
Generation and Recognition of DTMF Signals with
the Microcontroller MSP430

Robert Siwy
Texas Instruments Deutschland GmbH

SLAAE16
October 1997



IMPORTANT NOTICE

Texas Instruments (TI) reserves the right to make changes to its products or to discontinue
any semiconductor product or service without notice, and advises its customers to obtain the
latest version of relevant information to verify, before placing orders, that the information
being relied on is current.
TI warrants performance of its semiconductor products and related software to the
specifications applicable at the time of sale in accordance with TI’s standard warranty.
Testing and other quality control techniques are utilized to the extent TI deems necessary to
support this warranty. Specific testing of all parameters of each device is not necessarily
performed, except those mandated by government requirements.
Certain applications using semiconductor products may involve potential risks of death,
personal injury, or severe property or environmental damage (“Critical Applications”).
TI SEMICONDUCTOR PRODUCTS ARE NOT DESIGNED, INTENDED, AUTHORIZED,
OR WARRANTED TO BE SUITABLE FOR USE IN LIFE-SUPPORT APPLICATIONS,
DEVICES OR SYSTEMS OR OTHER CRITICAL APPLICATIONS.
Inclusion of TI products in such applications is understood to be fully at the risk of the
customer. Use of TI products in such applications requires the written approval of an
appropriate TI officer. Questions concerning potential risk applications should be directed to
TI through a local SC sales office.
In order to minimize risks associated with the customer’s applications, adequate design and
operating safeguards should be provided by the customer to minimize inherent or procedural
hazards.
TI assumes no liability for applications assistance, customer product design, software
performance, or infringement of patents or services described herein. Nor does TI warrant or
represent that any license, either express or implied, is granted under any patent right,
copyright, mask work right, or other intellectual property right of TI covering or relating to
any combination, machine, or process in which such semiconductor products or services
might be or are used.

Copyright © 1982, 1997, Texas Instruments Incorporated



Contents part I

1 INTRODUCTION........................................................................................................................................5

2 THE SPECIFICATION OF DTMF SIGNALS ........................................................................................5

3 THE GENERATION OF DTMF SIGNALS.............................................................................................7

3.1 GENERATION FROM SQUARE-WAVE SIGNALS...............................................................................................7
3.2 SOFTWARE FOR THE GENERATION OF SQUARE-WAVE SIGNALS ....................................................................8

3.2.1 Generation of square-wave signals with 8-Bit and Timer Port timers ...........................................8
3.2.2 Generation of the square-wave signals with Timer_A ..................................................................14

3.3 HARDWARE FOR THE GENERATION OF DTMF SIGNALS.............................................................................18

4 MEASURED VALUES OF THE DTMF TRANSMITTER..................................................................23

5 SUMMARY................................................................................................................................................25

6 REFERENCES...........................................................................................................................................26

Contents part Il

1 INTRODUCTION......................................................................................................................................27

2 THE RECEPTION OF DTMF SIGNALS BY MEANS OF WAVE DIGITAL FILTERS................27

3 BASICS OF DIGITAL FILTERING.......................................................................................................27

3.1 THE PROPERTIES OF WAVE DIGITAL FILTERS ...........................................................................................28
3.2 THE STRUCTURE OF THE WAVE DIGITAL FILTER WHICH IS USED...............................................................28

4 REPRESENTATION OF NUMBERS AND ARITHMETIC................................................................30

5 DESIGN OF 8 WAVE DIGITAL FILTERS AND OPTIMIZATION OF THE COEFFICIENTS ..32

6 VERIFICATION OF THE FILTER DESIGNS WITH A MATHEMATICAL SIMULATION
PROGRAM..........................................................................................................................................................34

7 SOFTWARE FOR DIGITAL FILTER ALGORITHMS......................................................................36

8 SOFTWARE FOR THE RECOGNITION OF DTMF SIGNALS .......................................................38

9 HARDWARE FOR COUPLING IN SIGNALS .....................................................................................55

10 MEASUREMENTS AND RESULTS.......................................................................................................56

11 SUMMARY................................................................................................................................................57

12 REFERENCES...........................................................................................................................................58





Generation of DTMF Signals

- 5 -

1 Introduction

The first part of the Application Report describes the generation of DTMF signals using the
Microcontroller MSP430. Following an explanation of the most important specifications
which are involved, the theoretical and mathematical processes will be discussed with which
sinusoidal waveforms can be derived from square-wave signals, by making use of appropriate
analog filters. Tested examples of software for generating square-wave signals for various
timer configurations with the MSP430 are also provided. The chapter concludes with a
circuit for deriving DTMF signals from the square-wave signals which have been generated.

2 The specification of DTMF signals

The abbreviation DTMF stands for “Dual Tone Multi Frequency”, and is a method of
representing digits with tone frequencies, in order to transmit them over an analog
communications network, for example a telephone line. During development, care was taken
to make use of all frequencies in the voice band, in order to reduce the demands placed on the
transmission channel. In telephone networks, DTMF signals are used to encode dial trains
and other information. Although the method used until now to form dial trains from a
sequence of current pulses is still the standard in Germany, the transmission time is too long
and places an unnecessary loading on the network. In addition, many telecommunications
services are only available with the use of tone dialing.

For DTMF encoding, the digits 0-9 and the characters A-D, */E and #/F are represented as a
combination of two frequencies:

Frequenc
y

1209 Hz 1336 Hz 1477 Hz 1633 Hz

697 Hz 1 2 3 A
770 Hz 4 5 6 B
852 Hz 7 8 9 C
941 Hz */E 0 #/F D

With this system, the column is represented by a frequency from the upper frequency group
(Hi-Group: 1209-1633 Hz), and the line by a frequency from the lower frequency group (Lo-
Group: 697-941 Hz). The tone frequencies have been chosen such that harmonics are
avoided. No frequency is the multiple of another, and in no case does the sum or difference of
two frequencies result in another DTMF frequency.

For the generation of a dial train in the Deutsche Telekom network, the specifications which
follow must be met. These have been taken from the Zulassungsvorschrift des Bundesamtes
für Post und Telekommunikation, BAPT 223 ZV 5 [1] (Approval Specification of the Federal
Office for Post and Telecommunications).

• The deviation of the actual frequencies generated from the nominal frequency must be a
maximum of 1.8% during the dialling process

• The envelope of the dial train must conform to the waveform shown in Figure 1:



Generation of DTMF Signals

- 6 -

Figure 1: Timing of DTMF Characters

• The voltage levels must conform to the following values:

Dialing
Character Time

Time Between
Characters

Minimum level in
dB (950mV)

Maximum level
in dB (950mV)

fu fo fu fo
Automatic dialing, or manual
dialing with automatic time
limiting

65ms≤t≤100ms 80ms≤t≤6500ms -16 -14 -10.5 -8.5

Manual dialing without time
limiting

t≥65ms t≥80ms -16 -14 -13 -11

• The nominal voltage level of the higher of the two frequencies must be at least 0.5 dB
higher (but no more than 3.5 dB higher) than the nominal voltage level of the lower of the
two nominal frequencies, in order to compensate for line losses with long lines.

• In the frequency range of 250 Hz to 4600 Hz, the sum of the level of all frequencies which
do not form a dial train must be at least 23 dB below the sum of the level of the existing
dial train, and lie at least  20 dB below the level of the individual frequency of the dial
train.



Generation of DTMF Signals

- 7 -

3 The generation of DTMF signals

As explained, DTMF signals are thus analog, and consist of two sine waves which are
independent of each other. It is therefore not possible to generate them with only digital
components. The digital signals must instead be converted by means of DACs (Digital-to-
Analog Converters) and/or filters, into the desired sinusoidal waveforms.

3.1 Generation from square-wave signals

If DTMF signals are generated from square-waves, then the demands for hardware and
software will be at a minimum.

Every recurrent waveform having a cycle duration of T can be represented by a Fourier series
consisting of the infinite sum of individual sine and cosine waveforms [2], as follows:

( ) ( )[ ]y t
a

a n t b n t
n

( ) cos sin= + ⋅ + ⋅
=

∞

∑0
0 0 0 0

12
ω ω

a0/2 is the direct component of the signal. The partial component with the lowest angular
frequency (ω0) is termed the fundamental, and the others are known as overtones or
harmonics.

A recurrent waveform which can be very easily generated with a microcontroller is the square
wave, of which the Fourier series is as follows:

( ) ( ) ( ) ( )y t
y y

t t t t( ) sin sin sin sin= + + + + + ⋅ ⋅ ⋅





∧ ∧

2

2 1

3
3

1

5
5

1

7
70 0 0 0π

ω ω ω ω

The shares which the individual frequencies have in the total signal can best be seen from the
amplitude spectrum (see Figure 2):

A
m

pl
it

ud
e

Frequency

Ð
0

7Ð
0

5Ð
0

3Ð
0

Direct 
Component

Figure 2: Amplitude Spectrum of a Square Wave

When an analog filter is used to attenuate the direct and harmonic components sufficiently
strongly, a sinusoidal waveform with the same period as the square-wave will be obtained at
the output.



Generation of DTMF Signals

- 8 -

3.2 Software for the generation of square-wave signals

The software for the generation of the square-wave signals must meet the following
requirements:

• It must be able to generate two square-wave signals which are independent of each other.

• In order to separate the signals, two output pins are needed, which provide the outputs of
the Hi-Group and the Lo-Group signals respectively.

• It must be possible to set the specific duration of the transmission of the signals over a
wide range, of about 65 ms - 100 ms.

The MSP430 is provided with various timers which are suitable for generating square-wave
signals. In the configuration ‘31x/‘32x, the 8-Bit and Timer Port timers are used, in order to
generate both square-wave signals. This software is tested with a MCLK of 1.048 MHz. The
Timer_A in the configuration ‘33x can generate both of the signals which are needed. The
second software package uses this timer for the generation of the square-wave signals, and is
also be tested with other MCLKs. The software for both configurations will now be
described.

3.2.1 Generation of square-wave signals with 8-Bit and Timer Port timers

The flow diagram of the DTMF initialization routine is shown in Figure 3. In order to
generate the two frequencies, the counters of the Timer Port and of the 8-Bit Timer are used.
They are each provided with a programmable counting register, this being indispensable for
setting the required frequencies precisely. If the Timer Port counter is cascaded to the 16-Bit
timer, and allowed to operate at the system frequency MCLK, then the frequencies of the
upper frequency group can be set very precisely. When there is an interrupt, the
corresponding output pin is switched over, and both of the 8-Bit counter registers are
reloaded. The values for this are read out of two RAM variables, in order to keep the internal
registers available for other applications.



Generation of DTMF Signals

- 9 -

DTMF-characters 
are taken from 

RAM

time constants for 
timer from

 ROM tables

set counter 
register for
half cycles

set counter 
register for 
8B-TC to 3

store time 
constants for 

TP-Timer in RAM

program Timer,
enable interrupt

DTMF_TX

RET

Figure 3: Flow Diagram of the DTMF Initialization Routine

The frequencies of the lower frequency group are generated by the 8-Bit timer. Since the
counting register of this timer is only 8 Bit wide, only every third interrupt results in a change
of the level at the desired output pin, in order for it to be still possible to generate the
frequencies with the counter.

Two outputs of the timer port are used in order to output the two square-wave frequencies.

The initialization routine needs to be polled only once. After this has been done, the
hexadecimal value of the number to be transmitted is read from a global RAM variable. After
the pair of frequencies, consisting of low and high DTMF tones, has been generated from two
tables, it is only necessary for both of the timers to be initialized and started. The duration of
the transmission is monitored by counting the half cycles of the lower frequency, and read out



Generation of DTMF Signals

- 10 -

from an additional table. After this, the return to the polling function takes place. The
corresponding interrupt routines perform the switching over of the port pins. This process is
shown in Figures 4 and 5.

Whilst the timer port interrupt only reverses the logical level at the port pin and reloads the
counter from the RAM, the 8-Bit timer interrupt is somewhat more demanding: the interrupts
are counted by a counting register. The output can be changed only after three interrupts. In
addition, every half cycle is included in the count. The output is interrupted when a specific
number has been reached.

decrement 
counter 
register

RETI

toggle 
DTMF-LO 

output

set counter 
register to 3

counter reg. = 0

RETI

enable 
interrupt

decrement 
half-cycle 

counter reg.

counter reg. = 0

interrupt 
transmission

8B_TC_INT

RETI

yes

no

no

yes

Figure 4: Flow Diagram of the 8-Bit-Timer Interrupts (Lo-Group)



Generation of DTMF Signals

- 11 -

toggle 
DTMF-HI 

output

reload counter 
from RAM

clear interrupt 
flags

RETI

TP_INT

Figure 5: Flow Diagram of the Timer/Port Interrupts (Hi-Group)

; USER DEFINITIONS
FLLMPY .equ 32 ;FLL multiplier for 1.048MHz
TCLK .equ FLLMPY*32768 ;TCLK: FLLMPY x fcrystal
DL .equ 85 ;duration of DTMF-Signal (65..100ms)
LO_OUT .equ 02h ;Output Pin for low frequency
HI_OUT .equ 04h ;Output Pin for high frequency
RCOUNT .equ r14 ;DTMF length counter
RTEMP .equ r15 ;temp. register

.global DTMF_NR ;global RAM-Variable
;for DTMF-Number (0..F)

; RAM DEFINITIONS

.even

.bss DTMF_TL ;must be even adress!!!

.bss DTMF_TH

.bss DTMF_NR ;global RAM-Variable
;for DTMF-Number (0..F)

.even

; HARDWARE DEFINITIONS FOR THE 8b-TIMER

TCCTL  .EQU 42H
TCPLD .EQU 43H
TCDAT .EQU 44H

;HARDWARE DEFINITIONS FOR THE UNIVERSAL-TIMER-PORT

TPCTL  .equ 04bh ;Timerport Control
TPCNT1 .equ 04ch ;TP Counter 1



Generation of DTMF Signals

- 12 -

TPCNT2 .equ 04dh ;TP Counter 2
TPD .equ 04eh ;TP Data
TPE .equ 04fh ;TP Enable

.text
; Tables with the DTMF frequencies: the table contains the
; number of MCLK cycles for a half period.

;Table for high frequency
;a correction value is added to
;correct the latecy times

DTMF_HI .word 0ffffh-(TCLK/(1336*2))+25 ;Hi-Freq for 0
.word 0ffffh-(TCLK/(1207*2))+28 ;Hi-Freq for 1
.word 0ffffh-(TCLK/(1336*2))+25 ;Hi-Freq for 2
.word 0ffffh-(TCLK/(1477*2))+24 ;Hi-Freq for 3
.word 0ffffh-(TCLK/(1207*2))+28 ;Hi-Freq for 4
.word 0ffffh-(TCLK/(1336*2))+25 ;Hi-Freq for 5
.word 0ffffh-(TCLK/(1477*2))+24 ;Hi-Freq for 6
.word 0ffffh-(TCLK/(1207*2))+28 ;Hi-Freq for 7
.word 0ffffh-(TCLK/(1336*2))+25 ;Hi-Freq for 8
.word 0ffffh-(TCLK/(1477*2))+24 ;Hi-Freq for 9
.word 0ffffh-(TCLK/(1633*2))+22 ;Hi-Freq for A
.word 0ffffh-(TCLK/(1633*2))+22 ;Hi-Freq for B
.word 0ffffh-(TCLK/(1633*2))+22 ;Hi-Freq for C
.word 0ffffh-(TCLK/(1633*2))+22 ;Hi-Freq for D
.word 0ffffh-(TCLK/(1207*2))+28 ;Hi-Freq for *
.word 0ffffh-(TCLK/(1477*2))+24 ;Hi-Freq for #

;Table for low frequency
DTMF_LO .byte 0ffh-(TCLK/(941*2*3)) ;Lo-Freq for 0

.byte 0ffh-(TCLK/(697*2*3)) ;Lo-Freq for 1

.byte 0ffh-(TCLK/(697*2*3)) ;Lo-Freq for 2

.byte 0ffh-(TCLK/(697*2*3)) ;Lo-Freq for 3

.byte 0ffh-(TCLK/(770*2*3)) ;Lo-Freq for 4

.byte 0ffh-(TCLK/(770*2*3)) ;Lo-Freq for 5

.byte 0ffh-(TCLK/(770*2*3)) ;Lo-Freq for 6

.byte 0ffh-(TCLK/(853*2*3)) ;Lo-Freq for 7

.byte 0ffh-(TCLK/(853*2*3)) ;Lo-Freq for 8

.byte 0ffh-(TCLK/(853*2*3)) ;Lo-Freq for 9

.byte 0ffh-(TCLK/(697*2*3)) ;Lo-Freq for A

.byte 0ffh-(TCLK/(770*2*3)) ;Lo-Freq for B

.byte 0ffh-(TCLK/(853*2*3)) ;Lo-Freq for C

.byte 0ffh-(TCLK/(941*2*3)) ;Lo-Freq for D

.byte 0ffh-(TCLK/(941*2*3)) ;Lo-Freq for *

.byte 0ffh-(TCLK/(941*2*3)) ;Lo-Freq for #

;Table for signal length
DTMF_L .byte 2*941*DL/1000 ;half periods for 0

.byte 2*697*DL/1000 ;half periods for 1

.byte 2*697*DL/1000 ;half periods for 2

.byte 2*697*DL/1000 ;half periods for 3

.byte 2*770*DL/1000 ;half periods for 4

.byte 2*770*DL/1000 ;half periods for 5

.byte 2*770*DL/1000 ;half periods for 6

.byte 2*852*DL/1000 ;half periods for 7



Generation of DTMF Signals

- 13 -

.byte 2*852*DL/1000 ;half periods for 8

.byte 2*852*DL/1000 ;half periods for 9

.byte 2*697*DL/1000 ;half periods for A

.byte 2*770*DL/1000 ;half periods for B

.byte 2*852*DL/1000 ;half periods for C

.byte 2*941*DL/1000 ;half periods for D

.byte 2*941*DL/1000 ;half periods for *

.byte 2*941*DL/1000 ;half periods for #

;*************************************************************
;  DTMF-TX Subroutine for DTMF
;*************************************************************
DTMF_TX

mov.b DTMF_NR,RTEMP ;save Number in temp. Reg.
mov.b DTMF_L(RTEMP),RCOUNT;save duration Counter

;prepare 8B-Timer for DTMF-Lo frequency
mov.b #0a8h,&TCCTL ;configure Timer to MCLK
mov.b DTMF_LO(RTEMP),&TCPLD ;prepare Pre-Load-Reg.
mov.b  #000,&TCDAT ;load Pre-Load in Counter
bis.b #008h,&IE1 ;enable TC-8b Int.

;prepare TP-Timer for DTMF-Hi frequency
rla r15 ;* 2 for 16-Bit-Table
mov DTMF_HI(RTEMP),&DTMF_TL ;save Hi-freq. as word
mov #003,RTEMP ;counter for 8B-TC
bis.b #008h,IE2 ;enable TP-Int.
mov.b &DTMF_TH,&TPCNT2 ;Hi-Reloadvariable to TC2
mov.b  &DTMF_TL,&TPCNT1;Lo-Reloadvariable to TC1
bis.b  #080h,&TPD ;enable 16Bit-Timer
bis.b #HI_OUT+LO_OUT,&TPE ;enable DTMF-Hi/Lo output
mov.b  #090h,&TPCTL ;enable Timer
ret

;***********************************************************
;  Timer-Port Interrupt
;***********************************************************
TP_INT

xor.b #HI_OUT,&TPD ;toggle Output for DTMF-Hi
mov.b &DTMF_TH,&TPCNT2 ;Hi-Reloadvariable to TC2
mov.b  &DTMF_TL,&TPCNT1 ;Lo-Reloadvariable to TC1
bic.b #007h,&TPCTL ;clear Flags
reti

;***********************************************************
;  P0.1/8b-TC Interrupt
;***********************************************************
TIM_8B

eint ;enable Interrupts
dec RTEMP
jz TOGGLE ;3rd 8B-TC int. -> jump
reti

TOGGLE
xor.b #LO_OUT,&TPD ;toggle Output for DTMF-Lo
mov #003,RTEMP ;counter for 8B-TC
dec RCOUNT ;dec. durationcounter
jz DTMF_END ;duration end -> jump



Generation of DTMF Signals

- 14 -

reti
DTMF_END

bic.b #037h,&TPCTL ;hold TP-Clock
bic.b #008h,TCCTL ;hold 8B-Timer
bic.b #008h,&IE2 ;disable 8B-Timer-Int.
bic.b #003h,&TPE ;disable output-pins
reti

; INTERRUPT VECTOR ADDRESS

.sect "TP_VECT", 0ffe8h

.word TP_INT ;Timer-Port

.sect "TIM_VECT", 0fff8h

.word TIM_8B ;8b-Timer (P0.0 Int)

3.2.2 Generation of the square-wave signals with Timer_A

The following DTMF software routine only needs the Timer_A in order to be able to generate
the two required square-wave frequencies. During assembling the corresponding timer values
are calculated in order to be able to use the software independently of the MCLK which is
employed. The length of the output signal is given with the value DL in milliseconds.

; Hardware definitions
;
FLLMPY .equ 32 ; FLL multiplier for 1.048MHz
TCLK .equ FLLMPY*32768 ; TCLK: FLLMPY x fcrystal
DL .equ 82 ; DTMF time ms (65..100ms)
STACK .equ 600h ; Stack initialization address
;
; RAM definitions
;
STDTMF .equ 202h ; Status Hi and Lo frequency
TIM32B .equ 204 ; Timer Register Extension
LENGTH .equ 206h ; DTMF length counter
;

.text 0F000h ; Software start address
;
; Initialize the Timer_A: MCLK, Cont. Mode, INTRPT enabled
; Prepare Timer_A Output Units, MCLK = 1.048MHz (autom.)
;
INIT MOV #STACK,SP ; Initialize Stack Pointer SP

CALL #INITSR ; Init. FLL and RAM
MOV #ISMCLK+TAIE+CLR,&TACTL ; Define Timer
MOV.B #TA2+TA1,&P3SEL ; TA2 and TA1 at P3.5/4
CLR TIM32B ; Clear TAR extension
BIS #MCONT,&TACTL ; Start Timer_A
EINT ; Enable interrupt

MAINLOOP ... ; Continue in mainloop
;
; A key was pressed: SDTMF contains the table offset of the
; two frequencies (0..6,0..6) in the high and low bytes
;

MOV &TAR,R5 ; For immediate start:
ADD FDTMFLO,R5 ; Short time offset



Generation of DTMF Signals

- 15 -

MOV R5,&CCR1 ; 1st change after 0.71ms
MOV R5,&CCR2 ; 1/(2x697) = 0.71ms
MOV #OMT+CCIE,&CCTL1 ; Toggle, INTRPT on
MOV #OMT+CCIE,&CCTL2 ; Toggle, INTRPT on
MOV.B STDTMF,R5 ; Counter for 82ms
RRA R5 ; # of low frequ. changes
MOV.B DTMFL(R5),LENGTH ; for the signal length.
... ; Continue background

;
; CCR0 interrupt handler (not implemented here)
;
TIMMOD0 ...

RETI
;
; Interrupt handler for Capture/Compare Registers 1 to 4
;
TIM_HND ADD &TAIV,PC ; Serve highest priority request

RETI ; No interrupt pending: RETI
JMP HCCR1 ; CCR1 request (low DTMF frequ.)
JMP HCCR2 ; CCR2 request (high DTMF fr.)
JMP HCCR3 ; CCR3 request
JMP HCCR4 ; CCR4 request

;
TIMOVH INC TIM32B ; Extension of Timer_A 32 bit

RETI
;
; Low DTMF frequencies: TA1 is toggled by Output Unit 1
; Output changes of TA1 are counted to control signal length
;
HCCR1 PUSH R5 ; Save used register

MOV.B STDTMF,R5 ; Status low DTMF frequency
ADD FDTMFLO(R5),&CCR1 ; Add length of half period
DEC.B LENGTH ; Signal length DL elapsed?
JNZ TARET ; No

;
; Yes, terminate DTMF signal: disable interrupts, Output only
;

BIC #OMRS+OUT+CCIE,&CCTL1 ; Reset TA1
BIC #OMRS+OUT+CCIE,&CCTL2 ; Reset TA2

TARET POP R5 ; Restore R5
RETI ; Return from interrupt

;
; High DTMF frequencies: TA2 is toggled by Output Unit 2
;
HCCR2 PUSH R5 ; Save used register

MOV.B STDTMF+1,R5 ; Status high DTMF frequency
ADD FDTMFHI(R5),&CCR2 ; Add length of half period
POP R5 ; Restore R5
RETI ; Return from interrupt

;
HCCR3 ... ; Task controlled by CCR3

RETI
HCCR4 ... ; Task controlled by CCR4

RETI
;



Generation of DTMF Signals

- 16 -

; Table with the DTMF frequencies: the table contains the
; number of MCLK cycles for a half period. The values are
; adapted to the actual MCLK frequency during the assembly
; Rounding assures the smallest possible frequency error
;
FDTMFLO .word ((TCLK/697)+1)/2 ; Low DTMF frequency 697Hz

.word ((TCLK/770)+1)/2 ;  770Hz

.word ((TCLK/852)+1)/2 ;  852Hz

.word ((TCLK/941)+1)/2 ;  941Hz
FDTMFHI .word ((TCLK/1209)+1)/2 ; High DTMF frequ. 1209Hz

.word ((TCLK/1336)+1)/2 ; 1336Hz

.word ((TCLK/1477)+1)/2 ; 1477Hz

.word ((TCLK/1633)+1)/2 ; 1633Hz
;
; Table contains the number of half periods for the signal
; length DL (ms). The low DTMF frequency is used for the timing
;
DTMFL .byte 2*697*DL/1000 ; Number of half periods

.byte 2*770*DL/1000 ; per DL ms

.byte 2*852*DL/1000 ;

.byte 2*941*DL/1000 ;
;

.sect "TIMVEC",0FFF0h ; Timer_A Interrupt Vectors

.word TIM_HND ; Timer Block 1..4 Vector

.word TIMMOD0 ; Vector for Timer Block 0

.sect "INITVEC",0FFFEh ; Reset Vector

.word INIT

A somewhat quicker solution is given below. It however requires somewhat more RAM
capacity, because values derived from tables do not need to be calculated afresh each time,
but instead are stored in the two RAM words DTMFLO and DTMFHI. These are read out
from the  Timer_A interrupt routines. The tables which are used are the same as in the
previous example.

FLLMPY .equ 32 ; FLL multiplier for 1.048MHz
TCLK .equ FLLMPY*32768 ; TCLK: FLLMPY x fcrystal
DL .equ 82 ; DTMF time ms (65..100ms)
STDTMF .equ 202h ; Status Hi and Lo frequency
TIM32B .equ 204 ; Timer Register Extension
LENGTH .equ 206h ; DTMF length counter
DTMFLO .equ 208h ; Half wave of low frequency
DTMFHI .equ 20Ah ; Half wave of high frequency
STACK .equ 600h ; Stack initialization address

.text 0F000h ; Software start address

; Initialize the Timer_A: MCLK, Cont. Mode, INTRPT enabled
; Prepare Timer_A Output Units, MCLK = 1.048MHz (autom.)
;
INIT MOV #STACK,SP ; Initialize Stack Pointer SP

CALL #INITSR ; Init. FLL and RAM
MOV #ISMCLK+TAIE+CLR,&TACTL ; Start Timer
MOV.B #TA2+TA1,&P3SEL ; TA2 and TA1 at P3.5/4
CLR TIM32B ; Clear TAR extension



Generation of DTMF Signals

- 17 -

BIS #MCONT,&TACTL ; Start Timer_A
EINT ; Enable interrupt

MAINLOOP ... ; Continue in mainloop
;
; A key was pressed: STDTMF contains the table offset of the
; two frequencies (0..6,0..6) in the high and low bytes
;

MOV &TAR,R5 ; For immediate start:
ADD FDTMFLO,R5 ; Short time offset
MOV R5,&CCR1 ; 1st change after 0.71ms
MOV R5,&CCR2 ; 1/(2x697) = 0.71ms

;
; Fetch the two cycle counts for the DTMF frequencies
;

MOV.B STDTMF+1,R5 ; High DTMF frequency
MOV FDTMFHI(R5),DTMFHI ; Length of half period
MOV.B STDTMF,R5 ; Low DTMF frequency
MOV FDTMFLO(R5),DTMFLO ; Length of half period

;
; Counter for length

RRA R5 ; Prepare byte index
MOV.B DTMFL(R5),LENGTH ; # of low frequ. changes
MOV #OMT+CCIE,&CCTL1 ; Toggle, INTRPT on
MOV #OMT+CCIE,&CCTL2 ; Toggle, INTRPT on
... ; to Mainloop

;
; CCR0 interrupt handler (not implemented here)
;
TIMMOD0 ...

RETI
;
; Interrupt handler for Capture/Compare Registers 1 to 4
;
TIM_HND ADD &TAIV,PC ; Serve highest priority request

RETI ; No interrupt pending: RETI
JMP HCCR1 ; CCR1 request (low DTMF frequ.)
JMP HCCR2 ; CCR2 request (high DTMF fr.)
JMP HCCR3 ; CCR3 request
JMP HCCR4 ; CCR4 request

;
TIMOVH INC TIM32B ; Extension of Timer_A 32 bit

RETI
;
; Low DTMF frequencies: TA1 is toggled by Output Unit 1
;
HCCR1 ADD DTMFLO,&CCR1 ; Add length of half period

DEC.B LENGTH ; DL ms elapsed?
JNZ TARET ; No

;
; Terminate DTMF output: disable interrupts, Output only
;

BIC #OMRS+OUT+CCIE,&CCTL1 ; Reset TA1
BIC #OMRS+OUT+CCIE,&CCTL2 ; Reset TA2

TARET RETI ; Return from interrupt
;



Generation of DTMF Signals

- 18 -

; High DTMF frequencies: TA2 is toggled by Output Unit 2
;
HCCR2 ADD DTMFHI,&CCR2 ; Add length of half period

RETI ; Return from interrupt
;
HCCR3 ... ; Task controlled by CCR3

RETI
HCCR4 ... ; Task controlled by CCR4

RETI
;
; Tables and interrupt vectors are identical to the previous
; example

3.3 Hardware for the generation of DTMF signals

As already mentioned, in the frequency range of 200 Hz to 4600 Hz the level of the
transmission frequency must lie 20 dB above the level of all interfering signals. Since
according to the specification the signals from the Highgroup and Lowgroup must have
different levels, an individual filter is needed for each signal. The amplitudes and frequencies
of all sinusoidal waveforms can be derived from the Fourier series.

When determining the cutoff frequencies in order to design the analog filters, two
requirements must be met which result from [1]:

• Since it must be possible to combine every frequency from the Hi-Group with every
frequency from the Lo-Group, the difference of level between the highest and the lowest
frequency of a group may only be 3 dB.

• For the lowest frequency (f1) of a group, the suppression of the harmonic (3f1) must be at
least 20 dB. The maintaining of this limit value is most critical for the lowest frequency of
a group, since this frequency is furthest from the cutoff frequency of the filter.

The following equation [3] applies for the square of the absolute value of Butterworth low-
pass filters of nth order:

( )A f
f

f g

n1

2

2

1

1

=

+










This equation describes the behavior of the amplification of Butterworth low-pass filters as a
function of frequency. The parameters fg and n determine the cutoff frequency and order of
the filter.

The order of the filter should first be calculated, this being needed in order to meet the
requirements above.

In order to meet the first requirement, the ratio of the squares of the absolute values of the



Generation of DTMF Signals

- 19 -

lowest and highest frequency of a group may only be 3 dB or 2  :

( )
( )

22

4

2

1 <
fA

fA

The second requirement will already have been met if the ratio of the squares of the absolute
values of the frequencies f1 and 3f1 is 10/3, since the harmonic in a square-wave signal is
already 1/3 lower (see also Fourier series and Figure 2):

( )
( )

A f

A f

1

2

3

2
3

10
3

<

Calculations with both Hi-Group and Lo-Group frequencies result in a filter with an order of
n=1.15.  A 2nd order filter, which can be constructed with an operational amplifier, would
therefore suffice in order to meet the required limit values. If a 3rd order filter is used, then
only two more components are required. In this way the sensitivity to tolerances can be
reduced. Both requirements will be met if the cutoff frequencies of the filter lie within the
following limits:

Lo-Group fg>880Hz fg<1418Hz
Hi-Group fg>1527Hz fg<2460Hz

If the cutoff frequency is at the lower limit, then the harmonics will be most effectively
suppressed; however, the difference of level between the highest and lowest frequencies will
then be 3 dB. With the highest possible cutoff frequency the difference of level is at a
minimum, but harmonic suppression will then be only 20 dB.

When designing the filters, great care was taken to suppress harmonics, and the difference of
level within a frequency group was fixed at 2 dB. As a result of this, the cutoff frequencies of
the filters turned out to be 977 Hz and 1695 Hz. The suppression which resulted is thus
considerably better than required. The difference of level within a frequency group is great
enough to meet the required values, even if there is a shift of the cutoff frequency as a result
of tolerances. When calculating component values, resistors were chosen to approximate to
values which are available in the standard range E12.

After passing through the filter stages, two sine-wave frequencies are obtained which are
separated sufficiently from those of the interference signals. In order to add both frequencies
together, the circuit includes a subsequent adding stage.

With only three operational amplifiers and a few passive components, it is thus possible
without much calculation effort to generate DTMF signals using a microcontroller.

For verifiing the aproximaten values, some runs with a simulation program are done. The
effect of the filters can be predict very precise from the calculated frequency response.



Generation of DTMF Signals

- 20 -

Figure 6: Amplitude Spectrum of a Square Wave Frequency of 697 Hz after passing
through a 3rd order filter

In Figure 6, the amplitude spectrum of a square wave frequency of  697 Hz is shown, which
has already passed through a 3rd order filter. The harmonics which result at 2091 Hz and
3485 Hz are sufficiently attenuated at -25.6 dB.

Figure 7: Amplitude Spectrum of a Square Wave Frequency of 941 Hz after passing
through a 3rd order filter

Figure 7 shows a square wave frequency of 941 Hz. In the frequency range of interest up to
4600 Hz, only one harmonic is generated. After passing through the filter, this interference



Generation of DTMF Signals

- 21 -

frequency of 2823 Hz is well suppressed at -27.9 dB. The difference of level between the
highest and the lowest group frequency amounts to 1.9 dB.

In order to be able to use low-cost components with wide tolerances in production, several
additional simulation runs using components with specific tolerances were made. As a result
of this, the necessary tolerance for resistors and capacitors was determined to be 10%.

Figure 8: Histogram - Difference of Level within a Group

Figure 9: Histogram - Suppression of the Harmonics

Figures 8 and 9 show the histograms using a Monte Carlo analysis. In this case, the values of
the components were changed randomly within a tolerance range of 10%. After 100
simulation runs, the results for all simulated filters were entered into a histogram. In the
histogram in Figure 8, the difference of level within a group is shown. The maximum
permissible difference of 3 dB between the highest and lowest group frequency is in no case
exceeded. The average value of 1.6 dB is somewhat below the design goal of 2 dB.

The attenuation of the harmonics of the lowest group frequency is shown in Figure 9. The
specified attenuation of the harmonics of 20 dB is met very well in every case, with an
average value of almost 27 dB. In the worst case, the first harmonic is suppressed by at least
24.2 dB.

The values calculated at the filter of the Lo-Group frequencies conform also to the values of
the Hi-Group Filter.

The two filters are constructed in the same way. They differ only in the cutoff frequencies for
the lower and upper frequency groups. R1 and C1 form a 1st order low-pass. Since the input
resistance of the circuit is also affected by R1, the value of this component should not be
chosen to be too low; otherwise the driving power of the microcontroller will be exceeded,



Generation of DTMF Signals

- 22 -

and the square waveform of the signal will be lost. In this case frequencies may be added to
the signal, which being interference signals will have a negative effect on the signal-to-noise
ratio.

The transfer functions of higher order filters can no longer be represented with passive filters.
The 2nd order filter must therefore be constructed with an operational amplifier. The
amplification of the active filter is fixed at 0.2 by means of R1-1 and R1-2. The signal will
thus be somewhat attenuated. This is necessary in order not to overdrive the operational
amplifier, since the peak value of the (sine wave) fundemental of the square-wave signal is
more than the amplitude of the square-wave (see also Fourier Series and Figure 2). In the
subsequent adding stage, the levels of the signals can anyway be adjusted. The direct
component contained in the square-wave signal sets the operating point of the operational
amplifier to Vcc/2 (see also Fourier series and Figure 2). This direct component signal must
however not be attenuated by the input voltage divider R1-1/R1-2. The capacitor C3
therefore blocks this path from direct voltage.

The analog filters deliver at each of their outputs a sine-wave signal of the upper and of the
lower frequency groups respectively. In the subsequent adder, these signals are added
together. At this point the share of the upper and lower frequencies in the total signal, and
thus the level of the output signal, can be adjusted with the two resistors R4 and R5. In this
way, the output power can be very easily be adjusted to conform to the various specifications
applying in different countries.

When calculating component values, as is usual the capacitors were pre-determined, and the
values of resistors then calculated. For the actual construction, capacitors and resistors from
the standard range E12 with 10% tolerances were used.

Figure 10 shows the circuit diagram of the analog filter with the subsequent adder:

VssVcc

MSP430

+5V           0V 0V

TP.2/TA.2

 

 

TP.1/TA.1 +

-

4.7k 120k 47k

27k

33n

100n

2.2n

10n

0V

+

-

3.9k 150k 56k

39k

22n

100n

1.0n

4.7n

1/4 LM324

0V

+

-

1n

Filters Mixer

33n

33n

Vcc/2

DTMF Output

2.2u

39k

100n

High DTMF

Low DTMF

All Components with 10% Tolerance

R4

R5

1/4 LM324

1/4 LM324
C1-1

C1-2

R1 R1-1

C1

C6

R6

C5

R1-2

R3

C3
C4

C2

Figure 10: Circuit of Analog Filter followed by Adder circuit



Generation of DTMF Signals

- 23 -

The capacitors C1-1 and C1-2 couple the signal together at the working point of Vcc/2. Too
high values should not be chosen for them, since these capacitors act as a high-pass filter to
filter out low frequency interference. The blocking capacitor C5 filters out noise in the
reference voltage. If an additional capacitor C6 is placed in parallel with the feedback
coupling resistor R6, then a 1st order low-pass filter will be created. If a lower cutoff
frequency is chosen, the additional filtering out of high frequency interference signals
improves further the dynamic behavior of the output signal, but the high frequencies of the
upper frequency group will be somewhat attenuated. If however in certain applications the
generation of the highest DTMF frequency of 1633 Hz can be dispensed with, since it serves
only to create the special characters A-D, then the signal-to-noise ratio can be improved by
using a lower cutoff frequency for the filter. It is true that with higher cutoff frequencies the
interference signal level will increase somewhat; however, the high frequencies of the DTMF
signal will not be affected.

4 Measured values of the DTMF Transmitter
The spectrograms which follow (Figures 11 and 12) show the output signal of the DTMF
transmitter at various DTMF frequencies.  The amplitude spectrum of the character “1” is
shown in Figure 11. The wanted signal frequencies at 697 Hz and 1207 Hz are at levels of
-10.5 dB and -8.5 dB. The harmonics at 2091 Hz and 3621 Hz are attenuated with almost 30
dB. In representing the character “D”, two of the highest frequencies - namely 941 Hz and
1633 Hz - are generated. As shown in Figure 12, the level at the lower frequency is -12 dB
and at the higher frequency is -11 dB. The corresponding harmonics are attenuated at more
than 30 dB. The measured values thus confirm the results of simulations and conformance to
the specification [1].

Figure 11: Amplitude Spectrum of the Character “1”: 697 and 1207 Hz



Generation of DTMF Signals

- 24 -

Figure 12: Amplitude Spectrum of the Character “D”: 941 and 1633 Hz

The precision of the generated frequencies can not be given explicitly if the sqare-wave
signals are generated with two different timers, because it depends on the combination of two
frequencies and the timers which are used. This is a result of the collision of the timer
interrupts. The specified tolerance of ±1.8 % is however very well fulfilled.

If an 8 Bit timer and the Timer Port timer are used with a MCLK of 1.048 MHz, then
frequencies for the Lo-Group will be generated with an accuracy of better than 0.3 %. At the
frequencies of the higher group, variations of not more than 0.5 % can in practice be attained.
The only exception to this is the combination of the DTMF character “D”. For this, the two
highest frequencies must be generated. As a result, with this frequency combination for
generating the Hi-Group frequency of 1633 Hz,  a variation of -0.97 % must be tolerated.
With the exception of this specific case, even the highest frequency of 1633 Hz is generated
with an accuracy of better than 0.5 %. The maximum deviations are summarized again in the
following table.

Lo-Group Hi-Group
Frequency

in Hz
Maximum
Deviation

Frequency
in Hz

Maximum
Deviation

697 -0.28 % 1207 +0.33 %
770 -0.13 % 1336 +0.45 %
853 ±0.12 % 1477 ±0.14 %
941 -0.21 % 1633 -0.97 %



Generation of DTMF Signals

- 25 -

If the Timer_A is used for the generation of the frequencies, then the error vary with the used
MCLK:

MCLK MHz 1.048 2.096 3.144 3.800
FLL Multiplier N 32 64 96 116

697 Hz +0.027% +0.027% +0.027% +0.027%
770 Hz -0.015% -0.016% +0.033% -0.016%
852 Hz +0.059% -0.023% +0.005% +0.031%
941 Hz +0.029% +0.029% +0.029% +0.035%

1209 Hz -0.079% +0.036% +0.036% -0.003%
1336 Hz +0.109% -0.018% +0.025% +0.025%
1477 Hz -0.009% -0.009% -0.009% -0.009%
1633 Hz +0.018% +0.018% +0.018% +0.018%

5 Summary

The software for this application has been kept simple, and with about 300 Bytes needs little
memory capacity in the RAM and ROM. As a result of the built-in timer module, the
required frequencies can be generated very accurately without placing an undue load on the
CPU. If the combination of an 8-Bit timer and Timer/Port timer is used for the generation of
the frequencies, then the interrupt routines will place a load on the CPU of about 12%. If the
frequencies can be generated with the Timer_A, then the loading on the CPU as a result of
the interrupt routines will be reduced to 6%. As a result, during the DTMF transmission other
tasks can be implemented, or the CPU can be switched into the Low-Power mode in order to
save current.

The functionality of the module described for generating DTMF signals from sqare-wave
signals has been demonstrated by constructing the necessary hardware. Since it was possible
to use components with wide tolerances, the costs involved for this solution have been kept
very low. The required specification has also been fulfilled very well, such that special DTMF
transmitter modules are no longer needed in applications in which the MSP430 is used as the
controller.

If in some applications it is necessary to improve the signal-to-noise ratio, an additional filter
can be constructed with a fourth operational amplifier in order to suppress interfering
frequencies still further. This additional operational amplifier is in any case available in a
DIL14 package.



Generation of DTMF Signals

- 26 -

6 References

[1] Bundesamt für Post und Telekommunikation (Federal Office for Post and Tele-
communications): BAPT 223 ZV 5, Zulassungsvorschrift für Endeinrichtungen zur
Anschaltung an analoge Wählanschlüsse (ausgenommen Notruf- und Durchwahl-
anschlüsse) des Telefonnetzes (approval specification for end equipment to be
connected to analog dialling connections of the telephone network, except for
emergency and in-dialling connections) / ISDN of the Deutschen Bundespost Telekom;
Bundesministerium für Post und Telekommunikation, Draft, Bonn April 1994

[2] Papula: Mathematik für Ingenieure 2 (Mathematics for Engineers); Vieweg Verlag,
Braunschweig 1990

[3] Tietze / Schenk: Halbleiterschaltungstechnik; (Semiconductor Circuit Design), 10th.
Edition; Springer Verlag, Berlin 1993

[4] Lutz Bierl / Texas Instruments: MSP430 Family, Metering Application Report, Texas
Instruments, Issue 2.1, Jan 1997, SLAAE10B

[5] Texas Instruments: MSP430 Family, Architecture User’s Guide and Module Library,
Texas Instruments, 1996, SLAUE10B

[6] Texas Instruments: MSP430 Family, Software User’s Guide, Texas Instruments, 1996

[7] Texas Instruments: MSP430 Family, Assembly Language Tools User’s Guide, Texas
Instruments, 1996

[8] Siwy, Robert: Systementwicklung einer Telekom-Applikation zum Senden und

Empfangen von DTMF-Signalen mit dem Microcontroller MSP430 (System

development of a telecom application to send and receive digital signals with the

Microcontroller MSP430); Diplomarbeit, Fachhochschule Landshut, Mai 1997



Recognition of DTMF Signals

- 27 -

1 Introduction

The second part of the Application Report describes the reception and the recognition of
DTMF signals using the Microcontroller MSP430. The theoretical and mathematical
processes for designing digital filters are discussed. At the same time, these processes explain
how suitable digital filters can be used to filter out specific frequency components from
analog inputs. The AD converter in the configuration C32x is used for the digital conversion
of the analog signal. 8 Boost wave digital filters are then computed in real time, and from
their output values the DTMF character which has been received is recognized. This part
includes a circuit diagram showing the connection of analog signals to the MSP430.

2 The Reception of DTMF Signals by means of Wave Digital Filters

In order to receive DTMF signals with a Microcontroller without the use of costly special
components, signals which are received need to be processed with an Analog-to-Digital
Converter (ADC), and recognized with a digital fíltering algorithm. The MSP430 is suitable
for this purpose for the following reasons:

• Despite a relatively low clock frequency (up to 3.3 MHz), high computing speed is
achieved as a result of commands which are processed within a clock cycle, as used in
RISC computing.

• The connection of the controller to analog systems is very simple, because of the built-in
ADC. External ADCs are not needed.

3 Basics of Digital Filtering

In analog circuit technology, active and passive filters are used for signal filtering; these
consist of resistors, capacitors, inductors and amplifiers. The signals which have been
processed are made up of voltages having waveforms which are continuous in time.

If digital signal processing is used instead, then the advantages of improved precision and
reproducibility are obtained, such as can not be achieved with analog circuits as a result of
the tolerance and aging of components. Digital filters consist of memories and computing
circuitry. They are advantageous from the point of view of reducing the structural dimensions
of integrated circuits. However, they also need analog-digital converters and digital-analog
converters. Instead of processing continuously changing variables, digital filters process
discrete sequences of digits.

These values are obtained by sampling a continuous signal at regular time intervals by means
of an analog-digital converter; the ADC must contain a sample-and-hold function. This must
conform to the sampling theorem [2], which says that the sampling frequency must be at least
double that of the highest frequency occurring in the input signal. For this reason, an analog
low-pass filter is placed before the ADC [3].

If an analog output is to be connected to the digital filter, then the computed values are again
processed with a digital-analog converter, and finally smoothed with an analog low-pass filter
[3].

Since in this application the intention was only an evaluation of the filtered signal, it was
possible to dispense with this reconversion.



Recognition of DTMF Signals

- 28 -

3.1 The Properties of Wave Digital Filters

The computation of digital filter algorithms usually requires very many multiplications. In
order to reduce the magnitude of overflow and rounding errors, the word width must be made
sufficiently wide. For this reason signal processors are preferable for this computation which
are provided with a hardware multiplier. The processed bit widths are from 16 to 24 Bit.
Some signal processors are also provided with floating-point calculation facilities, with which
the data to be processed can be represented with floating-point precision.

In this case, Wave Digital Filters (WDFs) are used for the digital filtering. The WDFs {5,
107} are derived from analog LC and microwave filters. As a result, the particular properties
of these analog filters are bestowed on the digital  filters.

Wave Digital Filters have the special characteristic that they react with very little sensitivity
to variations of the coefficients {5}. This is of particular importance in the application in
question, because all multiplications must be calculated with the so-called Shift-and-Add
process as a result of the lack of a multiplier. Shortening and optimization of the coefficients
therefore saves calculation time. This simplification must however not have a negative effect
on the stability or the frequency characteristics of the filter. As a result of shorter coefficients,
the rounding noise resulting from multiplication is advantageously reduced. In addition,
WDFs feature an excellent dynamic range {12, 22}.

WDFs remain stable should the input signal be suddenly discontinued. In consequence, it is
possible to work through interrupt requests and subsequently to continue with the filter
computation. Should the input of the filter be overloaded or there be other disturbances, the
passive nature of the filter means that it recovers very quickly. This behavior is known as
“Response Stability” {120}. For conventional IIR digital filters this problem has not been
solved {5, S 302; 136}. WDFs even remain stable under  loop conditions {19}.

3.2 The Structure of the Wave Digital Filter which is used

T

T

R RS

"lossy" Adaptor Seriens Resonance Circuit

Figure 13: Structure of a Boost wave digital filter

For the task in question, a specific frequency must be recognized in the input signal. The
Boost filter shown in Figure 13 is used for this purpose, consisting of a series resonance
circuit and a “lossy” adapter [4]. The amplitude response of a filter of this kind is shown in
Figure 14.



Recognition of DTMF Signals

- 29 -

Attenuation
-20 log K

Resonance Frequency

Frequency

-10 log K

Bandwith of 
filter at
-10 log K

Figure 14: Amplitude response of a Boost wave digital filter

The filter is designed so that the resonance frequency is exactly the same as the frequency
which is being sought. If the sought frequency occurs in the input signal, then it will be
amplified whereas all other frequencies will be suppressed. The value of the amplification of
the resonance frequency, or of the attenuation of all other frequencies, is specified with the
parameter K, which is given in the unit -20 log K (dB).  The bandwidth of the filter is given
by determining the frequency at -10 log K (dB). If the output amplitude of the filter exceeds a
certain value, then this indicates that the frequency being sought is present.

The adjustment of the amplification is performed with a lossy adapter. It has the same
structure for all filters (see Figure 15). The series resonance circuit is composed of two delay
elements and an adapter. Four different structures are possible, depending on the desired
resonance frequency (Figure 16).

1/n
1

n
1
*gamma

1

1/n
1

-1

gamma
1

1/n
1

n
1
*gamma

1

1/n
1

-1

gamma
1

1/n
1

n
1
*gamma

1

1/n
1

-1

gamma
2

Figure 15: Structure of the "lossy" adapter

Since there is no floating-point arithmetic, the filter algorithm can be calculated to an integer
accuracy of only 16 Bit; scaling factors are therefore incorporated in the adapters of types A
and D, and this improves the dynamic performance of the filter.



Recognition of DTMF Signals

- 30 -

-1

-1
1/n2

n2*alpha

1/n2

Type A: alpha=1-gamma for 1>gamma>0,5 Type B: alpha=gamma for 0,5>gamma>0

-1

alpha

Type C: alpha=-gamma for -0,5<gamma<0

-1

alpha

-1

-1
1/n2

n2*alpha

1/n2

Type D: alpha=1+gamma for -1<gamma<-0,5

-1
-1

Figure 16: Four different possible configurations for two-port adapters

4 Representation of Numbers and Arithmetic

Since for reasons of cost the MSP430X325 contains no hardware multiplier, all
multiplications must be performed with shifting and addition or subtraction operations. The
multiplication of two dual numbers can be performed by repeated addition of the
multiplicand. If a binary number is shifted n places to the right, the result is multiplication by
2-n. Since a representation of the coefficients in 2n intervals is usually insufficient, every ‘1’
in the binary number must be replaced by means of a shift with subsequent addition. This
will be explained with an example of the calculation of a multiplication according to the
shift-and-add process:

1*0.46875 1b*0.011110b
=2-2 =0.01b
+2-3 +0.001b
+2-4 +0.0001b
+2-5 +0.00001b
=0.46875 =0.01111b

Since this number has very many places displaced from zero, many additions are needed to
represent the number as a complement to two. In order to increase the processing speed in
such cases, the Canonically Signed Digit Code (CSD) is used [5]. As a result of the use of the
CSD Codes, the number of places of the coefficient displaced from zero are reduced to a



Recognition of DTMF Signals

- 31 -

minimum. This is done by inserting the value -1 in order to represent the value of the binary
number. This number is produced in the calculation by means of a subtraction. The above
example using the CSD code then looks like this :

1*0.46875 1b*0.1000-10(CSD)
=2-2 =0.01b
-2-5 -0.00001b
=0.46875 =0.01111b

As a result of the use of the CSD code, the calculation of this multiplication has been reduced
by two additions to one subtraction. The use of the CSD code is only useful with binary
numbers which consist of a group of many ones.

Since the result of the multiplication of n Bits with m Bits is a product of n+m Bits, and the
length of the word can not be increased from multiplication to multiplication, the product
must be cut or rounded in the area of the less significant bits, if possible in such a way that
the required calculation accuracy can be guaranteed. This is done with minimum errors using
the Horner method [5].

In the following example, a 12 Bit product will be formed from a 12 Bit multiplicand and a 9
Bit multiplier.

The exact values are as follows:

X * Y
0.11001011111b * 0.01001001b
0.796386719 * 0.28515625 = 0.22709465

The multiplication is performed with the Shift-and-Add process:

0.00110010111 X*2-2

0.00000110010 X*2-5

0.00000000110 X*2-8

0.00111001111 = 0.226074219 (-2.1 LSB)

The multiplication shows an error of more than 2 LSB, because a large number of low value
bits are lost as a result of shifting to the right.

In contrast, the Horner method saves the low value Bits as long as possible:

0.00011001011 X*2-3

0.11001011111 + X
0.11100101010

0.00011100101 ( X * 2-3 + X ) * 2-3

0.11001011111 + X
0.11101000100

0.00111010001 ( ( X * 2-3 + X ) * 2-3 X * 2-3 + X ) * 2-2

= 0.227050781 (-0.1 LSB)



Recognition of DTMF Signals

- 32 -

The process begins with the lowest value ‘1’ of the multiplier, followed by accumulation,
after which the intermediate result is shifted to the right (by the difference of the bit positions
until the next ‘1’), followed by addition and shifting etc. The absolute shift operations (in this
case, 2-8,  2-5,  2-2) are correctly implemented.

The above process is used for the implementation and optimization of the coefficients of the
filter algorithm, in order to keep the computing requirements as low as possible whilst
attaining the required accuracy .

Since the arithmetic processing in the microcontroller is usually made with 16 Bit wide
integers, agreement must be reached on the representation of the signal values. Too much
calculation time would be needed to implement Floating-Point arithmetic by means of
software, and one is therefore obliged to use a Fix-Point system.

The following allocation of the 16 Bits applies for the filter algorithm described:

1 Bit as sign
2 Bit for the overflow part of calculations
Fixed point
13 Data Bits

The number 0.01111B therefore appears in the internal representation as shown in Figure 17:

0 0 0 0 1 1 1 1 0 0 0 0 0 0 0 0,
Sign Fixed Point

Overflow
Data Bits

Figure 17: Digital Representation of the Signal Values

A negative coefficient is represented by splitting the coefficient into two parts. The first part
is -1 and the second is the sum to give the negative coefficient.

Thus -0,3 is represented by -1 + 0,7.

5 Design of 8 Wave Digital Filters and Optimization of the Coefficients

Boost filters are used for frequency recognition, the calculation of which requires the
following parameters [4]:

• Sampling frequency

• Resonance frequency of the filter

• Amplification (attenuation) of the filter in -20 log K (dB)

• Frequency at -10 log K (db)

Since the highest DTMF frequency is at 1633 Hz, the sampling theorem is fulfilled with a
sampling frequency of 3640 Hz. This corresponds to a ninth of the ACLK of 32.768 kHz
available in the MSP430, and for this reason can easily be generated with a timer. Although
the speech signal taken to the ADC is then sampled at too low a rate, the specification of the



Recognition of DTMF Signals

- 33 -

signal does not cause incorrect behavior in recognizing the DTMF, since the tone is only
recognized as a DTMF signal when both DTMF frequencies are valid simultaneously for a
certain period of time. In addition, during a DTMF transmission all other interference signals,
and this means also speech, must be attenuated by 23 dB [1].

The resonance frequencies of the filters represent the individual DTMF frequencies. They
should be taken without attenuation through the filters. The attenuation -20 log K (dB) of all
other frequencies is fixed at -40dB. This corresponds to attenuation by a factor of K=100. If
the frequency at -10 log K is applied to the adjacent DTMF frequency, then it will be ensured
that the level of the frequency being sought is a factor of 10 larger than the adjacent
frequency. This corresponds to a difference of 20 dB. As a result of the subsequent reduction
and optimization of the coefficients, the factor of 10 can no longer be completely reached, but
the remaining level margin is still completely adequate for reliable recognition of the
frequency. If the output values of all filters are compared, then the application of a DTMF
frequency to the filter whose resonance frequency coincides with the applied frequency
results in a value 10 times greater than from the other filters.

Under the above conditions, the coefficients for the 8 filters are calculated as follows [4 ]:

Frequency in Hz 697 770 852 941 1209 1336 1477 1633

Reso- Ad. type B B B C C D D D

nance alpha 0.3594420 0.2393157 0.0999495 0.0534851 0.4935082 0.3291608 0.1702124 0.0516459

circuit n2 -- -- -- -- -- 1.5146077 2.4736004 5.8005043

“Lossy” gamma 1 0.9773007 0.9774177 0.9759909 0.9749654 0.9696236 0.9702183 0.9692265 0.9694046

adapter gamma 2 -0.9743449 -0.9745813 -0.9716988 -0.9696270 -0.9588356 -0.9600369 -0.9580333 -0.9583930

n1 0.0250727 0.0248447 0.0276217 0.0296126 0.0399140 0.0387729 0.0406752 0.0403340

Since these numbers can only with difficulty be represented in a binary system and their
calculation would require very many calculation steps, in the next step the coefficients must
be optimized and shortened. The coefficients n1 and n2 are only scaling factors and can
therefore be chosen relatively freely. Because of this they are rounded down to the next
smaller power of two, this then reducing their calculation to a few shifting operations. The
values for the alpha coefficients require the investment of more effort, because they influence
the resonance frequency. In order to make a judgment of the frequency variation, the
resonance frequency is again derived from the shortened coefficients. The following values
for alpha are obtained after successful optimization:

Frequency 697 770 852 941 1209 1336 1477 1633

Chosen
alpha(*n2)

0.359375 0.234375 0.09375 0.046875 0.5 0.328125 0.171875*20.046875*4

Resonance
frequency

697 773 855 937 1213 1337 1475 1642

Variation in % 0.00 0.39 0.35 -0.43 0.33 0.07 -0.14 0.55

alpha(*n2) in
CSD
representation

0.010111 0.010000-1 0.00011 0.000011 0.1 0.010101 0.01011 0.0011



Recognition of DTMF Signals

- 34 -

Despite in some cases a considerable shortening of the values of numbers and the resulting
calculation time, only a slight variation from the nominal frequency needs to be tolerated.

Closer examination of the coefficients of the “lossy” adapter reveals their similarity. This is
understandable, because these values are primarily determined by the parameter -10 log K,
which is decided for all filters according to the same criteria: the adjacent DTMF frequency
should be attenuated with -10 log K .

As a result, a single “lossy” adapter for all 8 DTMF filters is derived from the rounded values.
This brings many advantages:

• Only one adapter, instead of 8, needs to be programmed.

• The optimization of the assembler codes is simpler with one adapter.

• If the same program parts are used, trouble shooting is considerably simplified.

• If sufficient calculation time is available, memory can be saved by calling a subroutine.

The optimized dual numbers of the values can be seen in the following table:

Frequency range 697 Hz - 1633 Hz

n1*gamma 1 0,00001b

gamma 2 -1,0 + 0,00001b

1/n1 32

6 Verification of the Filter Designs with a mathematical Simulation Program

The ADC built into the MSP430 provides a bridge from the analog to the digital world.
However, in order to examine the characteristics of the filters, the exact values at the filter
outputs are needed. Since it is not possible to get an output of the calculated value (there is no
built-in DA converter), it is not possible to verify the amplitude characteristics of the filter. In
order to obtain even so information about the filter characteristics which have been achieved,
the algorithm is simulated with a mathematical program and the amplitude characteristics
calculated.

In contrast to microcontrollers which calculate with 16 Bit precision, the algorithm in this
case operates with floating point accuracy. The shortened coefficients are however used. As
an example, a simulation program and the resulting amplitude characteristic of the 770 Hz
filter is shown. For comparison, the amplitude characteristic with unrounded coefficients is
also shown dotted (Figure 18):



Recognition of DTMF Signals

- 35 -

f( ),,,alpha gamma_1_n1 gamma_2 n1 t1 0

t2 0

for

k1 .( )t2 t1 alpha

k3 k1 t2

k2 k1 t1

t2 k2

t1 .k3 gamma_2 .x
i

gamma_1_n1

y
i

k3 t1

n1
x

i

∈i ..0 N

y

         Program for the verification of the 770 Hz filter with a mathematical simulation

program

• The resonance frequency lies at 773 Hz, and therefore the precalculated value for
alpha=0.234375 is reached exactly.

• The amplification of the filter is only -36 dB instead of -40 dB. This is a result of the
rounded coefficients gamma_1 and gamma_2. If the simulation is done with the exact
values, then the desired amplification of -40 dB will be obtained.

• The adjacent DTMF frequency (697 Hz) is amplified with -18.5 dB, corresponding to an
eighth of the input value. This separation is sufficient for unambiguous recognition of the
frequency.

This makes clear one of the excellent properties of Wave Digital Filters, namely their
insensitivity to rounding of the coefficients: despite considerable shortening of the
coefficients, and consequently of the calculation time, the characteristics of the filter are
maintained.

u f( ),,,0.234375 0.0242837 0.9745813 0.0248447

Function with unrounded values of gamma_1_n1, gamma_2, and n1

z f ,,,0.234375
1

32

1

32
1

1

32

Function with rounded values



Recognition of DTMF Signals

- 36 -

0 200 400 600 800 1000 1200 1400 1600 1800

40

35

30

25

20

15

10

5

FrequencyAmplification in dB

Amplitude characterisitic
with unrounded coefficients

Amplitude characterisitic
with rounded coefficients

697 Hz

-18.5 dB

Figure 18: Amplitude characteristic of the 770 Hz filter simulated with MathCad

7 Software for Digital Filter Algorithms

Digital filter algorithms need a lot of computing power, because many multiplications and
additions are needed for their calculation - particularly when the multiplications must be
performed without hardware multipliers, and calculated with shift and adding operations. As
a result, digital signal processors are often used for this, because they are provided with a fast
hardware multiplier having an accumulator (MAC), or at least with a Barrel Shifter, this
allowing shift operations in many places to be performed in a single process. It is therefore
unusual to implement a filter algorithm in real time with a slow microcontroller.

This can be done even so with the microcontroller MSP430, because instructions for which
the operands are in registers are performed within a single clock cycle. In addition, to
increase the computing speed the system clock rate is raised from 1 MHz to 3.3 MHz.

The connection to analog systems is made simple by the built-in ADC. The high resolution of
14 Bit guarantees good dynamic performance in the subsequent digital filter. As a result,
signals of low amplitude will be computed with the same accuracy as those with greater
amplitude. It is therefore possible to dispense with an external ADC.

If algorithms need to be processed in a real time system, then the calculation of a piece of
data must be completed before the next data arrives for calculation. The intermediate storage
of data  in a RAM is not possible, because at this point capacity is available for only a few
words of data. The data is delivered from the ADC during a pre-determined time period.

An interrupt frequency of 3640 Hz has been chosen for the TP timer. This corresponds to
nine ACLK periods. The ADC is started when the TP timer interrupt occurs. Since the ACLK
is taken directly from the 32.768 kHz quartz crystal oscillator, a sample rate is obtained
which is free of jittering and has quartz-crystal stability, and which so allows correct



Recognition of DTMF Signals

- 37 -

sampling of the analog signal, and therefore reliable computed values [10]. When the
conversion is finished, it is followed by the computation of 8 digital fílters and the
recognition of DTMF frequencies from the filter values. A time of 274.7 µs is therefore
available for the calculation and recognition algorithm. This corresponds to 915 cycles at a
cycle time of about 300 ns. After this time has elapsed, the computation must begin with the
next A/D values. The process of the algorithm is shown in Figure 19.

Initialisation:
Program ADC and 
TP-Timer Start Timer 
with
274,7 us intervall

Calculate 8 digital 
filters

Store filter values.
Count sample Runs

CPU in LPM

CPU in LPM

TP_INT

Start AD 
conversion

RETI

Start 
calculation in 
active mode

RETI

Fetch sample value 
from ADC AD_INT

Recognition of a 
DTMF signal from 

calculated filter 
values

DTMF_RX

Enough sample 
values aquired?

yes

no

Figure 19: Algorithm for the real-time computation of 8 digital fílters,
 and the recognition of DTMF Signals



Recognition of DTMF Signals

- 38 -

8 Software for the Recognition of DTMF Signals

In order to decode the DTMF characters which have been received from the calculated filter
values, a decoder algorithm must follow the computation of the filter. This must allocate two
recognized frequencies to a DTMF character. In addition, a comparison of the filter values is
performed during the filter calculation. In practice, for filters from the Hi-Group and Lo-
Group separately, the filter with the highest output value is identified and the amplitude of
the output value stored. Thus after each calculation of the 8 filters, the highest Lo-Group and
Hi-Group frequencies of the last run which have occurred is obtained. Figure 20 shows the
flow diagram of the decoder algorithm:



Recognition of DTMF Signals

- 39 -

Enough filter runs

Condition 1

Fulfilled

Condition 2

Fulfilled

Signal length 
reached

Signal length =0

Clear flag
Decrement 

length counter

Flag set

Determine place 
in Table

Display DTMF 
character

Set flag

Increase length 
counter

Clear counter for 
filter runs

Clear maximum 
memory

calculate next 
filter run

Filter calculation
completed

yes

yes no

yesno

yes

no

yes

no

no yes

no

Figure 20: Flow diagram of the decoder algorithm



Recognition of DTMF Signals

- 40 -

In order to ensure that all filters have reached a steady state, and the respective frequencies
have gone through their maximum amplitudes, 20 filter passes are always consolidated. If
enough samples have been calculated, the two maximum values from the Hi and Lo Group
are tested for their validity under two conditions. The first condition checks whether both
maximum values lie above the natural noise level. The second condition ensures that the
difference between the maximum values of both frequencies is not excessive.

These conditions can of course be extended further in order to improve the reception of
particularly weak signals.

If both conditions have been fulfilled, then the two DTMF frequencies are valid. These
frequencies must however only be recognized as DTMF signals after a specific time has
elapsed. The signal duration is therefore recorded with a duration counter. If the specific
signal duration has been reached, then the DTMF character is created from the frequencies in
the row and column of a table. In order to avoid recognizing the same character a second
time, should the signal duration be exceeded, a flag is set which displays the validity of the
character which has been received.

If one of these conditions has not been fulfilled, then the duration counter is decremented. If
the counter reaches zero, then this will be interpreted as a signal pause which separates
several successive dialing characters from one another. The flag can now be cleared.

Figure 21 shows the timing conditions for the recognition of a DTMF signal in graphical
form:

DTMF Signal

Length Counter

Flag

Valid DTMF
character recognized

Valid signal pause
recognized

Signal length
invalid

Signal interruption

Figure 21: Timing diagram for the recognition of a DTMF signal

; This Software calculates 8 Wave Digital Filters in order
; to detect DTMF Signals.
; The analog input Signal is sampled at pin A4 with a
; samplerate of 3640 Hz
; Recognized DTMF Characters are displayd on the LCD
; Robert Siwy, October 1997

FILTER_1 .equ 1 ;enable 1633 Filter
FILTER_2 .equ 1 ;enable 1477 Filter
FILTER_3 .equ 1 ;enable 1336 Filter
FILTER_4 .equ 1 ;enable 1209 Filter
FILTER_5 .equ 1 ;enable 941 Filter
FILTER_6 .equ 1 ;enable 852 Filter



Recognition of DTMF Signals

- 41 -

FILTER_7 .equ 1 ;enable 770 Filter
FILTER_8 .equ 1 ;enable 697 Filter

; USED HARDWARE DEFINITIONS
STACK  .equ 400h
TCCTL .equ 42h
TCPLD .equ 43h
TCDAT .equ 44h
BTCTL .equ 40h
LCDCTL .equ 30h
IE1 .equ 00h
IE2 .equ 01h
SCFI .equ 50h
SCFQCTL .equ 52h
WDTCTL .equ 0120h
WDTCL .equ 88h
WDTPW .equ 05a00h
ACTL    .equ 0114h
PD      .equ    1000h
ADAT    .equ    0118h

; SOFTWARE DEFINITIONS
DISPL .equ 031h ;Base address of LC-Display
LPM0  .equ 010h
LENGTH .equ 7 ;(Length+1) * 5.48ms=Signallength
THRE  .equ 100 ;threshold for noise

FLAG_REG .equ r4
LCOUNT .equ r5
ROW .equ r6 ;Lo-Group Row
COL .equ r7 ;Hi-Group Column
MAXLO .equ r8
IN .equ r9 ;Input Register
MAXHI .equ r10
OUT .equ r13
COUNT .equ r15

;**************************************************************
;  Memory Allocation for 8 Filter
;**************************************************************

.bss  T1_1633, 2

.bss  T2_1633, 2

.bss  T1_1477, 2

.bss  T2_1477, 2

.bss  T1_1336, 2

.bss  T2_1336, 2

.bss  T1_1209, 2

.bss  T2_1209, 2

.bss  T1_941, 2

.bss  T2_941, 2

.bss  T1_852, 2

.bss  T2_852, 2

.bss  T1_770, 2

.bss  T2_770, 2



Recognition of DTMF Signals

- 42 -

.bss  T1_697, 2

.bss  T2_697, 2

;**************************************************************
;  Program Code
;**************************************************************

 .text
INIT

mov  #STACK-2,SP ;initialize Stack
mov  #WDTPW+WDTCL,&WDTCTL ;hold watchdog
;Init. MCLK
mov.b #102-1,&SCFQCTL ;102*32.768Hz=3,342MHz
bis.b #008h,&SCFI0 ;Freq. Integr. to 3MHz
;Init. LCD/clear LCD Memory

CLRSCR
mov     #11,r5

clr1
     clr.b DISPL-1(r5)
    dec     r5
   jnz    clr1

mov.b #017h,&BTCTL ;LCD-Timing
mov.b #0ffh,&LCDCTL ;LCD-Gen.
;Init. AD-Wandler
mov #04912h,&ACTL ;Init. ADC with internal

;Reference
bis.b #004h,&IE2 ;enable ADC-Int.
;Init. 8B-Timer
mov.b #100h-9,&TCPLD ;8B-Timer to 9 ACLK=274us
mov.b #000h,&TCDAT ;load Counter
mov.b #068h,&TCCTL ;Init. 8B-Timer
mov.b #008h,&IE1 ;enable 8B-Timer Int.
eint
bis.b #LPM0,SR ;CPU off

DTMF_FILTER
inc COUNT
cmp #20,COUNT ;20 sample values?
jlo FILTER ;not 20 Samples, jump
;condition 1
cmp #THRE,MAXLO ;Maximum from Lo below threshold?
jlo FALSE ;yes, jump out

cmp #THRE,MAXHI ;Maximum from Hi below threshold?
jlo FALSE ;yes, jump out
;condition 2
rra  MAXLO ;divide MAXLO by two
cmp  MAXLO,MAXHI ;MAXHI > MAXLO/2
jlo  FALSE ;yes, jump out

rla  MAXLO ;restore MAXLO
rra  MAXHI ;divide MAXHI by two
cmp  MAXHI,MAXLO ;MAXLO > MAXHI/2
jlo  FALSE ;yes, jump out



Recognition of DTMF Signals

- 43 -

cmp #LENGTH,LCOUNT ;Signal length valid?
jeq DISPLAY ;yes, jump to display
inc LCOUNT ;no, increase length counter
jmp CONTINUE

DISPLAY
bit #01h,FLAG_REG ;test Flag
jnz CONTINUE ;already recognized, continue
add ROW,COL ;add ROW and COLUMN for table

     mov.b DTMF_Tab(COL),DISPL ;display DTMF Character
bis #01h,FLAG_REG ;set Flag
jmp CONTINUE

FALSE
tst LCOUNT
jnz FALSE1

     mov.b #008h,DISPL+3 ;display valid pause
     mov.b #008h,DISPL+4 ; " "

bic #01h,FLAG_REG ;clear Flag
jmp  CONTINUE

FALSE1
dec LCOUNT

CONTINUE
clr MAXHI
clr MAXLO
clr COUNT

FILTER
mov  &ADAT,IN ;Sample to r9/IN
sub  #01fffh,IN ;form signed value
rla  IN ;*2
rla  IN ;*2

.if  FILTER_1
FILTER_1633

mov T2_1633,r12 ;N11=T2/4-T1
mov r12,r13
rra r12
rra r12
sub T1_1633,r12 ;N11 in r12

mov r12,r14 ;N11*2*alpha-T2
rra r12
rra r12
rra r12
mov r12,r11
rra r12
add r12,r11
sub r13,r11 ;N15 in r11
mov r11,T2_1633 ;N3=N15/4-N11
rra r11
rra r11
sub r14,r11 ;N3 in r11

;"Common" Lossy-Adaptor



Recognition of DTMF Signals

- 44 -

;expects N3 in r11
;1/n1=32, gamma_2=-1+1/32)
;n1*gamma_1=1/32

mov r11,r13 ;save N3 to r13
mov IN,r12 ;T1=N3*gamma_2+n1*gamma_1*IN
rra r12
rra r12
rra r12
rra r12
rra r12 ;n1*gamma_1*IN in r12
sub r11,r12
rra r11
rra r11
rra r11
rra r11
rra r11
add r11,r12 ;T1 in r12
mov r12,T1_1633 ;save T1 to RAM

rla r13 ;N3 * 32
rla r13
rla r13
rla r13
rla r13

rla r12 ;T1 * 32
rla r12
rla r12
rla r12
rla r12
sub IN,r12
add r12,OUT ;r13 is OUT

;************************************
cmp OUT,MAXHI ;compare Output with MAX
jge SWAP1
mov OUT,MAXHI ;big value to MAX
mov #03,COL ;set Column to 3

SWAP1 ;************************************
;Standard-Lossy End

FILTER_1633_END
.endif

.if  FILTER_2
FILTER_1477

mov T2_1477,r12 ;N11=T/2-T1
 mov r12,r13

rra r12
sub T1_1477,r12 ;N11 in r12

mov r12,r14 ;N15=N11*2*alpha-T2
rra r12
rra r12
mov r12,r11
rra r12



Recognition of DTMF Signals

- 45 -

rra r12
add r12,r11
rra r12
add r12,r11
sub r13,r11 ;N15 in r11
mov r11,T2_1477 ;N3=N15/2-N11
rra r11
sub r14,r11 ;N3 in r11

;"Common" Lossy-Adaptor
;expects N3 in r11
;1/n1=32, gamma_2=-1+1/32)
;n1*gamma_1=1/32

mov r11,r13 ;save N3 to r13
mov IN,r12 ;T1=N3*gamma_2+n1*gamma_1*IN
rra r12
rra r12
rra r12
rra r12
rra r12 ;n1*gamma_1*IN in r12
sub r11,r12
rra r11
rra r11
rra r11
rra r11
rra r11
add r11,r12 ;T1 in r12
mov r12,T1_1477 ;save T1 to RAM

rla r13 ;N3 * 32
rla r13
rla r13
rla r13
rla r13

rla r12 ;T1 * 32
rla r12
rla r12
rla r12
rla r12
sub IN,r12
add r12,OUT ;r13 is OUT

;************************************
cmp OUT,MAXHI ;compare Output with MAX
jge SWAP2
mov OUT,MAXHI ;big value to MAX
mov #02,COL ;set Column to 2

SWAP2 ;************************************
;Common-Lossy End

FILTER_1477_ENDE
.endif

.if FILTER_3
FILTER_1336

mov  T2_1336,r12 ;N11=T2-T1



Recognition of DTMF Signals

- 46 -

mov  r12,r13
sub  T1_1336,r12 ;N11 in r12

mov  r12,r14 ;N15=N11*alpha-T2
rra  r12
rra  r12
mov  r12,r11
rra  r12
rra  r12
add  r12,r11
rra  r12
rra  r12
add  r12,r11
sub  r13,r11 ;N15 in r11
mov  r11,T2_1336
sub  r14,r11 ;N3=N15-N11 in r11

 ;"Common" Lossy-Adaptor
 ;expects N3 in r11
 ;1/n1=32, gamma_2=-1+1/32)
 ;n1*gamma_1=1/32

mov  r11,r13 ;save N3 to r13
mov  IN,r12 ;T1=N3*gamma_2+n1*gamma_1*IN
rra  r12
rra  r12
rra  r12
rra  r12
rra  r12 ;n1*gamma_1*IN in r12
sub  r11,r12
rra  r11
rra  r11
rra  r11
rra  r11
rra  r11
add  r11,r12 ;T1 in r12
mov  r12,T1_1336 ;save T1 to RAM

rla  r13 ;N3 * 32
rla  r13
rla  r13
rla  r13
rla  r13

rla  r12 ;T1 * 32
rla  r12
rla  r12
rla  r12
rla  r12

sub  IN,r12
add  r12,OUT ;r13 is OUT

 ;************************************
cmp  OUT,MAXHI ;compare Output with MAX
jge  SWAP3



Recognition of DTMF Signals

- 47 -

mov  r13,MAXHI ;big value to MAX
mov  #01,COL ;set Column to 1

SWAP3  ;************************************
 ;Common-Lossy End

FILTER_1336_ENDE
 .endif

 .if  FILTER_4
FILTER_1209

mov  T2_1209,r13 ;N1=(T1-T2)*alpha
mov  T1_1209,r11
mov  r11,r14
sub  r13,r11
rra  r11 ;N1 in r11
mov  r11,r12 ;N3=N1-T2
sub  r13,r11 ;N3 in r11

sub  r14,r12 ;N2=N1-T1 in r12
mov  r12,T2_1209

 ;"Common" Lossy-Adaptor
 ;expects N3 in r11
 ;1/n1=32, gamma_2=-1+1/32)
 ;n1*gamma_1=1/32

mov  r11,r13 ;save N3 to r13
mov  IN,r12 ;T1=N3*gamma_2+n1*gamma_1*IN
rra  r12
rra  r12
rra  r12
rra  r12
rra  r12 ;n1*gamma_1*IN in r12
sub  r11,r12
rra  r11
rra  r11
rra  r11
rra  r11
rra  r11
add  r11,r12 ;T1 in r12
mov  r12,T1_1209 ;save T1 to RAM

rla  r13 ;N3 * 32
rla  r13
rla  r13
rla  r13
rla  r13

rla  r12 ;T1 * 32
rla  r12
rla  r12
rla  r12
rla  r12
sub  IN,r12
add  r12,OUT ;r13 is OUT

 ;************************************
cmp  OUT,MAXHI ;compare Output with MAX



Recognition of DTMF Signals

- 48 -

jge  SWAP4
mov  r13,MAXHI ;big value to MAX
mov  #00,COL ;set Column to 0

SWAP4  ;************************************
 ;Common-Lossy End

FILTER_1209_ENDE
 .endif

 .if  FILTER_5
FILTER_941

mov  T2_941,r13 ;N1=(T1-T2)*alpha
mov  T1_941,r12
mov  r12,r14
sub  r13,r12
rra  r12
rra  r12
rra  r12
rra  r12
rra  r12
mov  r12,r11
rra  r12
add  r12,r11
mov  r11,r12 ;N1 in r11/r12
sub  r13,r11 ;N3=N1-T2 in r11
sub  r14,r12 ;N2=N1-T1
mov  r12,T2_941

 ;"Common" Lossy-Adaptor
 ;expects N3 in r11
 ;1/n1=32, gamma_2=-1+1/32)
 ;n1*gamma_1=1/32

mov  r11,r13 ;save N3 to r13
mov  IN,r12 ;T1=N3*gamma_2+n1*gamma_1*IN
rra  r12
rra  r12
rra  r12
rra  r12
rra  r12 ;n1*gamma_1*IN in r12
sub  r11,r12
rra  r11
rra  r11
rra  r11
rra  r11
rra  r11
add  r11,r12 ;T1 in r12
mov  r12,T1_941 ;save T1 to RAM

rla  r13 ;N3 * 32
rla  r13
rla  r13
rla  r13
rla  r13

rla  r12 ;T1 * 32
rla  r12



Recognition of DTMF Signals

- 49 -

rla  r12
rla  r12
rla  r12

sub  IN,r12
add  r12,OUT ;r13 is OUT

 ;************************************
cmp  OUT,MAXLO ;compare Output with MAX
jge  SWAP5
mov  r13,MAXLO ;big value to MAX
mov  #012,ROW ;set Row to 12

SWAP5  ;************************************
 ;Common-Lossy End

FILTER_941_ENDE
 .endif

 .if  FILTER_6
FILTER_852

mov  T2_852,r11 ;N1=(T2-T1)*alpha
mov  r11,r12
mov  T1_852,r13
sub  r13,r12
rra  r12
rra  r12
rra  r12
rra  r12
mov  r12,r14
rra  r12
add  r12,r14 ;N1 in r14
add  r14,r11 ;N3=T2+N1 in r11
add  r14,r13 ;N2=T1+N1
mov  r13,T2_852

 ;"Common" Lossy-Adaptor
 ;expects N3 in r11
 ;1/n1=32, gamma_2=-1+1/32)
 ;n1*gamma_1=1/32

mov  r11,r13 ;save N3 to r13
mov  IN,r12 ;T1=N3*gamma_2+n1*gamma_1*IN
rra  r12
rra  r12
rra  r12
rra  r12
rra  r12 ;n1*gamma_1*IN in r12
sub  r11,r12
rra  r11
rra  r11
rra  r11
rra  r11
rra  r11
add  r11,r12 ;T1 in r12
mov  r12,T1_852 ;save T1 to RAM

rla  r13 ;N3 * 32
rla  r13



Recognition of DTMF Signals

- 50 -

rla  r13
rla  r13
rla  r13

rla  r12 ;T1 * 32
rla  r12
rla  r12
rla  r12
rla  r12
sub  IN,r12

add  r12,OUT ;r13 is OUT
 ;************************************

cmp  OUT,MAXLO ;compare Output with MAX
jge  SWAP6
mov  r13,MAXLO ;big value to MAX
mov  #08,ROW ;set Row to 8

SWAP6  ;************************************
 ;Common-Lossy End

FILTER_852_ENDE
 .endif

 .if  FILTER_7
FILTER_770

mov  T2_770,r11  ;N1=(T2-T1)*alpha
mov  r11,r12
mov  T1_770,r13
sub  r13,r12
rra  r12
rra  r12
mov  r12,r14
rra  r12
rra  r12
rra  r12
rra  r12
sub  r12,r14  ;N1 in r14
add  r14,r11  ;N3=T2+N1 in r11
add  r14,r13  ;N2=T1+N1
mov  r13,T2_770

 ;"Common" Lossy-Adaptor
 ;expects N3 in r11
 ;1/n1=32, gamma_2=-1+1/32)
 ;n1*gamma_1=1/32

mov  r11,r13 ;save N3 to r13
mov  IN,r12 ;T1=N3*gamma_2+n1*gamma_1*IN
rra  r12
rra  r12
rra  r12
rra  r12
rra  r12 ;n1*gamma_1*IN in r12
sub  r11,r12
rra  r11
rra  r11
rra  r11



Recognition of DTMF Signals

- 51 -

rra  r11
rra  r11
add  r11,r12 ;T1 in r12
mov  r12,T1_770 ;save T1 to RAM

rla  r13 ;N3 * 32
rla  r13
rla  r13
rla  r13
rla  r13

rla  r12 ;T1 * 32
rla  r12
rla  r12
rla  r12
rla  r12
sub  IN,r12

add  r12,OUT ;r13 is OUT
 ;************************************

cmp  OUT,MAXLO ;compare Output with MAX
jge  SWAP7
mov  r13,MAXLO ;big value to MAX
mov  #04,ROW ;set Row to 4

SWAP7  ;************************************
 ;Common-Lossy End

FILTER_770_ENDE
 .endif

 .if FILTER_8
FILTER_697

mov  T2_697,r11
mov  r11,r12
mov  T1_697,r13
sub  r13,r12
rra  r12
rra  r12
mov  r12,r14
rra  r12
add  r12,r14
rra  r12
rra  r12
rra  r12
sub  r12,r14 ;N1 in r14
add  r14,r11 ;N3=T2+N1 in r11
add  r14,r13
mov  r13,T2_697

 ;"Common" Lossy-Adaptor
 ;expects N3 in r11
 ;1/n1=32, gamma_2=-1+1/32)
 ;n1*gamma_1=1/32

mov  r11,r13 ;save N3 to r13
mov  IN,r12 ;T1=N3*gamma_2+n1*gamma_1*IN
rra  r12



Recognition of DTMF Signals

- 52 -

rra  r12
rra  r12
rra  r12
rra  r12 ;n1*gamma_1*IN in r12
sub  r11,r12
rra  r11
rra  r11
rra  r11
rra  r11
rra  r11
add  r11,r12 ;T1 in r12
mov  r12,T1_697 ;save T1 to RAM
rla  r13 ;N3 * 32
rla  r13
rla  r13
rla  r13
rla  r13
rla  r12 ;T1 * 32
rla  r12
rla  r12
rla  r12
rla  r12
sub  IN,r12
add  r12,OUT ;r13 is OUT

 ;************************************
cmp  OUT,MAXLO ;compare Output with MAX
jge  SWAP8
mov  OUT,MAXLO ;big value to MAX
mov  #00,ROW ;set Row to 0

SWAP8  ;************************************
 ;Common-Lossy End

FILTER_697_ENDE
 .endif

FILTER_ENDE
bis.b #LPM0,SR ;CPU aus
br  #DTMF_FILTER

;**************************************************************
;  8Bit-Timer Interrupt
;**************************************************************
TIM_8B

bic  #PD,&ACTL ;AD-Wandler an
bis  #001h,&ACTL ;start AD-Wandlung

reti

;**************************************************************
;   ADC Interrupt
;**************************************************************
AD_INT

bis  #PD,&ACTL ;AD-Wandler aus
bic  #0f0h,0(SP) ;AM to Stack



Recognition of DTMF Signals

- 53 -

reti

;**************************************************************
; LCD  Definitions
;**************************************************************
LCD_TYPE
a  .equ    01h
b    .equ    02h
c    .equ    10h
d    .equ    04h
e    .equ    80h
f    .equ    20h
g    .equ    08h
h    .equ    40h

;**************************************************************
;   LCD Table for DTMF Numbers
;**************************************************************
DTMF_Tab
        .byte   b+c           ; displays "1"
        .byte   a+b+d+e+g     ; displays "2"
        .byte   a+b+c+d+g     ; displays "3"
        .byte   a+b+c+e+f+g   ; displays "A"
        .byte   b+c+f+g       ; displays "4"
        .byte   a+c+d+f+g     ; displays "5"
        .byte   a+c+d+e+f+g   ; displays "6"
        .byte   c+d+e+f+g     ; displays "B" b
        .byte   a+b+c         ; displays "7"
        .byte   a+b+c+d+e+f+g ; displays "8"
        .byte   a+b+c+d+f+g   ; displays "9"
        .byte   a+d+e+f       ; displays "C"
        .byte   a+d+e+f+g     ; displays "E"
        .byte   a+b+c+d+e+f   ; displays "0"
        .byte   a+e+f+g       ; displays "F"
        .byte   b+c+d+e+g     ; displays "D" d

;**************************************************************
;   Interrupt Vector Table
;**************************************************************

  .sect "Int_Vect"  ,0ffe0h

  .word   INIT ; Port0, bit 2 to bit 7
  .word   INIT ; Basic Timer
  .word   INIT ; no source
  .word   INIT ; no source
  .word   INIT ; Timer Port
  .word   AD_INT ; EOC from ADC
  .word   INIT ; no source
  .word   INIT ; no source
  .word   INIT ; no source
  .word   INIT ; no source
  .word   INIT ; Watchdog/Timer, Timer mode
  .word   INIT ; no source
  .word   TIM_8B ; 8b-Timer (P0.0 Int)



Recognition of DTMF Signals

- 54 -

  .word   INIT ; P0.0 Int.
  .word   INIT ; NMI, Osc. fault
  .word   INIT ; POR, ext. Reset, Watchdog



Recognition of DTMF Signals

- 55 -

9 Hardware for coupling in signals

The conversion of the analog signals into digital values should be done with the ADC which
is contained in the MSP430C25x. The reference voltage is applied to Pin SVCC. This can
either be generated externally, or taken from the operating voltage of the controller (VDD).
The voltage range between 0 V and SVCC will then be resolved at up to 14 Bit. The
operating voltage must be 5V, because of the high clock frequency of the CPU of 3.3 MHz. If
this voltage is used as the reference voltage for the ADC and connected via an internal switch
to Pin SVCC, then it is possible to do without an external reference voltage. One LSB then
corresponds to a voltage of 0.305 mV. Commercially available DTMF receivers accept signal
levels from about +1 dBm (600Ω) to -31 dBm (600Ω). This corresponds to amplitudes
from 1.230 V down to 30.8 mV. The lowest voltage will thus still be resolved with about 100
steps. If still lower voltages need to be processed, an external voltage reference can be
connected to Pin SVCC. A capacitor (C1) filters out interference from the external or internal
reference voltage. To calculate the digital filter components, measurement values with signs
are needed which the ADC can not supply. The analog input which is used is therefore biased
by means of two close tolerance resistors (R1/R2) connected to SVCC/2, and the signal to be
sampled connected in capacitively via C2. The numerical value of SVCC/2 is then subtracted
from each digital input value. If the output value of the ADC in a quiescent state should give
a numerical value of 01fffh with a resolution of 14 Bit, this being at the same time the
voltage SVCC/2, then the remainder after subtraction of the numerical value of SVCC/2 is
01fffh-01fffh=0000h. Positive voltages thus result in positive numerical values, and vice
versa. The coupling capacitor C2 and the resistors R3 + ( R1 || R2 ) together form a high pass
filter. If the cutoff frequency is fixed at about 200 Hz, lower frequency interference - for
example mains (line) hum - will be suppressed. The ADC input is protected from excessive
voltages by the resistor R3 and the Zener diode D1. The corresponding circuit diagram is
shown in Figure 22:

Figure 22: Circuit diagram showing coupling in of signals to the ADC

Since the measurement value with signs are only 14 Bit wide, whereas processing in the CPU
can be performed with 16 Bit, before calculation the measurement values are shifted two
places to the left, corresponding to a multiplication with 4. Due to this input scaling one takes



Recognition of DTMF Signals

- 56 -

better advantage of the available dynamic range and the noise caused by the rounding process
during the multiplications is reduced.



Recognition of DTMF Signals

- 57 -

10 Measurements and Results

Figure 23 shows the filtering duration for a sampling period. Channel 1 represents the ADC
Interrupt; whenever an Interrupt occurs, a signal is delivered to a port pin. Channel 2 shows
the duration in time of the filter calculation; a port is set at the beginning, and again cleared
at the end of the  algorithm.

The algorithm requires only 55% of the time which is available. The system frequency is
3.3 MHz. This results in a cycle time of 300 ns. There are therefore 915 Cycles available
between two sampling periods. 474 Cycles are needed for the calculation of the 359
instructions. This results in an actual computing speed of 2.53 MIPS. As a result of the use of
many registers/register instructions, an average of only 1.32 Cycles/Instruction are needed.
Although the calculation speed is very high, the current consumption of the application is
only about 1.8 mA.

The software needs about 1 KB memory in the ROM and 32 Bytes in the RAM.

Figure 23: Duration of filter calculations resulting from sampling



Recognition of DTMF Signals

- 58 -

11 Summary

The computation of real-time systems  requires high computing speed, and DSPs are
therefore often used for this purpose. The use of the MSP430 in this system for the
calculation of digital filters is unusual, particularly since the multiplications must be
performed without hardware multipliers. The MSP430 is however suitable for just those
systems in which frequencies must be recognized from sampled values, and the calculated
digital values no longer need to be taken via a D/A converter to the output. A high
performance ADC has already been integrated into the MSP430. The resolution of 14 Bit
guarantees high dynamic range for conversion  and calculations.

In the application exemplified here, frequencies having input levels from 25 mVRMS up to 1.5
VRMS can be processed without problems. The resulting dynamic range is with more than 35
dB so great that commercially available DTMF receivers can easily be replaced. Since the 14
Bit ADC offers a theoretical dynamic range of 84 dB, there is no obstacle to extending the
dynamic range for the recognition of signals further in both directions. This makes it
possible, for example, to dispense with an internal reference voltage.

Depending on the complexity of the filter and the necessary sampling rate, signals of up to  5
kHz can be acquired with this system.

The development and implementation of eight narrow band bandpass filters which has been
described here demonstrates:

• the suitability of the MSP430 and the built-in ADC for real-time filtering applications;

• the excellent properties of the wave digital filter;

• the efficiency of an average of 1.32 Cycles per instruction, made possible by RISC
processor architecture and an orthogonal instruction set;

• and that 359 instructions are adequate for 8 DTMF filters.



Recognition of DTMF Signals

- 59 -

12 References

[1] Bundesamt für Post und Telekommunikation (Federal Office for Post and Tele-

communications): BAPT 223 ZV 5, Zulassungsvorschrift für Endeinrichtungen zur

Anschaltung an analoge Wählanschlüsse (ausgenommen Notruf- und Durchwahl-

anschlüsse) des Telefonnetzes (approval specification for end equipment to be

connected to analog dialing connections of the telephone network, except for

emergency and in-dialing connections) / ISDN of the Deutschen Bundespost Telekom;

Bundesministerium für Post und Telekommunikation, Draft, Bonn April 1994

[2] Tietze / Schenk: Halbleiterschaltungstechnik; (Semiconductor Circuit Design), 10th.

Edition; Springer Verlag, Berlin 1993

[3] Marven / Ewers: A Simple Approach to Digital Signal Processing; Texas Instruments,

1994

[4] Sauvagerd, Ulrich: A Ten-Channel Equalizer for Digital Audio-Applications; IEEE

Transactions on Circuit and Systems, Vol. CAS-36, No 2, February 1989, pp. 276-280

[5] Kaiser, Ulrich: RISP: Eine digitale Signalprozesorarchitektur mit reduziertem

Befehlssatz für Wellen-Digitalfilter (Digital Processor Architecture with Reduced

Instruction Set for Wave Digital Filters); Dissertation, Fakultät für Elektrotechnik,

Ruhr-Universität Bochum 1991

[6] Lutz Bierl / Texas Instruments: MSP430 Family, Metering Application Report, Texas

Instruments, Version 2.1, Jan 1996

[7] Texas Instruments: MSP430 Family, Architecture User’s Guide and Module Library,

Texas Instruments, 1996

[8] Texas Instruments: MSP430 Family, Software User’s Guide, Texas Instruments, 1996

[9] Texas Instruments: MSP430 Family, Assembly Language Tools User’s Guide, Texas

Instruments, 1996

[10] Kitzberger, Holger: Aufbau einer Signalprozessorkarte mit MSP430 und Untersuchung

eines Wellen-Digitalfilters; (Design of a signal processor card with the MSP430, and

tests on a wave digital filter) Diplomarbeit, Fachhochschule Regensburg, April 1994

[11] Siwy, Robert: Systementwicklung einer Telekom-Applikation zum Senden und

Empfangen von DTMF-Signalen mit dem Microcontroller MSP430 (System

development of a telecom application to send and receive digital signals with the

Microcontroller MSP430); Diplomarbeit, Fachhochschule Landshut, Mai 1997



Recognition of DTMF Signals

- 60 -

Additional Literature

All details refer to a list of additional literature provided by Ulrich Kaiser:

{5} Fettweis, A.: Wave Digital Filters: Theory and Practice; IEEE Proceedings, Vol. 74, 
No. 2, Feb. 1986, pp. 270-327

{107} Kaiser, Ulrich: Wellen-Digitalfilter - Prädestiniert für Kundenspezifische digitale

Signalverarbeitung (Wave digital filters: predestined for customer specific digital 

signal processing); ELEKTRONIK 26/1988 , pp. 49-53 and 1/1989, pp. 50-54

{12} Gaszi, L.: DSP-Based Implementation of a Transmultiplexer using Wave Digital 

Filters; IEEE Trans. on Communications, Vol. COM-30, No. 7, pp. 1587-1597, July

1982

{22} Wegener, W.: Entwurf von Wellen-Digitalfiltern mit minimalem Realisierungs-

aufwand (Design of wave digital filters with minimum effort); Dissertation, Abteilung

für Elektrotechnik, Ruhr-Universität Bochum 1980

{120} Claesen, T. / Mecklenbräuker W. / Peek, J.: On the Stability of the Force Response 

of Digital Filters with Overflow Nonlinearities, IEEE Trans. Circuits and Systems, 

Vol. CAS-22, August 1975, pp. 692-696

{136} Cervera, A.: Untersuchungen der Stabilität konventioneller rekursiver Digitalfilter 

unter Schleifenbedingungen (Investigation of the stability of conventional recursive 

digital filters under loop conditions); Dissertation, Ruhr-Universität Bochum 1987

{19} Fettweis, A., Meerkötter, K.: On Parasitic Oscillations in Digital Filters under 

Looped Conditions, IEEE Trans. on Circuits and Systems, Vol. CAS-24, No. 9, 

September 1977, pp. 475-481

{228} Kaiser, U., Wave Digital Filtering for TI’s Sensor Signal Processor MSP430,

TI Technical Journal, Vol. 11, No. 6, Nov. 1994, pp. 65-83

{235} Kaiser, U., Wave Digital Filter Implementations on the Low-Power Sensor Signal

Processor MSP430, Proc. of European Conference on Circuit Theory and

Design, ECCTD’97, 1.-3.Sept.1997, Budapest, pp. 777-782


