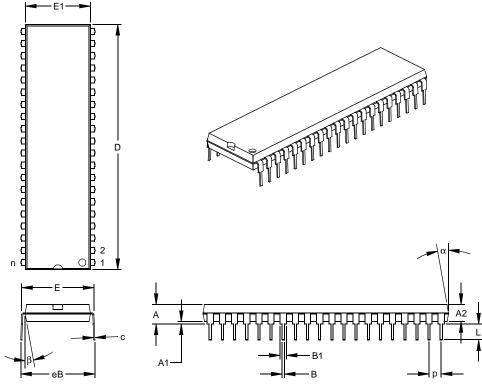
Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MS-013 Drawing No. C04-052

28-Lead Plastic Shrink Small Outline (SS) - 209 mil, 5.30 mm (SSOP)

	Units	INCHES			MILLIMETERS*		
Dimension Lir	nits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		28			28	
Pitch	р		.026			0.65	
Overall Height	A	-	-	.079	-	-	2.0
Molded Package Thickness	A2	.065	.069	.073	1.65	1.75	1.85
Standoff	A1	.002	-	-	0.05	-	-
Overall Width	E	.295	.307	.323	7.49	7.80	8.20
Molded Package Width	E1	.009	.209	.220	5.00	5.30	5.60
Overall Length	D	.390	.402	.413	9.90	10.20	10.50
Foot Length	L	.022	.030	.037	0.55	0.75	0.95
Lead Thickness	с	.004	-	.010	0.09	-	0.25
Foot Angle	f	0°	4°	8°	0°	4°	8°
Lead Width	В	.009	-	.015	0.22	-	0.38


*Controlling Parameter

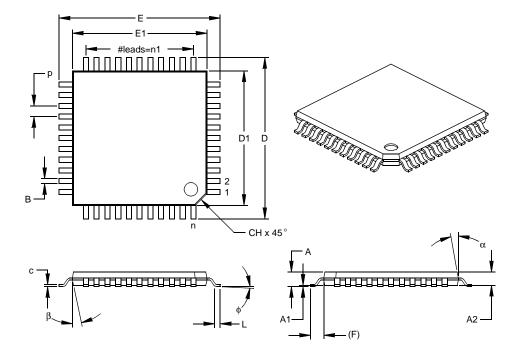
Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side.

JEDEC Equivalent: MO-150 Drawing No. C04-073

40-Lead Plastic Dual In-line (P) – 600 mil Body (PDIP)

	Units	INCHES*			MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX	MIN	NOM	MAX
Number of Pins	n		40			40	
Pitch	р		.100			2.54	
Top to Seating Plane	Α	.160	.175	.190	4.06	4.45	4.83
Molded Package Thickness	A2	.140	.150	.160	3.56	3.81	4.06
Base to Seating Plane	A1	.015			0.38		
Shoulder to Shoulder Width	Е	.595	.600	.625	15.11	15.24	15.88
Molded Package Width	E1	.530	.545	.560	13.46	13.84	14.22
Overall Length	D	2.045	2.058	2.065	51.94	52.26	52.45
Tip to Seating Plane	L	.120	.130	.135	3.05	3.30	3.43
Lead Thickness	С	.008	.012	.015	0.20	0.29	0.38
Upper Lead Width	B1	.030	.050	.070	0.76	1.27	1.78
Lower Lead Width	В	.014	.018	.022	0.36	0.46	0.56
Overall Row Spacing §	eB	.620	.650	.680	15.75	16.51	17.27
Mold Draft Angle Top	α	5	10	15	5	10	15
Mold Draft Angle Bottom	β	5	10	15	5	10	15


* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed

.010" (0.254mm) per side. JEDEC Equivalent: MO-011 Drawing No. C04-016

44-Lead Plastic Thin Quad Flatpack (PT) 10x10x1 mm Body, 1.0/0.10 mm Lead Form (TQFP)

	Units		INCHES			MILLIMETERS*		
Dimensio	n Limits	MIN	NOM	MAX	MIN	NOM	MAX	
Number of Pins	n		44			44		
Pitch	р		.031			0.80		
Pins per Side	n1		11			11		
Overall Height	Α	.039	.043	.047	1.00	1.10	1.20	
Molded Package Thickness	A2	.037	.039	.041	0.95	1.00	1.05	
Standoff §	A1	.002	.004	.006	0.05	0.10	0.15	
Foot Length	L	.018	.024	.030	0.45	0.60	0.75	
Footprint (Reference)	(F)		.039		1.00			
Foot Angle	φ	0	3.5	7	0	3.5	7	
Overall Width	Е	.463	.472	.482	11.75	12.00	12.25	
Overall Length	D	.463	.472	.482	11.75	12.00	12.25	
Molded Package Width	E1	.390	.394	.398	9.90	10.00	10.10	
Molded Package Length	D1	.390	.394	.398	9.90	10.00	10.10	
Lead Thickness	С	.004	.006	.008	0.09	0.15	0.20	
Lead Width	В	.012	.015	.017	0.30	0.38	0.44	
Pin 1 Corner Chamfer	СН	.025	.035	.045	0.64	0.89	1.14	
Mold Draft Angle Top	α	5	10	15	5	10	15	
Mold Draft Angle Bottom	β	5	10	15	5	10	15	

* Controlling Parameter § Significant Characteristic

Notes:

Dimensions D1 and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: MS-026 Drawing No. C04-076

NOTES:

Α

Absolute Maximum Ratings	
PIC1654/57	
PIC1659	60
ADDWF	43
ALU	7
ANDLW	
ANDWF	
Applications	5
Architectural Overview	7
Assembler	
MPASM Assembler	53

В

Block Diagram	
On-Chip Reset Circuit	24
PIC16F5X Series	
Timer0	
TMR0/WDT Prescaler	
Watchdog Timer	
Brown-Out Protection Circuit	
BSF	
BTFSC	
BTFSS	

С

54
7, 17

D

DC Characteristics	
Commercial	64
Extended	63
Industrial	62, 64
DECF	
DECFSZ	
Demonstration Boards	
PICDEM 1	
PICDEM 17	
PICDEM 18R	
PICDEM 2 Plus	
PICDEM 3	
PICDEM 4	
PICDEM LIN	
PICDEM USB	
PICDEM.net Internet/Ethernet	
Development Support	
Device Reset Timer (DRT)	
Digit Carry (DC) bit	
DRT	

Е

E	
Electrical Specifications	
PIC16F54/57	
PIC16F59	
Errata	
Evaluation and Programming Tools	
External Power-On Reset Circuit	25
F	
• FSR Register	20
Value on Reset (PIC16F54)	
Value on Reset (PIC16F57)	
Value on Reset (PIC16F59)	
	27
G	
GOTO 19,	47
Н	
High-Performance RISC CPU	1
1	
I/O Interfacing	
I/O Ports	-
I/O Programming Considerations	
ID Locations	
INDF Register	
Value on Reset	
Indirect Data Addressing	
Instruction Cycle	12
Instruction Flow/Pipelining	
Instruction Set Summary	
IORLW	
IORWF	48
L	
– Loading of PC	40
Loading of PC	19
M	
MCLR Reset	
Register values on	24
Memory Map	
PIC16F54	13
PIC16F57/59	
Memory Organization	
MOVF	
MOVLW	
MOVEV	
MD VVVI MPLAB ASM30 Assembler, Linker, Librarian	
MPLAB ICD 2 In-Circuit Debugger	
MPLAB ICE 2000 High-Performance Universal	55
In-Circuit Emulator	55
MPLAB ICE 4000 High-Performance Universal	55
	6 6
In-Circuit Emulator	
MPLAB Integrated Development Environment Software	
MPLAB PM3 Device Programmer	
MPLINK Object Linker/MPLIB Object Librarian	54
Ν	
NOP	40
	49

0

Option	
Option Register	
Value on Reset	
Oscillator Configurations	
Oscillator Types	
HS	
LP	
RC	
ХТ	

Ρ

F	
PA0 bit	
PA1 bit	
Paging	19
PC	19
Value on Reset	24
PD bit	
PICkit 1 Flash Starter Kit	57
PICSTART Plus Development Programmer	
Pinout Description - PIC16F54	
Pinout Description - PIC16F57	
Pinout Description - PIC16F59	
PORTA	
Value on Reset	
PORTB	
Value on Reset	
PORTC	
Value on Reset	24
PORTD	0.4
Value on Reset	24
PORTE Value on Reset	24
Power-down Mode	
Power-on Reset (POR)	
Register values on	
Prescaler	
PRO MATE II Universal Device Programmer	
Program Counter	
Program Memory Organization	
Program Verification/Code Protection	
C C C C C C C C C C C C C C C C C C C	
Q	
Q cycles	12

R

RC Oscillator	
Read-Modify-Write	
Register File Map	
PIC16F54	
PIC16F57	
PIC16F59	
Registers	
Special Function	
Value on Reset	
Reset	
Reset on Brown-out	
RETLW	
RLF	
RRF	

S

01	07 00 50
Sleep	37, 39, 50
Software Simulator (MPLAB SIM)	54
Software Simulator (MPLAB SIM30)	54
Special Features of the CPU	37
Special Function Registers	16
Stack	20
Status Register	7, 17
Value on Reset	24
SUBWF	51
SWAPF	51

Т

Timer0	
Switching Prescaler Assignment	36
Timer0 (TMR0) Module	33
TMR0 register - Value on Reset	
TMR0 with External Clock	35
Timing Diagrams and Specifications	
	65
Timing Parameter Symbology and Load Conditions	
TO bit	17, 23
TRIS	51
TRIS Registers	29
Value on Reset	24
w	
W Register	
Value on Reset	
Wake-up from Sleep	
Watchdog Timer (WDT)	37, 38
Period	38
Programming Considerations	38
Register Values on Reset	
WWW, On-Line Support	3

Х

X	
XORLW	52
XORWF	52
Z	
Zero (Z) bit	7, 17

ON-LINE SUPPORT

Microchip provides on-line support on the Microchip World Wide Web site.

The web site is used by Microchip as a means to make files and information easily available to customers. To view the site, the user must have access to the Internet and a web browser, such as Netscape[®] or Microsoft[®] Internet Explorer. Files are also available for FTP download from our FTP site.

Connecting to the Microchip Internet Web Site

The Microchip web site is available at the following URL:

www.microchip.com

The file transfer site is available by using an FTP service to connect to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may download files for the latest Development Tools, Data Sheets, Application Notes, User's Guides, Articles and Sample Programs. A variety of Microchip specific business information is also available, including listings of Microchip sales offices, distributors and factory representatives. Other data available for consideration is:

- Latest Microchip Press Releases
- Technical Support Section with Frequently Asked
 Questions
- Design Tips
- Device Errata
- Job Postings
- Microchip Consultant Program Member Listing
- Links to other useful web sites related to Microchip Products
- Conferences for products, Development Systems, technical information and more
- · Listing of seminars and events

SYSTEMS INFORMATION AND UPGRADE HOT LINE

The Systems Information and Upgrade Line provides system users a listing of the latest versions of all of Microchip's development systems software products. Plus, this line provides information on how customers can receive the most current upgrade kits. The Hot Line Numbers are:

1-800-755-2345 for U.S. and most of Canada, and

1-480-792-7302 for the rest of the world.

042003

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

To:	Technical Publications Manager	Total Pages Sent
RE:	Reader Response	
From	: Name	
	Company	
	Telephone: ()	FAX: ()
Appli	cation (optional):	
Woul	d you like a reply? <u>Y</u>	
Devic	ce: PIC16F5X	Literature Number: DS41213C
Ques	tions:	
1. V	Vhat are the best features of this do	cument?
2. H	low does this document meet your	hardware and software development needs?
_		
_		
3. D	Do you find the organization of this o	locument easy to follow? If not, why?
_		
4. V	Vhat additions to the document do y	you think would enhance the structure and subject?
_		
	What delations from the desumant a	and he made without offecting the everall useful accord
5. V	vhat deletions from the document c	ould be made without affecting the overall usefulness?
6. Is	s there any incorrect or misleading i	nformation (what and where)?
0. 13	s there any meeter of misleading i	
7. H	low would you improve this docume	ent?
	, ,	

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO.	<u>x /xx xxx</u>	Examples:
Device	Temperature Package Pattern Range	 a) PIC16F54-I/P = Industrial temp, PDIP package b) PIC16F54T-I/SSG = Industrial temp, SSOP package (Pb -free), tape and reel c) PIC16F57-E/SP6 = Extended temp, Skinny
Device	PIC16F54 – VDD range 2.0V to 5.5V PIC16F54T ⁽¹⁾ – VDD range 2.0V to 5.5V PIC16F57 – VDD range 2.0V to 5.5V PIC16F57T ⁽¹⁾ – VDD range 2.0V to 5.5V	 c) Plastic DIP package (Pb-free) d) PlC16F57T-E/SS = Extended temp, SSOP package, tape and reel e) PlC16F54-I/SOG = Industrial temp, SOIC package (Pb-free)
Temperature Range	$ \begin{array}{rcl} I &=& -40^{\circ} C \ to & +85^{\circ} C & (Industrial) \\ E &=& -40^{\circ} C \ to & +125^{\circ} C & (Extended) \end{array} $	
Package	$\begin{array}{rcl} SO & = & SOIC \\ SS & = & SSOP \\ P & = & PDIP \\ SP & = & Skinny Plastic DIP (SPDIP)^{(2)} \\ SOG & = & SOIC (Pb-free) \\ SSG & = & SOIC (Pb-free) \\ PG & = & SOIC (Pb-free) \\ SPG & = & SOIC (Pb-free) \end{array}$	Note 1: T = in tape and reel SOIC and SSOP packages only. 2: PIC16F57 only
Pattern	QTP, SQTP, Code or Special Requirements (blank otherwise)	

PART NO.	<u>×</u>					mples:
Device	Temperature Range	Package	Pattern		a) b)	PIC16F59–I/P = Industrial temp, PDIP package (Pb -free). PIC16F59T–I/PT = Industrial temp, TQFP package (Pb -free), tape and reel.
Device	PIC16F59 – PIC16F59T ⁽¹⁾ –	VDD range 2.0 VDD range 2.0	0V to 5.5V 0V to 5.5V			
Temperature Range			(Industrial) (Extended)			
Package	P = PD PT = TQ					
Pattern	QTP, SQTP, Co	de or Special I	Requirements (blan	k otherwise)	Note	• 1: T = in tape and reel TQFP packages only.

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http:\\support.microchip.com Web Address: www.microchip.com

Atlanta Alpharetta, GA Tel: 770-640-0034 Fax: 770-640-0307

Boston Westford, MA Tel: 978-692-3848 Fax: 978-692-3821

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

San Jose Mountain View, CA Tel: 650-215-1444 Fax: 650-961-0286

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8676-6200 Fax: 86-28-8676-6599

China - Fuzhou Tel: 86-591-750-3506 Fax: 86-591-750-3521

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066 China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Shunde Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Qingdao Tel: 86-532-502-7355 Fax: 86-532-502-7205 ASIA/PACIFIC

India - Bangalore Tel: 91-80-2229-0061 Fax: 91-80-2229-0062

India - New Delhi Tel: 91-11-5160-8631 Fax: 91-11-5160-8632

Japan - Kanagawa Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Kaohsiung Tel: 886-7-536-4818

Fax: 886-7-536-4803 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Taiwan - Hsinchu Tel: 886-3-572-9526 Fax: 886-3-572-6459

EUROPE

Austria - Weis Tel: 43-7242-2244-399 Fax: 43-7242-2244-393

Denmark - Ballerup Tel: 45-4420-9895 Fax: 45-4420-9910

France - Massy Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Ismaning Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

England - Berkshire Tel: 44-118-921-5869 Fax: 44-118-921-5820

09/27/04