

NTE1910 Integrated Circuit Positive 3 Terminal Voltage Regulator, 9V, 1A

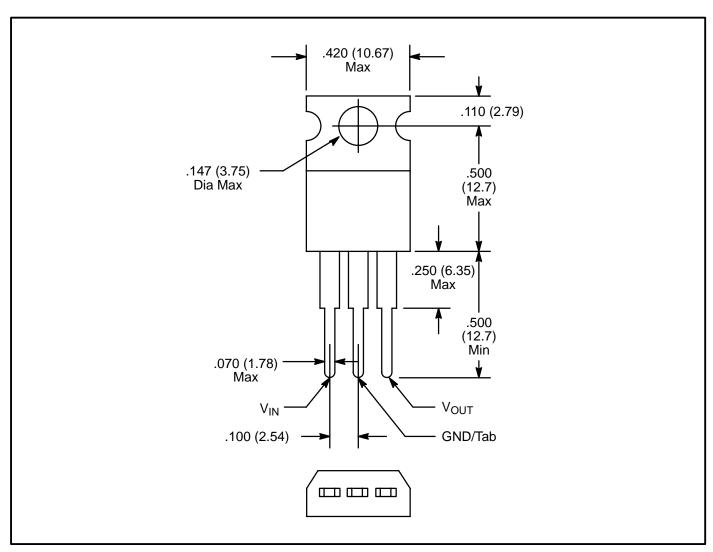
Description:

The NTE1910 is a 3 terminal fixed positive voltage regulator in a TO220 type package. Stabilized fixed output voltage is obtained from unstabe DC input voltage without the use of external components.

Features:

- No External Components
- Output Current in Excess of 1A
- Internal Short-Circuit Current Limiting
- Internal Thermal Overload Protection
- Output Transistor Safe Area Compensation

Storage Temperature Range, T_{stq} –55° to +150C


Electrical Characteristics: $(T_A = +25^{\circ}C \text{ unless otherwise specified})$

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Output Voltage	Vo	T _J = 25°C	8.65	9.0	9.35	V
Output Voltage Tolerance	Vo	V_I = 12V to 24V, I_O = 5mA to1A, T_J = 0° to +125°C, P_D ≤ 15W	8.55	_	9.45	V
Line Regulation	REG _{IN}	$V_I = 11.5V$ to 26V, $T_J = 25^{\circ}C$	_	7	180	mV
		$V_{I} = 12V \text{ to } 18V, T_{J} = 25^{\circ}C$	_	2	90	mV
Load Regulation	REG _L	$I_{O} = 5$ mA to 1.5A, $T_{J} = 25$ °C	_	12	180	mV
		$I_{O} = 250 \text{mA} \text{ to } 750 \text{mA}, T_{J} = 25^{\circ}\text{C}$	_	4	90	mV
Bias Current	I _{BIAS}	T _J = 25°C	_	3.9	8.0	mA
Input Bias Current Change	$\Delta I_{BIAS(IN)}$	$V_I = 11.5V$ to 26V, $T_J = 25^{\circ}C$	_	_	1	mA

<u>Electrical Characteristics (Cont'd):</u> (T_A = +25°C unless otherwise specified)

Parameter	Symbol	Test Conditions	Min	Тур	Max	Unit
Load Bias Current Change	$\Delta I_{BIAS(L)}$	$I_{O} = 5$ mA to 1.5A, $T_{J} = 25$ °C	_	_	0.5	mA
Output Noise Voltage	V _{no}	f = 10Hz to 100kHz	_	57	_	μV
Ripple Rejection Ratio	RR	$V_I = 12V \text{ to } 22V, I_O = 100\text{mA},$ f = 120Hz	56	_	_	dB
Minimum Input/Output Voltage Difference	V _{DIF(min)}	$I_{O} = 1A, T_{J} = 25^{\circ}C$	_	2	_	V
Output Impedance	Z _O	f = 1kHz	_	16	_	mΩ
Output Short Circuit Current	I _{O(short)}	V _I = 26V, T _J = 25°C	_	700	_	mA
Peak Output Current	I _{O(peak)}	T _J = 25°C	_	2	_	Α
Output Voltage Temperature Coefficient	$\Delta V_{O}/T_{A}$	$I_{O} = 5$ mA, $T_{J} = 0$ ° to +125°C	_	-0.5	_	mV/°C

- Note 1. The specified condition, $T_J = +25^{\circ}C$, means that the test should be carried out with the test time so short (within 10ms) that the drift in characteristic value due to the rise in chip junction temperature can be ignored.
- Note 2. When not specified, V_I = 15V, I_O = 500mA, C_I = 0.33 μ f, and C_O = 0.1 μ f.

