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Abstract 

The physical basis for the operation of co-axial transmission lines is ancient, well-understood and 
fundamental to radio-frequency electronics.  However, some aspects of the link between the 
underlying physics and the practical implementation appear rather obscure; for example, the reasons 
for the widespread use of two particular characteristic impedances, 50 Ω and 75 Ω. 

Also, interest is gathering in the topic of transmitter power ratios for switch-over from analogue to 
digital terrestrial television, and the capacity of the co-axial ‘feeders’ to handle the requisite average 
and peak powers features amongst a long list of critical factors that will affect the cost and practicality 
of switch-over. 

This White Paper provides some of the necessary background about the electrical characteristics of 
co-axial cables.  It is demonstrated that there are optimum characteristic impedances and they are 
evaluated, and it is shown that practical co-axial cables exhibit a fundamental peak-to-mean ratio; 
they can withstand short-term peaks of voltage considerably greater than the voltage corresponding 
to the long-term maximum power rating. 

 

Additional key words: co-axial cable, transmission line, characteristic impedance, 
power rating, dielectric breakdown, dielectric hysteresis, loss 
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Co-axial cables 

Chris Gandy 

Spectrum Planning Group 

1. Introduction 
The work of Spectrum Planning Group is based on principles of antennas and propagation that are, 
for the most part, straightforward, well documented and well understood.  Occasionally, however, 
questions arise for which the quantitative answer may be obtainable from available text books but, for 
one reason or another, the full explanation is obscure.  Such appears to be the case in respect of the 
question: why do co-axial cables usually have characteristic impedances of 50 Ω or 75 Ω?  
The characteristic impedances of transmission lines is a matter so fundamental to RF electronics that 
one might expect it to be common knowledge, and well understood, why for the past 75 years or so 
most co-axial cables have been manufactured with impedances of 50 Ω or 75 Ω.  But this appears not 
to be the case, and whilst factual statements of optimum impedances can be found in the literature [1], 
the full story of why those two particular values are ubiquitous seems more than a little obscure. 
It only adds to the mystery when the author of a well-respected text book on electromagnetics [2] 
sends the reader off to look up an article [3] in a supplement to a magazine from 1990 – maybe not the 
easiest of references to obtain – whilst a more-recent magazine article on the subject [4] is interesting 
but goes no further than ‘scratching the surface’. 

Whilst attempting to provide a clear answer to a colleague’s question about the terminal impedances 
of antennas (“why do they have those particular values?”) I ventured into some of the fundamentals 
of radiation resistance, but I also kept coming back to the fact that the world of RF electronics seems 
to revolve around those two standard impedances for co-axial cables: 50 Ω and 75 Ω.  Surely, this 
deserved a clear, complete explanation if, indeed, that were possible. 

Additionally, interest is gathering in the topic of power ratios for television switch over.  Whilst it had 
been thought that each analogue transmission would be replaced by a DTT transmission at a relative 
power of -10 dB, or perhaps -7 dB (DTT mean power relative to PAL-VSB peak-sync power, per 
transmission), in some cases now the idea of -4 dB is being mooted in an effort to overcome 
difficulties in international co-ordination.  Even at -7 dB, concerns have been expressed about the 
capacity of existing co-axial feeders and other components, especially in the case of the 200 or so 
stations that will transmit 3 commercial DTT multiplexes as well as the 3 public-service ones where 
presently they carry the 4 national analogue services.  This White Paper may assist discussions on this 
topic by providing some of the background about power ratings of co-axial cables. 

Although none of what I will present is original, I aim to ‘dust off’ the theory and add some value by 
delving a little deeper than the authors of the well-known text books could justify, perhaps even in 
some dark corners where the sun rarely shines! 

2. Electric field strength 
A thin straight wire of infinite length carrying a charge per unit length ρL is surrounded by a radial 
electric field of strength Er at a radius r given by [5]: 

 
εr

E L
r π2

ρ
=  

… where ε is the permittivity of the dielectric medium surrounding the wire.  Generally ε = ε0 εr 
where ε0 is the permittivity of space (8.85 pFm-1) and εr is the dimensionless relative permittivity 
of the medium (also known as the dielectric constant); εr = 1.0006 for air which I’ll take to be unity.  
This expression is derived from Coulomb’s Law, which was originally found by experiment. 

Because the field strength decays radially, there is a potential difference between any two points at 
different distances a and b from the wire: 
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But there is no potential difference between any two points the same distance away so equipotential 
surfaces surround the wire in the form of co-axial cylinders.  A cylindrical conductor can be inserted 
along an equipotential surface without necessarily distorting the electric field (it might just reduce its 
strength to zero on one side!), and if the electric field is developed between a co-axial pair of cylinders 
the result has the form of a co-axial transmission line. 

If the radius of the outer surface of the inner conductor is a, the radius of the inner 
surface of the outer conductor is b, and a voltage V (shorthand for a potential 
difference, ∆V) is applied between the conductors: 

 
a
b

ε
V L ln

π2
ρ

=   so  
ab
εV

L ln
π2=ρ   and then  

abr
V

Er /ln
=  

The field strength is greatest where r has its smallest value, immediately adjacent 
to the outer surface of the inner conductor where r = a and: 

 
aba

V
Ea /ln

=  

When dealing with co-axial cables, two important parameters are the ratio of the radii, b/a for which 
I’ll use the symbol ψ hereafter, and the diameter of the outer conducting surface which I’ll denote as 
D = 2b, so a = D/2ψ and: 
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If D is held constant and ψ is varied over the most-practical range 1.05 ≤ ψ ≤ 10, the value of this 
expression will vary from 0.023D to 0.12D via a range of larger numbers such as 0.16D at ψ = 5 so it 
must pass through a maximum.  At this point, the differential of the expression with respect to ψ will 
be zero. 
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The differential is equal to zero when lnψ = 1 so ψ = e = 2.718.  Then for a given maximum strength of 
the electric field in the co-axial line Ea, for example that which would lead to breakdown of the 
dielectric between the conductors, the greatest voltage can be tolerated when the ratio of the radii or 
diameters of the conducting surfaces is equal to e.  With that condition, V = EaD/2e so the absolute 
value of the maximum voltage is proportional to the diameter of the line, or Ea = 2Ve/D so the 
absolute field strength is reduced when the diameter of the transmission line is increased, both of 
which are fairly obvious. 

Of course, this treatment has considered the electrostatic case but there is no reason for the field 
configuration to be appreciably different if an alternating voltage were applied, as long as all radial 
dimensions are kept much smaller than the wavelength, so the result should be equally applicable to 
the (AC) transmission-line case. 

3. Transmission lines 
However, the big difference between the two cases is in the dynamics of the latter: the flow of power 
through a transmission line, along with the attendant current, characteristic impedance (ratio of 
voltage to current), attenuation, velocity and dispersion.  The fundamental theory behind the 
operation of transmission lines is covered to different extents in many of the well-known text books 
(e.g. [6]) so I will recap it only briefly here. 

A transmission line is used to connect an AC generator to a load and it is an observed fact that 
propagation of power through a transmission line, as through any other medium, has a finite velocity 
so it is subjected to a time delay, from one end of the line to the other.  In the simplest case of a 
generator producing a voltage that alternates sinusoidally, the variation of voltage in the line with 
distance away from the generator (or delay time) follows a sinusoidal wave that travels along the line 
in the direction of power flow.  I will illustrate this in a moment. 

a 

b 

D 
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Equally, the variation of current in the line can be represented by a travelling wave, as can the 
instantaneous power (product of voltage and current).  These waves travel at a velocity v (metre s-1) 
whilst the alternating frequency is ω (radian s-1) so the wavelength in the line is given by λ = 2π v/ω 
(metre).  Any more-complicated waveform can be decomposed into sinusoids of different frequencies. 

It is useful to define β = ω/v = 2π/λ (radian metre-1), the so-called ‘propagation phase constant’, 
sometimes referred to as the ‘wave number’ and given the symbol ‘k’.  This signifies the amount of 
phase excursion with distance down the line giving the phase retardation β x (relative to the phase of 
the generator) at any chosen point a distance x from the end to which the generator is connected. 

The simplest form of transmission line consists of two conductors separated from one another so the 
line exhibits series inductance and shunt capacitance.  The simplest case to analyse is a lossless 
uniform line of infinite length; then the inductance and capacitance can be quantified as distributed 
constants, that is L (Hm-1) and C (Fm-1) fundamentally, although smaller units would apply in practice 
such as nHm-1 and pFm-1, as will be seen.  Since the line is uniform along its length, there’s no reason 
for the dynamics of power flow to be different from one point to another so the length of the line can 
be subdivided into many small sections and the analysis of one section should be applicable to the 
whole line by considering a cascade of such small sections.  Taken to the limit, where each section has 
infinitesimal length (or, at least, length much smaller than λ), the section can be analysed using 
lumped circuit elements. 

Considering an infinitesimal length of the line, dx, a distance x (metre) from the generator end, 
possessing an inductance L dx and a capacitance C dx, and arranging these as a diagonally-inverted ‘L’ 
circuit excited by a sinusoidal wave of voltage V(x): 

• the current I(x) passing through the inductance gives rise to 
a voltage drop dV(x) between the input and output 
terminals of this section of line, on account of the inductive 
reactance, where dV(x) = jω L I(x)dx; 

• and the voltage developed across the capacitance 
(V(x) - dV(x)) causes a current to flow through it so, 
compared to the input current, the output current is 
reduced by dI(x) = jω Cdx (V(x) - dV(x)) = jω C V(x)dx neglecting 
the vanishingly-small term containing dxdV(x). 

So: (x)
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These are sometimes referred to as the ‘telegraph equations’ or the ‘telegraphers’ equations’ though I 
don’t suppose the average 19th-century telegrapher cared much about the theory.  The right-hand 
sides are sometimes given with minus signs but I’ve used the convention normally applied when 
using Ohm’s law in a circuit: V = IR with the direction of positive V opposite that of positive I 
everywhere other than at the generator terminals. 

Differentiating each of these, in turn, and inserting the other: 
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… and these are known as the transmission-line wave equations for V(x) and I(x). 

A solution to the wave equation for V(x) is found in the form V = e γx because then: 

 Ve
x
V x 22
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  and  ( ) 022 =+ VLCωγ   so  022 =+ LCωγ  

The roots of this are LCωγ j±=  so V(x) can be written as ( )
xx
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… where K1 and K2 are constants with respect to x, although they may vary with respect to time. 
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V(0) = K1 + K2 so together they represent the instantaneous voltage on the line at x = 0 and they can be 
written as sinusoids* with respect to time: K1 = V1e

 j
 
ω

 

t and K2 = V2e
 j

 
ω

 
t where V1 and V2 are constants. 

γ is known as the ‘propagation constant’ which, in general, is complex having real and imaginary 
parts:  γ = α + jβ, where α is the ‘attenuation constant’ (a voltage ratio expressed in neper m-1, which I’ll 
explain later) and β the ‘phase constant’ (radian m-1), as before.  For the present, lossless, case α = 0 
and LCωβ =  so, inserting β and substituting for K1 and K2 we obtain: 

 ( )
( ) ( )xxxx

x eeeeeeV βωβωβωβω −+− +=+= tttt jjjjjj VVVV 2121  

The second term V2e
 j
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x) represents a wave for which passage along the line away from the 
generator (increasing x) tends to counteract the passage of time (increasing t) so it is a wave travelling 
in the forward, positive x direction; generator to load.  Dividing through by β, the term can be written 
V2e

 jβ{(ω/β)
 
t

 

-
 

x}.  Then if the exponent is set equal to some constant, (ω/β) t - x = K, the differential of this 
equation with respect to time is ω/β - dx/dt = 0 so dx/dt = ω/β = v, the velocity of the travelling wave 
as noted earlier. 

The first term V1e
 j

 
(ω

 
t+β

 

x) represents a wave travelling in the opposite direction, from the load back to 
the generator.  This is said to carry power reflected by the load on account of any mismatch between 
its impedance and the characteristic impedance of the line.  In the absence of any anisotropic material, 
the transmission line must physically allow waves to travel in both directions, and mathematically the 
possibility of this only arises because of the sign ambiguity of the square root.  But I still find it 
remarkable that simple theory like this, with a token effort at maintaining generality, predicts 
something rather beyond what we modelled by placing a generator at one end.  For the remainder of 
this document I will concentrate on the forward wave. 

A solution of the same form can be found for the current wave equation. 

4. Characteristic impedance 
The ratio V(x)/I(x) for a single wave is known as the ‘characteristic impedance’ of the line: 
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The principle of cascading any number of small sections of 
uniform line can now be demonstrated by calculating the 
impedance Zi presented by a single inverted-‘L’ section, 
representing an infinitesimal section of the line, terminated in 
an impedance of Z0, as illustrated to the right.  To simplify the 
working I have written L and C instead of L dx and C dx: 
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… but L and C are very small so their product, or the square of one of them, would be vanishingly 
small (remember, they’re really L dx and C dx) and such terms can be omitted, leaving: 

 CZLZZ 2
00 ωω jj −+=i   but  CLZ =2

0   so  LLZZ ωω jj −+= 0i  

… and Zi = Z0.  QED. 
                                                      
* The exponential form e 

jωt = cosωt + j sinωt is more convenient here than the trigonometric sin or cos.  Either the 
real or imaginary part of e jωt can be used to represent a voltage varying sinusoidally with respect to time, and 
the phase discrepancy is unimportant in this case, but it probably helps to treat K1 and K2 consistently. 

L 

C Z0 Zi 
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Of course, a lumped-element inverted-‘L’ section made from components having finite, rather than 
infinitesimal, values would behave as a low-pass filter with a cut-off frequency, and a resonance, at 

LC1=ω .  In practice, losses would prevent the resonance from having an infinite effect, that is, the 
Q-factor would be limited.  But for a uniform transmission line, having uniformly distributed 
inductance and capacitance, no part of the line has greater significance than any other and the cut-off 
frequency of the cascade of infinitesimal sections is at infinite frequency.  There is, however, another 
cut-off frequency that matters, related to waveguide propagation, which I will describe later. 

Capacitance is the ratio of charge to voltage, C = Q/V and the capacitance per unit length of a co-axial 
line C = ρL/V, where ρL is the charge per unit length as before, so: 

 
ψln

2 ε
C

π=  

The self-inductance L of some system of conductors connected in a circuit is defined as the ratio of the 
total magnetic flux linkage (linking with these conductors) to the current I flowing through them. 
The flux density Br at a radius r from a long straight conductor is given by [7]: 

 
r2

μI
π

=rB  

… where µ is the permeability of the medium surrounding the conductor.  Generally, µ = µ0 µr where 
µ0 is the permeability of space (400π or 1260 nHm-1, by definition) and µr is the dimensionless relative 
permeability of the medium.  This expression is derived from the Biot-Savart law, also initially found 
by experiment, and indicates constant flux density at a given radius with no dependence on the 
radius of the conductor (other than that it must be less than r, as will be seen in a moment). 

Considering a circular path of some radius R centred on the conductor and an infinitesimal element of 
length dℓ around this path, the integral of B around this path, that is the line integral of B (signified by 
a circle on the integral symbol) is given by: 

 ∫∫∫ == lll d
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dd
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The total path length is 2πR so: μI=∫ ld.B  

This is a variation on Ampère’s circuital law which equates the line integral of the magnetic field for 
any shape of closed path to the current I enclosed.  More generally, dℓ would need to be represented 
by a vector because it has direction as well as (infinitesimal) magnitude, but in this case the circular 
symmetry and the uniformity of B around the integration path allows the use of scalars. 

Applying this to a uniform hollow cylindrical conductor, if the radius of the path of integration is 
made smaller than the radius of the inner surface of this conductor then no current is enclosed so the 
line integral of the magnetic field must be zero in the space inside the conductor.  This means either 
that the magnetic field must have zero magnitude or that it is arranged with positive and negative 
cycles around the path that cancel in the integration.  For the circularly symmetric case in hand, the 
former is far more likely! 

Thus the magnetic field, or flux density, between the conductors of a co-axial transmission line is 
approximately the same as would be found surrounding the inner conductor alone.  The 
approximation is on account of the magnetic properties of the outer conductor but commonly-used 
materials like copper and aluminium have no substantial magnetic properties and, consequently, 
values of µr very close to unity. 

The total flux linkage Λ, per unit length of line, is given by the integral of Br over a ≤ r ≤ b: 
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The classical interpretation is the ‘number of lines of force … outside the wire which will collapse 
upon the wire when the current ceases’ [8].  Actually, ‘lines of force’ can be considered a misnomer 
because their arrangement is rings around the conductor and the force between two such conductors 
would be directed perpendicularly to these rings.  Perhaps contours of equal force is a better 
description, like equipotentials in the electrostatic case. 

Then the inductance per unit length of the line is: 

 ψln
π2
μ

I
=Λ=L   or  

μ2π
lnψ=L  

Substituting the expressions for L and C in a co-axial line into that for Z0 for a simple, lossless, line: 

 ψln
π εC

L
Z

μ
2

1
0 ==  

Inserting values: µ = µ0  µr with µr = 1, typical of most materials that would be used as dielectric 
separators in co-axial lines, and ε = ε0 εr with ε0 = 8.85 pFm-1: 

 ψ
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Z =  

It then follows that Z0 = 60/√εr ohms to minimise the electric field strength in a co-axial line so, for a 
given dielectric strength, this characteristic impedance will allow the maximum alternating voltage 
between the conductors. 

5. Maximum power handling on account of dielectric breakdown 
However, the power P flowing through a transmission line is related to the peak (sinusoidal) voltage 
V across it by P = V 2/2Z0 and the presence of Z0 in the denominator means maximum power will 
coincide with a different value of Z0 (in the same way that the peak torque and peak power of an 
engine occur at different RPM because power = torque × RPM). 

 
ψ
ψln

2
⋅= D

EV a   so  
( )

0
2

22

0 8

lnln

22

1

Z

DED
E

Z
P a

a
ψ

ψ
ψ
ψ =⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅=  

Inserting the expression for Z0 in a lossless line: 
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So, for a tolerable maximum field strength Ea, the maximum power is dependent on this different 
function of ψ.  If D is held constant and ψ varied over the range 1.05 ≤ ψ ≤ 10 again, the value of the 
variable part of this function will vary from 0.04 to 0.02 via larger numbers such as 0.06 at ψ = 5 so it 
must pass through a maximum which, as before, can be found by differentiating. 
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… so, equating the result to zero, 1 – 2lnψ = 0 so lnψ = 1/2 and ψ = √ e = 1.649.  Thus it follows that, for 
some particular maximum field strength, the maximum power can be carried by a co-axial line when 
its ψ = 1.649 or Z0 = 30/√εr ohms. 

Then P = Ea
2

 0.00208D
2√εr so the absolute value of the maximum power increases with the square of 

the diameter of the co-axial cable as well as the square of the tolerable maximum field strength.  
Exceeding this maximum power would cause the dielectric strength of the medium between the 
conductors to be exceeded, leading to some kind of breakdown and a transient current path shunting 
the transmission line.  This would probably give rise to a transient high VSWR which should ‘trip’ the 
transmitter feeding power into the line but, of course, this should never happen during normal 
operation.  It is sometimes written that air-spaced lines can recover from ‘flashover’ but a 
high-current DC arc can cause migration of metal atoms between conductors (a kind of 
‘electro-plating’ action) creating ‘high spots’ where the field strength could be even greater thereafter 
– I wonder if this happens with a UHF AC arc. 
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Dielectric breakdown is one of the two failure mechanisms that limit the maximum power that can be 
carried by a transmission line; the other is overheating on account of loss in the line.  Obviously, 
failure on account of flash over will take a lot less time to act than overheating so, depending on the 
relative magnitudes of the two power limits, there is scope for the former and latter to apply to the 
short-duration-peak and mean powers, respectively, of a signal that changes in amplitude with time, 
like an RF television signal. 

The next step is to calculate the loss in the transmission line but I will limit the treatment to the 
electrical characteristics; for consideration of the thermal characteristics I will make reference to a 
practical example later on. 

6. Dealing with square roots by binomial expansion 
However, before we go there I need to discuss briefly an arithmetic technique I will rely upon.  As is 
becoming apparent, the topic of transmission lines is riddled with functions involving square roots 
and some conversion or approximation is needed if these are to be manipulated analytically. 
A common technique is to expand the square root into a series and then to truncate the series to the 
first two or three terms.  Using a binomial series, in particular the Taylor series [9]: 
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… where (-n)k represents the ‘falling factorial’, the effect of which can be seen from the expansion. 

Putting n = ½ for a square root and substituting u = 1 + y, so y = u – 1: 
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These are very convenient for turning a square root into something more manageable but the two 
term expansion is equivalent to representing a curve by a straight line from the origin and relies on 
the function inside the root having a small value, often given as <1.  Where I will need to apply these, 
unfortunately, the function will always have a value ≥1 so the degree of approximation will be 
significant for some values of the function. 

In practice, u is a polynomial with a constant term a as well as terms in bx and cx2 so taking the first 
three terms of the expansion yields: 

 √u = 1 + ½(a – 1 + bx + cx2) - ⅛(a - 1 + bx + cx2)2 

 = ½ + ½a + ½bx + ½cx2 
      - ⅛(a2 - a + abx + acx2 - a + 1 - bx - cx2 + abx – bx + b2x2 + bcx3 + acx2 - cx2 + bcx3 + c2x4) 

 = ½ - ⅛ + ½a + ⅛a + ⅛a - ⅛a2 + ½bx + ⅛bx - ⅛abx - ⅛abx + ⅛bx 
+ ½cx2 + ⅛cx2 - ⅛acx2 - ⅛acx2 - ⅛b2x2 + ⅛cx2 - ⅛ bcx3 - ⅛bcx3 - ⅛c2x4 

 = ⅜ + ¾a - ⅛a2 + ⅝bx - ¼abx + ⅛bx + ⅝cx2 - ¼acx2 - ⅛b2x2 + ⅛cx2 - ¼ bcx3 - ⅛c2x4 

… so, neglecting terms in x2 and above: 

 √u = ⅜ + ¾a - ⅛a2 + ¾bx - ¼abx 

On the other hand, if only the first two terms of the expansion are taken and terms in x2 and above are 
discarded: 

 √u = 1 + ½(a – 1 + bx + cx2) 

 = ½ + ½a + ½bx 

… which is rather different.  Evidently, taking only the first two terms of the expansion can be a 
significant approximation.  Indeed, taking any number of terms without comparing the outcome with 
a longer series introduces an approximation of unknown proportions! 
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7. Loss 
The loss per unit length of a co-axial transmission line has 
two components: resistive loss in the surfaces of the 
conductors (increased by the ‘skin depth’ phenomenon); 
and dielectric loss in the medium between the conductors.  
These types of loss have the effect of introducing real, 
dissipative terms, R in series with the series inductance L, 
and G in parallel with the shunt capacitance C, respectively, 
which would be otherwise be purely reactive in a lossless 
line. 

The full expression for the characteristic impedance of a transmission line in the presence of loss 
becomes: 

 
CG

LR
Z

ω
ω

j
j

+
+

=0   ohms 

… where R is the series loss resistance per unit length (Ωm-1), G is the shunt loss conductance per unit 
length (siemens m-1), and ω is the angular frequency (radian s-1) so, generally, Z0 is complex. 

When R and G are small (but still significant), Kraus tells us [10] this can be approximated as follows. 
I found a way to do this by re-arranging the expression, applying the binomial expansion and taking 
the first two terms: 

 
( ) ( )

⎥
⎦

⎤
⎢
⎣

⎡

+
−

+≈
+
+

=
CG
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C
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CG
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L

Z
ω

ωω
ω
ω

jj
j 22

10  

… and then neglecting the G/ωC term in the denominator (… what a liberty, but little more so than 
the expansion, and it would most likely be small): 

 
⎥
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⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+≈
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C
G

C
L

Z
ωω 22

10 j  

Of course, Kraus might have used some other expansion that obscures the blatant omission. 

If G/C = R/L, which is known as Heaviside’s condition for a distortionless line, then CLZ =0  once 

again, which is purely real.  One might imagine that trying to use a transmission line which imposes 
its own complex characteristic impedance on whatever it is connecting could make matching 
something of a hit-and-miss affair if, indeed, possible! 

In this context, ‘distortionless’ appears to refer to an absence of dispersion in the transmission line, 
that is, variation of the velocity of propagation with frequency, which causes linear distortion.  
Different parts of a signal sent down the line simultaneously can arrive at different times and this 
effect tends to limit the maximum usable bandwidth.  Oliver Heaviside’s pioneering work on 
transmission lines in the 1880s [11] was directed initially towards improving telegraphy, where the 
shapes of on/off pulses must have become distorted when subjected to the significant dispersion of 
long transmission lines (i.e. pairs of telegraph wires).  Later, he turned his attention to telephony and, 
particularly, to the new undersea cables.  Heaviside is noted for first suggesting the addition of 
lumped inductors to a long transmission line, connected in series at intervals along its length to 
increase the distributed inductance (L) in order to counteract excessive distributed series resistance 
(R).  His name is also associated with the step function that occurs at the beginning and end of each 
(dot or dash) symbol in simple telegraphy, and a layer in the ionosphere. 

In a lossless line G = R = 0 and CLZ =0 again, but this also applies if the losses are not zero but 

ωL » R and ωC » G, which is most likely in practice, and which certainly suits the above 
approximation. 

The propagation constant from Section 3 becomes: 

 ( )( )CGLR ωωβαγ jjj ++=+=  

… where α and β are defined as before.  Clearly from this expression, the significance of some 
absolute value of R or G depends on its size relative to L or C. 

Ldx 
Cdx 

Rdx 

Gdx 
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The forward wave defined in Section 3 for the lossless case becomes V2e 
–

 
α

 

x
e j

 
(ω

 
t–β

 

x) which is 
attenuated exponentially with increasing distance x from the generator.  The simplest way to express 
this attenuation is to use the unit neper m-1.  1 neper corresponds to a voltage ratio of 1/e so a voltage 
ratio of α neper m-1 corresponds to the factor e 

–
 
α

 . 

Generally a voltage ratio v1/v2 can be expressed as n = ln(v1/v2) neper, whereas in decibels it is 
20log10(v1/v2) so α can be converted to decibels per metre by taking 20log10 e

α
 . 

Rearranging the expression for γ and taking the first two terms of the binomial expansion again: 

 ⎥
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⎡
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If ωL » R and ωC » G, again, a useful substitution is: 

 
LC

RG
C

G
L

R
C

G
L

R
2
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ωωωωω
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2

2

1
⎟
⎠
⎞

⎜
⎝
⎛ −−≈

C
G

L
R

LC
RG  

Then: 
⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟
⎠
⎞

⎜
⎝
⎛ −+⎟

⎠
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⎜
⎝
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… so ⎟
⎠
⎞

⎜
⎝
⎛ +≈=

C
G

L
RLC

2
Re γα  and if Heaviside’s condition is met, G/C = R/L so LC=α . 

In any case, multiplying through: 

 ⎟
⎟

⎠

⎞

⎜
⎜

⎝

⎛
+= CLG

CL

R
2

1α  and substituting CLZ =0  gives ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+≈ 0

02

1
GZ

Z
Rα  

… so α = 0 for a lossless line (R = G = 0).  Hereafter, I’ll assume it’s understood that this last expression 
is an approximation for α and I won’t keep using the ‘almost equals’ sign, but it’s probably close 
enough for the present context. 

Again, if Heaviside’s condition is met, G = RC/L = R/Z0
2 and ⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+=

002

1

Z
R

Z
Rα  

… so there would be equal contributions of loss from the series conductor resistance and the shunt 
dielectric conductance.  This can be used as a test of whether or not Heaviside’s condition is met. 

I should note that some distinguished authors (e.g. [12]) say Heaviside’s condition relates not to 
dispersion but to the attenuation constant α acquiring a frequency response on account of the 
condition not being met.  This doesn’t follow from the expressions above where ω cancels and later I 
will demonstrate the relation to dispersion.  Also, reading Heaviside’s own documentation [11] didn’t 
help me to clarify this so, I regret, I will have to leave this unresolved. 

7.1 Series conductor loss 
For the moment, let’s consider only series loss resistance (i.e. G = 0), so α = R/2Z0.  In a co-axial cable 
there will be components of resistance from both conductors, Ra and Rb, (Ωm-1) which will appear in 
series.  The resistance R of a piece of material with a resistivity S (Ωm) and a simple shape, such as a 
cube, is given by R = Sℓ/A where ℓ (m) is the length of the current path through the piece of material 
and A (m2) is the uniform cross-sectional area of the shape transverse to the direction of current flow.  
In the present context, the shape is the conducting surface of each conductor, so a pair of a cylinders, 
in each case having a thickness dependent on the ‘skin effect’. 

The skin effect [13] is the manifestation of the depth of penetration of an electromagnetic wave into 
the surface of a conducting material.  In a transmission line, power is carried by an electromagnetic 
wave that propagates in the medium between the conductors.  To some extent, the wave penetrates 
the surfaces of the conductors giving rise to alternating currents in them, but the magnetic fields 
created by these currents force the currents to flow predominantly in the surfaces of the conductors, 
not throughout their volume. 
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The magnitude of the current decays exponentially from the surface into the volume of each 
conductor and this can be represented by an equivalent current of uniform magnitude throughout the 
skin depth, d where: 

 
μfπ
S

d =  

… where f is the frequency (Hz) and µ is the permeability (Hm-1) of the conducting material; µ = µ0 µr 
as before, where µ0 = 400π nHm-1 and µr ≈ 1 for most non-ferromagnetic metals like copper.  If it is 
assumed that both conductors of the co-axial line are made of the same material, which is frequently 
the case, the skin depth will be the same in them.  S = 17.5 nΩm-1 for copper so: 

 d = 2.11 µm at 1 GHz 
 6.66 µm at 100 MHz 
 21.1 µm at 10 MHz 
 66.6 µm at 1 MHz 
 0.21 mm at 100 kHz 
 0.66 mm at 10 kHz 

Evidently, the actual thickness of either conductor in a practical co-axial cable will only affect the 
current distribution at low frequencies. 

The cross-sectional area in which the current will flow in the inner conductor will be 
πa2 - π(a - d)2 = 2πad, and in the outer conductor it will be π(b + d)2 - πb2 = 2πbd.  Then, per unit length 
(i.e. ℓ = 1), Ra = S/2πad and Rb = S/2πbd.  The total resistance is given by: 

 
Dd

S
bad

S
RRR ba

ψ+⋅=⎟
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⎞

⎜
⎝
⎛ +=+= 111

2 ππ
 

Substituting the expression for d, assuming µr = 1 so µ = µ0 = 400π × 10-9: 

 
D

S
D

S
R

ψψ +×=+⋅= − 1
10400

1 9 f
f
π

μ0  

The ratio of the resistances is equal to the reciprocal of the ratio of the radii, Ra/Rb = b/a = ψ, and the 
power dissipated in each conductor will be proportional to its resistance so the fraction of the total 
power dissipated in the inner conductor Pa = b/(a + b) = 1/(1 + 1/ψ). 

Considering the attenuation constant, α: 

 
0

7

0

9

0

1
10

1

2

10400

2 DZ
S

DZ

S

Z
R ψψα +=+⋅

×
== −

−

f
f

  (neper m-1) 

… then substituting the expression that relates Z0 to the cable geometry for a lossless line, which 
amounts to a further approximation but no greater than the liberties already taken! 

 
ψ
ψε

ψ
ψε

α
ln

1
1027.5

ln

1

60
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7 +⋅×=+⋅= −

−
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D
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If D is held constant and ψ is varied over 1.05 ≤ ψ ≤ 10, the value of the variable part of this expression 
will vary from 42.01 to 4.78 via a range of smaller numbers such as 3.73 at ψ = 5 so it must pass 
through a minimum which, once again, can be found by equating the differential to zero. 

Omitting the constant multiplier DS rεf61027.5 −×  and using ⎟
⎠
⎞

⎜
⎝
⎛ −=

x
v

u
x
u

v
vv

u
x d

d
d
d

d
d

2

1 : 
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ln11ln
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1
22

=
+−
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⎦

⎤
⎢
⎣

⎡
+−+=

′

ψ
ψψψψ

ψ
ψψ

ψ
ψ

ψψ
α

d
d

d
d

d
d  

… so lnψ = 1 + 1/ψ. 
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The solution to this is found in the ‘Lambert W-function’ [14, also known by the names ‘ProductLog’ 
and ‘Omega function’], W(x), which satisfies the relation lnW(x) = lnx – W(x).  Making the 
substitution ψ = 1/W(x) so lnψ = -lnW(x): 

 -lnW(x) = 1 + W(x) 

… but according to the relation: -lnW(x) = -ln(x) + W(x) 

… so: ln(x) = -1  and x = 1/e 

From the series expansion: 

 ( ) ( )
( ) ...
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… it appears that W(1/e) = 0.2784 although, when I calculated this with MS Excel, the fourth 
significant figure was still converging after 144 terms which reached the limit of large- and small-
number handling in Excel for my simple implementation of the series. 

So ψ = 3.591, and with this value (1 + ψ)/lnψ = 3.591 as well! 

It follows that for lowest conductor loss Z0 = 76.7/√εr ohms. 

Then DS rεα f61093.18 −×=  (neper m-1) so this component of loss is proportional to the reciprocal of 

the diameter of the transmission line and to the square-root of the frequency. 

In view of the proportionality of α to R it also follows that the proportion of the total conductor loss 
that can be attributed to the surface of the inner conductor is 1/(1 + 1/ψ) which, obviously, is always 
greater than ½ for realistic values of ψ. 

The working in Section 4 that led to an expression for the distributed inductance, and then to the 
characteristic impedance, was based on the tacit assumption that the skin depth was zero and the 
current was flowing in the facing surfaces of the co-axial conductors: the integral was performed over 
the range a ≤ r ≤ b.  At low frequencies, current flowing within the finite skin depth will increase the 
range of integration, potentially increasing the distributed inductance, so the characteristic impedance 
would be expected to rise as the frequency falls, to some small extent.  This effect doesn’t appear to be 
well documented but I did notice reference to it in an article [15] published by a manufacturer of 
co-axial cables.  This may be significant in high-power short-wave transmitting stations.  

7.2 Shunt dielectric loss 
Now, let’s consider only dielectric loss by putting R = 0 in:  

 ⎟⎟
⎠

⎞
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⎝

⎛
+≈ 0

02

1
GZ

Z
Rα  

… so α = GZ0/2 and it is more or less intuitive that any value of loss conductance would have greater 
effect when shunting a higher impedance line. 

Loss in a dielectric material implies that its relative permittivity is complex rather than being a purely 
real dimensionless number, and this is usually represented by the ‘loss tangent’ tan δ; the ratio of the 
imaginary to real parts of εr which is also known as the ‘power factor’: 

 
εω

σ
ε

δ =−=
Re

Im
tan

ε  

… where ε = ε0 εr as usual, and σ is the effective conductivity of the material.  For polythene at 
100 MHz, εr = 2.26 so ε = 20.0 pFm-1 and tan δ = 0.0002 so σ = 2.51 µsiemens m-1.  The dielectric 
properties of polythene appear to be more-or-less constant throughout the frequency range 
up to about 1 GHz and if tan δ remains constant, σ must be proportional to the frequency: 
σ = 2πfε0 εr tan δ = 55.61×10-12fεr tan δ. 
Incidentally, I avoided using the symbol δ to represent the skin depth although this appears 
customary in the well-known text books.  In this context, using δ for two different parameters both 
related to attenuation could easily provoke a muddle. 
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I should mention here that although it is convenient for calculation to represent dielectric loss by an 
effective conductivity, in most materials with good insulating properties that would be considered for 
use in a transmission line the actual mechanism for the loss is what is known as ‘dielectric hysteresis’ 
[16].  This appears to be poorly explained in the well-known text books on electromagnetics, even 
though the process has become almost as common as electric light (since the development of the 
microwave oven).  What is clear is that the applied electric field causes polarisation of atoms or 
molecules, distorting the configuration of their nuclei and the electron clouds around them, and this 
distortion changes in magnitude and direction in sympathy with the alternating field.  The 
relationship between the field strength and the degree of polarisation can be depicted by an ellipse – 
the latter always lags the former because there are moving parts (albeit very tiny ones, with lots of 
tiny masses that need to be accelerated and decelerated). 

Then somehow, a fraction of the energy in the resulting periodic atomic-scale vibration gets coupled 
into random, aperiodic agitation of adjacent atoms or molecules and this energy is irreversibly lost as 
heat.  It may not be obvious that some of the population of atoms or molecules vibrating in phase 
with each other should ‘bump’ into one another (things probably never touch on an atomic scale), 
although people on a dance floor moving to the same beat sometimes bump into one another – there 
may be some degree of randomness in their individual interpretations of the ideal dance sequence.  
At the atomic scale we’re led to believe all the electrons are spinning around their nuclei in 
probabilistic orbitals, so perhaps it follows that a proportion would collide. 

So dielectric loss converts electromagnetic energy to heat, which is lost from the transmission line by 
the usual mechanisms: conduction, convection and infra-red radiation.  In addition, there can be some 
degree of non-linearity in this process, rather like that encountered in magnetisation, hence the use of 
the name ‘hysteresis’.  We’re told that some materials exhibit appreciable retention of electrical 
polarisation from one part of the cycle to another; a short-term manifestation of the ‘electret’ 
principle.  Then, the relationship between the degree of polarisation and the field strength can be 
depicted by the well-known hysteresis curve (like a curved parallelogram), demonstrating substantial 
non-linearity and probably additional loss.  We’re also told of resonances, where the angular 
frequency of the applied field equals the angular frequency of the electrons in one of the orbitals, or a 
harmonic of it. 

Evidently, this is a substantial area of physics in its own right and perhaps the electromagnetics 
generalists can be excused for their light touch. 

The conductance G of a piece of material with a conductivity σ and a simple shape, such as a cube, is 
given by G = σA/ℓ, where A is the cross-sectional area of the shape, transverse to the direction of 
current flow, and ℓ is the length of the current path through the piece of material.  In the present 
context, the path of the effective current would follow the lines of electric force, radially out from the 
inner conductor to the outer one.  Then the cross-sectional area increases with radial distance r 
towards the outer conductor, like a wedge.  It seems reasonable to think of successive cylindrical 
shells surrounding the inner conductor, and one another, in order to find the result by integration, but 
the parameter that would add is the effective ‘resistance’ of the dielectric medium; the reciprocal of its 
effective conductance, 1/G = ℓ/σA. 

Per unit length of line A(r) = 2πr,  a ≤ r ≤ b and ℓ = dr, then: 
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2
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… so α is independent of the geometry of the transmission line and depends only on the 
characteristics of the dielectric material.  In keeping with the ‘conduction’ metaphor, it would follow 
that increasing the impedance of the line would create a longer current path through the lossy 
dielectric medium, reducing the conductance, so the product of G and Z0 would remain constant. 

Substituting for σ = 55.61×10-12
 f εr  tan δ: 

 α = 10.48×10-9
 f  tan δ √εr (neper m-1) 

… so the dielectric loss is proportional to the frequency. 
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7.3 Series and shunt losses together 
To complete the picture, we can now put together both types of loss in: 
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Inserting the expressions from the previous two sections: 
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… where rSk ε6
1 1027.5 −×=  and rk εδtan1048.10 9

2
−×= . 

Taking typical values for a co-axial cable that has both losses, for example one with copper 
conductors and solid polythene dielectric: S = 17.5×10-9 Ωm-1, εr = 2.26 and tan δ = 0.0002 so 
k1 = 1.048×10-9 and k2 = 3.151×10-12 in appropriate units (whatever they might be!). 

Polythene dielectric is generally used in order to make the cable flexible and the largest diameter I 
have seen listed [17] for a 50 Ω co-axial cable with solid polythene dielectric is D = 23.1 mm for RG-20 
cable which, apparently, has the modern designation M17/81-00002.  Apart from the obvious loss of 
flexibility, I will explain the electrical upper limit on D in the next section and how it is related to the 
maximum frequency at which a cable can operate. 

Incidentally, because of the presence of the logarithm in the expression relating the characteristic 
impedance to the geometry, it is impractical to obtain values of Z0 much greater than a few hundred 
ohms.  Even for an air-filled conducting tube the size of a London Underground tunnel 
(3.7 m diameter), a 1 mm diameter wire at the centre of would yield only Z0 = 493 Ω (my thanks to 
John Sykes of BBC World Service for this observation). 

Returning to RG-20 cable, taking D = 0.023 m and ψ = 3.50 that yields 50 Ω characteristic impedance 
for solid polythene dielectric: 

 α = 3.592k1 √ f /D + k2 f = 163.6×10-9√ f + 3.151×10-12
 f   (neper m-1) 

Inserting values over a range of frequencies: 

 at f = 1 GHz, α = 5.2×10-3 + 3.15×10-3 or 7.3 dB/100 m 

 at f = 100 MHz, α = 1.64×10-3 + 0.32×10-3 or 1.7 dB/100 m 

 at f = 10 MHz, α = 0.52×10-3 + 0.032×10-3  or 0.48 dB/100 m 

 at f = 1 MHz, α = 0.16×10-3 + 0.0032×10-3  or 0.14 dB/100 m 

 at f = 100 kHz, α = 0.052×10-3 + 0.00032×10-3  or 0.045 dB/100 m 

 at f = 10 kHz, α = 0.016×10-3 + 0.000032×10-3  or 0.014 dB/100 m 

.… where the first part of α represents the conductor loss and the second part the dielectric loss. 
The attenuation of RG-20 cable is given [17, Page 40] as 0.6 dB/100 feet at 100 MHz which 
corresponds to 1.97 dB/100 m; the value above (1.7 dB) is fairly close. 

From the expression for C given in Section 4, C = 2πε/lnψ, a value of 100.3 pF m-1 would be expected 
for polythene dielectric and ψ = 3.50.  However, for RG-20 and several other 50 Ω flexible co-axial 
cables the catalogue value is 101.1 pF m-1 implying a slightly different combination of εr and ψ.  
Perhaps this has something to do with the use of stranded conductors.  From the expression for 
Z0 given in Section 4 (for a lossless line), L = 250.8 nHm-1. 

Also, putting the above (calculated) attenuation values for RG-20 at 100 MHz (ω = 628.3×106 rad s-1) 
into the expression for α at the beginning of this section, R = 0.164 Ωm-1 and G = 12.8×10-6 Sm-1. 

Therefore ωL = 157.6 which is much larger than R, and ωC = 0.063 which is much larger than G, so the 
approximations in Section 7 are justified, as is the use of the lossless-line expression for Z0 a moment 
ago.  These inequalities still apply at lower frequencies, although at 10 kHz ωL is only about ten times 
the magnitude of R (because of the √ f relationship on account of skin depth). 
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This is all for the largest diameter flexible co-axial cable I could find but what about a more-common 
polythene-dielectric cable like the 5 mm (outside) diameter RG-58?  In this case D =  2.95×10-3 m 
and taking ψ = 3.50 again, α = 1.276×10-6√ f + 3.151×10-12f (neper m-1) so at 100 MHz, 
α = 12.8×10-3 + 0.32×10-3 or 11.4 dB/100 m.  In this case comparison with a catalogue value [17] is not 
so close; the typical value is given as 4.6 dB/100 feet which corresponds to 15.1 dB/100 m.  
Nevertheless, the derived values are R = 1.28 Ωm-1 and G = 12.8×10-6 Sm-1, while the values of C and 
L are the same as before, so the same conclusion would be reached. 

Below about 1 GHz, then, it can be concluded that conductor loss is consistently greater than 
dielectric loss – more so for smaller cable diameters.  This may be borne out in [17] where 
‘loss constants’ are listed, unfortunately without explanation or a unit (and I haven’t been able to find 
these in the, extensive, US military MIL-C-17 specification [18]).  The values given for RG-20 cable are 
0.052 and 0.00126 for resistive and dielectric loss, respectively, and if these are in consistent units they 
probably support this conclusion.  All the values given for other cables follow suit. 

At around 1 GHz, and above, the dielectric loss of RG-20 cable exceeds the conductor loss but then 
solid polythene dielectric would not be appropriate.  Solid PTFE is popular for microwave 
frequencies; its different εr = 2.1 will affect both components of loss equally and at 3 GHz its 
tan δ = 0.00015 is better than that of polythene (0.00031).  Inserting these values for a 50 Ω 
copper/PTFE cable (ψ = 3.353 in this case) with D = 5 mm, working at f = 3 GHz: 

 α = 0.04 + 0.007 (neper m-1) 

… which corresponds to about 0.4 dBm-1 (or 40 dB/100 m!). 

Thus it appears generally true that conductor loss is greater than dielectric loss in co-axial cables at 
frequencies below SHF and, because the dielectric loss is not affected by the geometry, the minimum 
combined loss occurs at the same value of ψ as the minimum conductor loss.  At SHF and above it 
appears that dielectric loss could become dominant but the relatively large absolute magnitude of the 
combined loss makes other, more-complicated, but lower-loss forms of transmission line preferable 
for long runs, such as waveguides. 

8. Phase constant, phase and group velocities, dispersion, velocity factor, waveguide modes 
Now returning to the imaginary part of the propagation constant expressed in Section 7; for a lossy 
transmission line, the propagation phase constant becomes: 
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… and if Heaviside’s condition is met, G/C = R/L so LCωβ = , which would also apply if the line 
were lossless. 

The velocity of propagation v through the transmission line is given by: 
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… which has a constant value of LC1  if Heaviside’s condition is met or the line is lossless.  
Otherwise the velocity depends on the frequency so the line exhibits dispersion.  From this 
expression, the velocity will be smaller than the non-dispersive case at low frequencies, tending 
towards LC1 as the frequency increases.  However, the presence of the squared frequency in the 
denominator suggests this mechanism for dispersion is significant only at low frequencies. 

Sometimes it is useful to distinguish [19] between the: 

• phase velocity vp which indicates how rapidly some particular point in an unchanging travelling 
wave travels (e.g. the positive-going zero crossing), defined as vp = ω/β as above; and the … 

• group velocity vg at which energy propagates; defined as vg = dω/dβ. 
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The latter is always smaller than the ‘speed of light’ c ≈ 300×106 ms-1 but in some circumstances, like 
waveguide propagation, the phase velocity can exceed c.  Unfortunately modulation travels at the 
same rate as energy, or changes in the presence, amplitude or phase of some wave that conveys 
energy, so communication remains resolutely sub-luminal!  In a dispersive medium different group 
velocities are found at different frequencies and the phase and group velocities may differ. 

For our transmission line, vp is as given before, whilst vg = dω/dβ.  For a uniform line, the group delay 
is the reciprocal dβ/dω, given by: 
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The term containing 1/ω2 represents the dispersion but I can’t properly account for why this appears 
to reduce the group delay at low frequencies, potentially making it negative, when the reduced 
velocity would suggest an increasing delay … time machine anyone? 

The only excuse I can offer is that group delay variation by this mechanism could be termed a 
‘second order’ effect, involving terms that are often omitted from text books because they are 
considered vanishingly small.  In combination with the degree of approximation I set out in Section 6, 
perhaps this absurdity is hardly surprising. 

Alternatively, avoiding the ‘useful substitution’ in Section 7: 
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… which is perhaps more believable in the context of delay, though not velocity. 

Also (whilst confessing!), although I’ve given the expression for β here with a ‘4’ in the denominator, 
an old book by Schelkunoff [20] gives this with an ‘8’ instead, and I strongly suspect Schelkunoff is 
correct although I haven’t managed to achieve ‘8’ by my own efforts.  Could he have done something 
clever with the third term of the expansion? 

When an electromagnetic wave of any frequency propagates in free space, its group and phase 
velocities are equal to the ‘speed of light’, 00εμc 1= .  The mode of propagation distant from the 

source is a pure TEM (Transverse Electro-Magnetic) wave, also known as a plane wave, in which 
uniform electric and magnetic fields are found in the plane transverse to the direction of propagation.  
Because the velocity is constant with changing frequency, free space is considered non-dispersive. 

The same TEM mode of propagation applies in any unbounded medium other than free space.  It is 
an observed fact that the velocity of propagation v is lower than c and the relative velocity 

rrv εµ1=c  which is equal to 1/√εr in a dielectric medium not possessing significant magnetic 

properties.  In the context of optics, √εr is known as the ‘refractive index’ or ‘index of refraction’. 
The lower the velocity, the shorter the wavelength at a given frequency: 
λ = v/f = c/f √ εr . 

This applies equally to a wave propagating along a co-axial transmission line so 
long as the radial dimensions are much smaller than λ.  The principal mode of 
propagation is a TEM wave with cylindrical geometry having a radial E-field 
between the inner and outer conductors, like the electrostatic geometry I described 
at the outset and illustrated to the right.  With larger relative dimensions, some of 
the power input to the line could be conveyed by waveguide modes travelling in 
the hollow tube that is the outer co-axial conductor.  Waveguide propagation is 
naturally highly dispersive – for a given ‘guide geometry, the phase and group velocities both depend 
on the wavelength in the medium that fills the ‘guide which depends on the frequency.  On the other 
hand, the TEM mode in air, in most common dielectric materials and normally in co-axial cables 
(apart from the small dispersion just described), is non-dispersive. 

When waveguides are used for communication purposes their dispersiveness is rarely an issue 
because the fractional bandwidth in use is usually small on account of the attendant high UHF or SHF 
centre frequency.  Group delay variation can be an issue in radar applications though. 

 

TEM 
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Because waveguide modes generally have different velocities of propagation from one another, and 
from a TEM wave, any mixture in a co-axial cable would correspond to multipath propagation which 
is generally to be avoided (viz delayed-image interference impairs analogue television and 
multipath-at-source can compromise the performance of DTT). 

Waveguide-mode propagation between co-axial cylindrical conductors separated by a dielectric 
medium is subject to a cut-off wavelength λC that depends on the radii of the conductors, the 
characteristics of the dielectric and the particular waveguide mode.  If the dielectric is air, when the 
air-wavelength λ0 = c/f is longer than λC the wave in the ‘guide is attenuated rather than transmitted.  
The attenuation constant in this case is given by [21]: 
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With some other dielectric medium, as before, these wavelengths would be divided by √εr.  Thus, to 
avoid significant power being carried in waveguide modes, co-axial cables are usually operated at 
frequencies for which λ0 exceeds λC by a significant ratio or, to put it another way, the dimensions of 
the cable are chosen to fulfil this condition at the highest working frequency. 

The TM01 co-axial waveguide mode would naturally couple efficiently from the co-axial TEM wave 
because it has a similar arrangement of (radial) electric and (perpendicular, axial) magnetic fields, and 
λC = 2.029(b - a)/√ εr for this mode [22].  However, the TE11 
mode, in which the distribution of the radial electric field has 
a peak at some particular ‘polarisation’, has the longest 
λC = 2.950(b + a)/√ εr (note the sum, rather than difference in 
this case) so it is usually considered the ‘dominant mode’ for 
this type of waveguide – it can carry power at frequencies 
for which all other modes are cut off.  I’ve sketched the 
arrangements of the E-field for these two modes to the right. 

For example, to achieve an attenuation of >20 dBm-1 for the TE11 mode in an air-dielectric cable 
operating at a maximum frequency of 1 GHz (α = 2.3 nepers m-1 and λ = 0.3 m), b + a < 100 mm which, 
taking into account the √ εr of a suitable dielectric, would easily be achieved for a flexible cable.  At a 
maximum frequency of 10 GHz, b + a < 10 mm, and so on (λC tends towards λ0 as they become « 1), 
which explains why co-axial cables for high microwave frequencies are usually made with small 
diameters.  However, this can impose a frequency limitation on high-power air-spaced cables which 
need large diameters in order to withstand high voltages and/or to constrain the conductor loss. 

Coupling of power from the TEM wave into the TE11 mode would most likely be caused where there 
was an irregularity in the shape of the outer conductor (e.g. a small dent or if it were squashed), or an 
asymmetry in the co-axial structure (e.g. displacement of the inner conductor).  Something has to 
establish the preferred orientation of the ‘polarised’ electric field. 

9. Summary and inferences 
The principal mode of propagation in a uniform co-axial cable, a radial TEM travelling wave, does not 
have an upper cut-off frequency. 

The greatest electric-field strength between the co-axial conductors occurs immediately adjacent to 
the outer surface of the inner conductor and this is minimised when Z0 = 60 ohms for an air-spaced 
line, generally when Z0 = 60/√εr ohms, and then Ea = 2Ve/D (e = 2.718) so the field strength is reduced 
when the diameter of the transmission line is increased. 

However, if the limiting factor is the electric-field strength, the greatest power can be carried by a 
co-axial cable when Z0 = 30 ohms for an air-spaced line, generally Z0 = 30/√εr ohms, and then 
P = Ea

2
 0.00208D 

2
 √εr so the maximum power increases with the square of the diameter of the co-axial 

cable as well as the square of the tolerable field strength. 

The smallest conductor loss is achieved when Z0 = 76.7 ohms for an air-spaced line, generally when 
Z0 = 76.7/√εr ohms, and then DS rεα f61093.18 −×=  (neper m-1) so this loss is reduced when the 

diameter of the transmission line is increased.  This loss, because of the skin depth, is proportional to 

TM01 TE11 
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the square-root of the frequency.  The skin depth in copper is measured in microns for radio 
frequencies down to about 1 MHz. 

The dielectric loss is dependent on the characteristics of the dielectric material between the 
conductors but not on the diameters of the conductors.  If tan δ for the dielectric material is constant 
with changing frequency, which is the case for polythene, this component of loss is proportional to 
the frequency: α = 10.48×10-9

 f tan δ√εr (neper m-1). 

For the example of a flexible co-axial cable with copper conductors and solid polythene dielectric 
(probably the most common combination for flexible cables) working at any frequency for which that 
construction would be appropriate, the conductor loss dominates the combined loss.  Dielectric loss 
can become comparable to conductor loss at SHF, and other dielectric materials are then used to 
provide smaller combined loss. 

Whilst in many cases Heaviside’s condition may not be met, in practice ωL » R and ωC » G so the 
imaginary part of the complex characteristic impedance is relatively small and doesn’t appear to 
present matching difficulties. 

Throughout its normal operating frequency range, a co-axial cable is non-dispersive and the velocity 
of propagation, relative to the speed of light, v/c = 1/√εr.  However, at particularly low frequencies it 
can exhibit dispersion although the magnitude of this effect is difficult to estimate by approximate 
theory ;o) 

Also, at high frequencies, where the outer conductor begins to behave as a hollow-tube waveguide, 
power can be conveyed by a highly-dispersive waveguide mode.  In order to suppress waveguide 
propagation, the diameter of the outer conducting surface must be smaller than the TE11 cut-off 
wavelength 101.7×106/f (metre) and preferably a small fraction of it (less than half). 

10. Practical examples 

10.1 Feeder at a high-power television transmitting station 
Presently (2005) the most powerful analogue television transmitting stations in the UK use air-spaced 
50 Ω co-axial cables of 6⅛” nominal diameter and typical specifications for such cable can be found in 
on-line catalogues such as [23].  In this case, for their ‘HCA618-50JT Heliflex’ cable, Z0 = 50 Ω and 
a = 33.5 mm.  The external diameter of the outer conductor is given as 162 mm whilst 6⅛” corresponds 
to 155.6 mm, so the 6⅛” must refer to the inside diameter of the outer conductor, D, and the difference 
must account for the thickness of this conductor. 

Although the dielectric is principally air, a plastic spiral spacer is used to keep the inner conductor in 
the centre and the ‘velocity’ is given as 97%, so the effective εr = 1.063.  From the formula for the 
characteristic impedance it then follows that ψ = 2.36 which would make D = 158.2 mm.  The 
resolution of this apparent discrepancy probably lies in the fact that both inner and outer conductors 
have a helical indentation which eases bending of the cable and, whilst ψ and Z0 are associated with 
average dimensions, some of the specifications are probably maximum or minimum dimensions 
(also, 6⅛” is probably only a nominal figure).  I will assume effective values of a = 33.0 mm and 
D = 155.8 mm. 

From the formula for the maximum power handling on account of dielectric breakdown, 
P = 8.038×10-6 Ea

2.   For clean dry air between large, perfectly flat conducing plates, Ea ≈ 3 kV/mm. 
In the case of this cable, the conductors are curved on account of being cylindrical and they have the 
helical indentations, the cable may be bent in some places to the specified [23] minimum bending 
radius, and the presence of the plastic spacer with greater εr than air will cause a local increase in the 
electric field strength.  All these factors contribute to a smaller safe value for Ea.  For the example 
cable, the specified peak power rating is 2.89 MW implying a maximum Ea ≈ 600 V/mm and a peak 
sinusoidal voltage of 17 kV, which is also the specified value.  Evidently, the manufacturer applies a 
5× safety factor to the maximum electric-field strength relative to flat plates. 

There are 18 television transmitting stations in the UK that radiate analogue television with an ERP of 
500 kW and above for each of the four national services.  Most of these have two co-axial feeders each 
connecting one of the two final combiners (adding the two BBC services to ITV and Channel 4) to half 
of the antenna system.  The power per-service in each feeder ranges up to about 25 kW so the total 
power in each feeder is up to about 100 kW.  It’s 40 kW per service at Crystal Palace, but four feeders 
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are used there feeding separate BBC and commercial television antennas, and the final combiner is 
the air!  Each of these powers is the so-called ‘peak sync.’ value; that is, the peak-envelope power 
during each sync. pulse, and the sync. pulses for the different services may coincide.  The analogue 
and digital (NICAM) sound carriers also add a little. 

For the example cable (which is undoubtedly typical, although this particular brand may not be used 
at these stations), at 100 kW there would be a substantial safety margin, about 29× in terms of 
maximum power on account of dielectric breakdown, which would need to accommodate any 
standing waves on the line, any imperfections in its geometry and any contamination of the air 
dielectric (it is filtered and dried before it is pumped in, by a device that resides in a room known 
affectionately as the ‘beer engine’). 

In the UK, each numbered channel in Band IV/V extends from 470 + 8 (channel number - 21) MHz to 
a frequency 8 MHz higher.  The analogue vision carrier is 1.25 MHz from the lower edge of the 
channel and a DTT signal is centred in the channel.  Channels 21 to 38 are known as Band IV and 
channels 39 to 68 are known as Band V.  Channel 36 has been used for airfield radar and for 
connecting VCRs to television receivers, and Channel 38 is reserved for radio astronomy – neither is 
used for television broadcasting at the moment. 

The highest-frequency channel used at the Durris station in Scotland, for example, for analogue 
television is Channel 32 which puts the vision carrier at 559.25 MHz.  The average-power specification 
for the example cable is 93.5 kW when operated at 600 MHz and this is most likely based on heating 
caused by conductor loss.  The loss is specified as 0.546 dB/100 m at 600 MHz and the analogue 
antennas at Durris are at an average height of 312 m up the mast so there would be some 1.7 dB loss if 
this particular cable were used.  If the average power input to the cable were 49 kW (i.e. roughly, all 
four services at black level) then about 16 kW would be dissipated in each of the two cables.  This 
might sound a lot, but at less than 50 W/metre and considering the wind speeds encountered at high 
altitudes, it may be barely enough to prevent ice forming on the feeders in the winter.  Incidentally, 
the actual average power of 49 kW is just over half the specified maximum 93.5 kW, and the 
likelihood of all four services going to black-level simultaneously is probably small nowadays.  Also, 
this indicates that for analogue television the power ratings of feeders are, quite rightly, based on the 
average transmitter power, not the short-duration peak power. 

The fraction of this power dissipated in the inner conductor Pa = 1/(1 + 1/ψ) = 70% of the total, that is 
about 11 kW and, somehow, all this heat gets to the outside.  The air inside the feeders is static at 
these high-power stations.  For the example cable, the spiral spacer is made from PTFE and the cable 
is rated for operation with an impressive maximum inner conductor temperature of 150° C! 

Since the instantaneous-peak power limitation for this cable is 2.89 MW while its average power 
handling is specified as 93.5 kW, it could be said that the cable has an inherent peak-to-mean ratio of 
about 14.9 dB (or 31×).  That is, it could operate just within specification when presented with an 
input signal of 93.5 kW average power having occasional peaks of short duration 14.9 dB greater in 
power. 

10.1.1 What this means in the context of television switch-over 
The COFDM generator can be likened to a ‘fruit machine’; a ‘one-arm bandit’.  The phases of the 
multiple carriers, from symbol-to-symbol, convey the bits that make up the data stream.  At the 
beginning of each new symbol, the handle is pulled down and the reels come up ACBA, or whatever 
(e.g. cherry, bar, dollar, cherry).  That is, the carriers are switched to phases represented by 
…ACBA…, all 1705 of them in the present ‘2k’ mode.  With the intended future 64QAM modulation 
scheme, the 64 possible constellation points correspond to 52 distinct phases (n = 64; m = n - 2√n + 4) 
and the carriers take on phases from this ‘alphabet’ more-or-less randomly from symbol to symbol.  
So, at the beginning of any new symbol, there’s a high probability that, say, 33 of the carriers will take 
on phase ‘A’, 33 of them phase ‘B’, etc., and with about 33 carriers or about 1.9% of them in each of the 
52 possible phase states this would correspond to an even distribution of carriers in phases.  The 
vector sum of all the carrier voltages would tend to zero and the power of the whole DTT signal 
would be the sum of the powers of the individual carriers, that is, 32 dB greater than the power of an 
individual carrier.  Of course, in the case of QAM there’s the added complication of different carrier 
amplitudes which I’ll neglect. 
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Occasionally and randomly, the distribution of phases will become less-evenly-balanced and, for 
example, if 200 carriers take on phase ‘A’ at the beginning of a new symbol, 9.8% more of the carriers 
will have that particular phase.  ‘Phase A’ could mean “increase from 0 + j0 to 1 + j1 in the first 
quarter cycle”, in which case the voltages of 200 carriers would be increasing, initially, in 
synchronism – so their voltages would add.  In time, the fact that these carriers have slightly different 
frequencies means their apparent synchronisation would collapse, but for the brief duration of their 
‘synchronism’ (a fraction of the 224 µs symbol period) the instantaneous power of the COFDM signal 
would be increased.  Since there are 1705 carriers, the power of the multi-carrier signal is, on average, 
about 32 dB greater than the power of an individual carrier.  In the unlikely event of all carriers taking 
on the same phase, their voltages would all add, briefly, making the signal power about 64 dB greater 
than the power of an individual carrier, so the ultimate peak-to-mean ratio of the present UK DTT 
signal is about 32 dB. 

However in practice, with the symbol duration and the strength of forward error-correction used, it is 
found that the peak-to-mean ratio can be clipped to 7 or 8 dB before causing appreciable loss of 
data integrity.  If this degree of clipping is applied at source and the bandwidth of the signal is 
preserved, the peak-to-mean ratio should not increase in the signal path. 

The same principle applies when several OFDM signals are combined (i.e. added arithmetically) and 
fed into a transmission line but in this case there is no clipping.  If there are 6 DTT signals of equal 
power, the peak-to-mean ratio of the combined signal can be as much as 7.8 dB (6×) greater than that 
of each one, so the peak-to-mean ratio of the combined signal can be as much as 16 dB. 

If the analogue television power per feeder is 25 kW (peak-sync.) per service and this is to be replaced 
by DTT transmissions, with no change to the transmitting antenna characteristics, each at -7 dB 
relative to that 25 kW then the average DTT power per transmission will be 5 kW.  In view of the 8 dB 
peak-to-mean ratio of the signal as generated, occasional brief peaks in each DTT signal will have 
8 dB greater power; that is, about 32 kW.  If 6 of these signals are to be combined, a worst case peak 
could reach 1.19 MW whilst the average power will be 30 kW.  Comparing these figures with the 
specifications of the example cable, there would be healthy safety factors of about 4.9 dB (or 3.1×) in 
respect of average power and 3.9 dB (or 2.4×) in respect of peak power – for the example cable, larger 
ratios than may be used at present for analogue television. 

Incidentally, by ‘average power’ I mean that which would be measured using a slowly-acting power 
meter based on an RF load coupled to a temperature transducer such as a thermistor.  Measuring the 
‘peak power’ would require some kind of SHF storage-oscilloscope, or a spectrum analyser with 
Fourier-transform processing. 

As long as the occasional peaks are brief and contribute little to the average power, there should be no 
need to specify the average-power rating of the cable to match the peak power, although from 
time-to-time suggestions have circulated in the industry that the voltage-handling capabilities of 
existing analogue antenna systems would only permit two conversions at -10 dB relative to the 
present analogue power.  Perhaps this is in respect of limitations in other components like combiners, 
power dividers or antenna elements. 

This gets rather more difficult when the plan is conversion at -4 dB meaning, for this example, an 
average DTT power per transmission of 10 kW and the sum of six at 60 kW.  With the combined 
signal having 16 dB peak-to-mean ratio, the worst-case peak power would be a whopping 2.4 MW 
which might require the next size up, 8” feeder and a lot more expenditure (e.g. mast strengthening as 
well).  The same manufacturer’s 8” feeder has a peak-power rating of 4 MW. 

It is interesting to consider how close these cables are to supporting waveguide modes.  If the 6⅛” 
cable has a = 33.0 mm and b = 77.9 mm, and the calculated effective εr = 1.063 also applies to 
waveguide propagation (which is likely), then at its highest specified frequency of 860 MHz the actual 
wavelength in the effective dielectric is 338 mm whereas the TE11 cut-off wavelength is 317 mm; 
a ratio of only 1.07×.  Putting these values into the expression given in Section 8, α = 0.0069 neper m-1 
corresponding to about 0.06 dBm-1 when considered as a power ratio.  However, for a high-power 
television transmitting station the overall length of each feeder can be expected to be 100 m or more, 
and 6 dB/100 m looks a bit more healthy!  It’s still not much attenuation though so, presumably, a 
great deal of care is needed to maintain symmetry when installing and terminating the cable to avoid 
the occurrence of ‘trapped modes’. 
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If the 8” cable has a = 44.2 mm and b = 104.4 mm and the same εr = 1.063, then at its lower maximum 
frequency of 650 MHz (Channel 43 in Band V) the actual wavelength in the effective dielectric is 
448 mm whereas the TE11 cut-off wavelength is 425 mm, so the ratio is an even smaller 1.05×.  The 
largest diameter offered by the example manufacturer is 9” cable (with 5.8 MW peak-power rating), 
for which the maximum frequency is given as 560 MHz (Channel 32 in Band IV). 

There is one further complication, concerning re-configuration of transmitting stations during 
maintenance work.  Analogue television transmitting stations can be operated at -6 dB ERP for short 
periods because of the relatively ‘graceful degradation’ characteristic of analogue VSB-PAL, and this 
allows half an entire high-power station to be switched off: all the power amplifiers that feed one of 
the final combiners that feeds one of the feeders that feeds one half of the antenna system†.  For DTT, 
reduced-power working in this way would inflict blank screens on many viewers so the ERP needs to 
be maintained or, at least, reduced by a smaller amount such as 3 dB.  Any plan to increase the power 
fed to one half of the antenna system would require even greater power ratings for the feeders but, for 
example, the Sutton Coldfield high-power station will need to use Channel 46 for DTT 
(a centre-frequency of 670 MHz) so it might not be possible simply to re-equip it with 8” feeder. 

The only practical solution, in some cases, means relenting about not changing the antenna 
characteristics and increasing the antenna gain by increasing the number of tiers of antenna elements, 
moderating the power rating required of the feeders and, perhaps more importantly, the amplifiers. 

10.2 Cables and interfaces for instrumentation 
The use of 50 Ω cables and interfaces is now more-or-less a worldwide standard for professional RF 
equipment and installations (apart from microwave-link and satellite-link IF sub-systems which, for 
some reason, are still manufactured with 75 Ω interfaces). 

The fact that 50 Ω is even used for feeders at high-power transmitting stations suggests the 
convenience of having all parts of a complicated system working at the same impedance outweighs 
the 50/30 = 1.7× increased power-handling benefit of using 30 Ω.  At least, it has so far! 

Some say [4] the choice of 50 Ω is on account of εr = 2.26 for polythene, and 76.7/√ 2.26 = 51 Ω which 
has been rounded down to a convenient number.  So Z0 = 50 Ω is close to the impedance for lowest 
loss in co-axial cables with solid polythene dielectric. 

Whilst this is eminently plausible, an alternative explanation is that this value was chosen before the 
days of polythene, for an air-spaced line.  The geometric mean of 30 Ω and 76.7 Ω is Z0 = 48 Ω, which 
has been rounded up to a convenient number.  This would mean the z/30 fractional increase of 
impedance in respect of the maximum power rating on account of dielectric breakdown (P ∝ 1/Z0) is 
balanced by the 76.7/z fractional decrease of impedance in respect of conductor loss (α ∝ 1/Z0): 

 z/30 = 76.7/z  so  48307.76 =×=z  ohms 

Some radically different choice such as 30 Ω would alter the ratio of ratings for maximum voltage 
(flash over) to maximum current (overheating) and would change the inherent peak-to-mean ratio of 
the cable.  Although the designers of transmitting stations in the 1930s would not have had to contend 
with OFDM, they certainly had AM and other single-carrier modulation schemes and were 
undoubtedly aware of dielectric breakdown coinciding with modulation-envelope peaks.  An AM 
modulation index of unity or 100% corresponds to a peak-to-mean envelope-voltage ratio of 2× or a 
peak-to-mean power ratio of 4×.  This is very small in comparison with the (31×) specification of the 
modern-day large-diameter air-spaced cable considered in Section 10.1 but the cables available then 
were probably considerably more primitive.  Other schemes like interrupted CW (for Morse code) 
could exhibit greater peak-to-mean ratios.  SSB was in use for cabled telephony by then, and 
trans-Atlantic radio telephony experiments were reported as early as 1925 [24], but SSB may not have 
been applied widely to professional radio until the 1950s. 

                                                      
† Actually this is a simplification.  The high-power television transmitting stations in the UK are generally 

arranged so that for each service the outputs of both power amplifiers are combined first.  The combined 
signal is then split and fed to the final combiners, feeders and antenna halves.  This overcomes the so-called 
‘Penge effect’ (named after a London suburb near Crystal Palace) whereby minima in the vertical radiation 
pattern of the complete array are affected by differences between the power amplifiers. 
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However, I have been unable to find a clear account from a believable source to confirm absolutely 
either of these possible origins. 

According to information on the worldwide-web, AT&T claim [25] to have invented co-axial cable in 
1929, although Wikipedia [26] has that it was patented in 1884 by Ernst Werner von Siemens, and one 
of Nikola Tesla’s patents from 1894 [27] clearly shows a co-axial line ‘to prevent loss by dissipation or 
interference by induction’ … ‘in any system of electrical transmission or distribution in which 
currents of excessively high potential are employed, and more particularly, when the frequency is 
high’.  AT&T made their first commercial use of co-axial cable in 1941, for long-distance 
telecommunications, and this was an air-spaced line with plastic beads to hold the inner conductor in 
place.  Polythene was invented by ICI in 1931 [28] and presumably exploited commercially several 
years later, while polystyrene was first produced commercially in 1937.  It will be seen in the next 
section that flexible co-axial cables were in use by 1937, but perhaps it was the large-scale production 
of radio and radar equipment in WWII that called for standardisation of interface impedances. 

10.3 Video cables and the MUSA 
Analogue and digital video cabling uses 75 Ω, generally with solid polythene dielectric.  The choice of 
impedance in this case is evidently not for lowest loss and might be related historically to the 
availability of MUSA plugs and sockets, designed in the 1930s, and the ideal counterpart for 
patch-bays to the ‘Post Office 316’ jack plugs and sockets that had already been widely adopted for 
radio broadcasting.  The PO316 (left) and MUSA (right) connectors are shown below. 

The MUSA, reported in 1937 [29], was a short-wave phased array of rhombic antennas for long-range 
communications reception which used miles of nitrogen-filled co-axial lines made from 1” copper 
plumbing pipe with a ¼” copper rod inner conductor, yielding 78 Ω impedance.  These led to a patch 
bay where different configurations could be selected using flexible co-axial jumper cables.  Matching 
was critically important in this complicated system and there is no mention of wideband transformers 
in the documentation so the MUSA connectors were most likely designed for 78 Ω although I recall 
the BBC internal stores catalogue used to state ‘Impedance: 40 to 80 Ω’!  Another oddity is that in the 
BBC in the late 1950s, MUSA plugs were referred to by the designation ‘PO No. 1’. 

Where BNC (Bayonet or Baby Neill and Concelman) connectors [30] are used for analogue video 
connections, it has been common practice [31] to use the 50 Ω version of the connectors (with 75 Ω 
cables) because they were believed to be slightly more rugged.  Folklore seems to abound about the 
diameters of the inner-conductor pins of 50 Ω and 75 Ω BNC plugs [32] but in my own experience I 
have always found them to be the same – it’s the greater ratio of air to PTFE in the 75 Ω BNC socket 
that gives it its higher characteristic impedance.  On the other hand, the pins of N and C plugs for 
these two impedances have greatly differing diameters. 
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Because an analogue video signal occupies a huge fractional bandwidth (25 Hz to 5 MHz covers the 
best part of 18 octaves), it is inevitable that co-axial lines any longer than a few metres require 
equalisation.  Over the history of analogue television the BBC has equipped itself with equaliser 
designs for all conceivable applications.  The frequency dependence of the loss is predominantly on 
account of the skin effect, for which α ∝ √ f, but this loss should tend towards a constant value 
(per metre) at very low frequencies as the skin depth exceeds the actual thickness of the conductors.  
For example, if the outer conductor were 0.5 mm thick copper the skin depth would reach this 
thickness at f = S/πµ0d  

2 = 17.8 kHz.  This appears not to have been taken into account explicitly, but 
the loss at such low frequencies is most likely relatively very small. 

General group-delay equalisation seems not to have been an acute problem in video cabling but many 
of the BBC equalisers had delay correction at the 4.43 MHz colour sub-carrier frequency where delay 
errors could have a disproportionate effect on the PAL system. 

If the choice had been made many years ago to use 50 Ω instead, perhaps if someone had conceived a 
50 Ω co-axial ‘jack plug’ and socket for another application, it probably wouldn’t have changed the 
course of television history.  It would have increased the output-current demand on amplifiers to 
drive co-axial lines, but it would have reduced the gain needed to recover signals from long lines.  
The conductor losses of 75 Ω and 50 Ω polythene-dielectric cables have a ratio of 1.12:1.  The most 
common cable used in the BBC for video installations is known as PSF1/3 [33] and this 75 Ω cable has 
a loss of 3.3 dB/100 m at 10 MHz.  A 50 Ω counterpart with the same outer-conductor diameter would 
exhibit a loss of about 2.9 dB/100 m. 

The choice of 75 Ω, as opposed to 50 Ω, for digital television interfaces (e.g. SDI) probably has little to 
do with physics and more to do with the ubiquity of 75 Ω hardware in the television industry. 

10.4 Domestic television antenna installations 
75 Ω polythene-foam-dielectric cable is common in the UK for terrestrial television antenna 
installations.  The foam dielectric provides characteristics similar to air, and the chosen impedance 
seems a reasonable compromise between 76.7 Ω for minimum loss and matching the 73 Ω terminal 
resistance of a λ/2 dipole.  Although Yagi-Uda antennas are used, almost without exception, 
nowadays, and this type of antenna can have any terminal impedance the designer chooses (or can 
manage!), 75 Ω has become the de facto standard.  This may be traceable to the widespread use of 
dipoles and simpler arrays for the original major UK roll-out of television in Band I in the early 1950s.  
We even have the bespoke ‘Belling Lee’ plugs and sockets which are sometimes advertised as having 
a nominal impedance of 75 Ω although, unlike professional connectors like the BNC, they are not 
designed for uniform characteristic impedance – they’re just small enough to do little damage in this 
less-critical application. 

Co-axial cable sold for domestic installations is designed to be relatively inexpensive and was often of 
poor quality with outer conductors made of loosely-woven wire strands, introducing additional loss 
on account of radiation and allowing ingress of interference.  However, the arrival of satellite 
broadcasting with L-Band interfaces between front-end and set-top box has necessarily made rather 
better cables available at domestic prices. 

Incidentally, at frequencies for which dielectric loss is smaller than conductor loss, the purpose of 
using foamed rather than solid polythene would appear to be to reduce the εr so as to increase the 
required diameter of the inner conductor in order to reduce its conductor loss – rather like the 
“vacuum cleaners don’t suck” argument! 

This is readily demonstrated using the expressions in Section 7.3 to compare the attenuation values 
for two 6 mm diameter cables at 600 MHz, one having solid polythene dielectric and the other air 
dielectric, and appropriate values of ψ to yield 75 Ω in each case (6.55 and 3.49, respectively). 

 α = 0.0172 + 0.00293 (neper m-1) for solid polythene 

 α = 0.0102 + 0 (neper m-1) for air 

… where the first and second terms in each case represent conductor loss and dielectric loss.  The 
reduction of conductor loss is more than twice the reduction of dielectric loss. 
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10.5 Computer networks 
Nowadays, most computer data networks use cables containing multiple un-screened 
(or ‘unshielded’ in the USA) twisted pairs, but co-axial cables were used in the early days.  Although 
50 Ω cable and interfaces were specified for the original 10 Mbs-1 IEEE 802.3 Ethernet (also known as 
10Base5), for one particular system ‘ARCnet’ (Attached Resource Computer Network [34]) the 
specified cable impedance was 93 Ω and a special RG-62A/U cable was manufactured for this 
application.  This scheme offered operating speeds approaching 20 Mbs-1.  I wonder what led the 
designers to choose that impedance. 

Although I’ve based the whole treatment in this document on excitation by a sinusoidally alternating 
source, it is of course possible to derive the whole lot by time-domain methods which would be 
more-directly applicable to signals in computer networks like this. 

11. Conclusions 
I have presented here some facts you may or may not have known about co-axial cables.  I have 
derived from fairly basic principles (not first principles but, perhaps, 1½th principles!) expressions for 
the minimum field strength, characteristic impedance, maximum power handling on account of 
dielectric breakdown, conductor loss and dielectric loss, and I have identified optimum values where 
they exist.  Where I haven’t tackled the full derivation, for instance in the case of waveguide 
propagation, I have offered some appropriate references. 

I expect I have uncovered the most likely physical reasons for the ubiquitous choices of 50 Ω and 75 Ω 
characteristic impedance, although the historical truth about the former still seems elusive.  I haven’t 
dealt in detail with dissipation of heat in connection with loss, or the fact that stranded wires are used 
for the conductors in most flexible co-axial cables, but I have demonstrated that co-ax has an inherent 
peak-to-mean ratio and I’ve illustrated what this might mean in the context of television switch over. 

I hope this White Paper proves useful to one or two. 

I wish to thank all those colleagues who have helped me in this endeavour by proof reading and 
checking the arithmetic, particularly Dave Darlington, Jonathan Stott, Peter Shelswell and Nick Wells. 
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