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AVR200: Multiply and Divide Routines 

Features 
• 8 and 16-bit Implementations 
• Signed & Unsigned Routines 
• Speed & Code Size Optimized Routines  
• Runable Example Programs 
• Speed is Comparable with HW Multiplicators/Dividers 
• Example: 8 x 8 Mul in 2.8 µs, 16 x 16 Mul in 8.7 µs (12 MHz) 
• Extremely Compact Code 

1 Introduction 
This application note lists subroutines for multiplication and division of 8- and 16-bit 
signed and unsigned numbers. A listing of all implementations with key 
performance specifications is given in Table 1-1. 

Table 1-1. Performance Figures Summary 

Application 
Code Size 
(Words) 

Execution Time 
(Cycles) 

8 x 8 = 16 bit unsigned (Code Optimized) 9 58 

8 x 8 = 16 bit unsigned (Speed Optimized) 34 34 

8 x 8 = 16 bit signed (Code Optimized) 10 73 

16 x 16 = 32 bit unsigned (Code Optimized) 14 153 

16 x 16 = 32 bit unsigned (Speed Optimized) 105 105 

16 x 16 = 32 bit signed (Code Optimized) 16 218 

8 / 8 = 8 + 8 bit unsigned (Code Optimized) 14 97 

8 / 8 = 8 + 8 bit unsigned (Speed Optimized) 66 58 

8 / 8 = 8 + 8 bit signed (Code Optimized) 22 103 

16 / 16 = 16 + 16 bit unsigned (Code Optimized) 19 243 

16 / 16 = 16 + 16 bit unsigned (Speed Optimized) 196 173 

16 / 16 = 16 + 16 bit signed (Code Optimized) 39 255 
 
The application note listing consists of two files: 

• “avr200.asm”: Code size optimized multiplied and divide routines. 
• “avr200b.asm”: Speed optimized multiply and divide routines. 
 

 

  
 



 

2 AVR200 

2   8 x 8 = 16 Unsigned Multiplication – “mpy8u” 
Both program files contain a routine called “mpy8u” which performs unsigned 8-bit 
multiplication. Both implementations are based on the same algorithm. The code size 
optimized implementation, however, uses looped code whereas the speed optimized 
code is a straight-line code implementation. Figure 2-1 shows the flow chart for the 
code size optimized version. 

2.1 Algorithm Description 
The algorithm for the Code Size optimized version is as follows: 

1. Clear result High byte. 
2. Load Loop counter with eight. 
3. Shift right multiplier 
4. If carry (previous bit 0 of multiplier) set, add multiplicand to result High byte. 
5. Shift right result High byte into result Low byte/multiplier. 
6. Shift right result Low byte/multiplier. 
7. Decrement Loop counter. 
8. If Loop counter not zero, go to Step 4. 
 
Figure 2-1. “mpy8u” Flow Chart (Code Size Optimized Implementation) 
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2.2 Usage 
The usage of “mpy8u” is the same for both versions: 

1. Load register variables “mp8u” and “mc8u” with the multiplier and multiplicand, 
respectively. 

2. Call “mpy8u”. 
3. The 16 -bit result is found in the two register variables “m8uH” (High byte) and 

“m8uL” (Low byte). 
Observe that to minimize register usage, code and execution time, the multiplier and 
result Low byte share the same register. 

2.3 Performance 
 

Table 2-1. “mpy8u” Register Usage (Code Size Optimized Implementation) 
Register Input Internal Output 

R16 “mc8u” – Multiplicand   

R17 “mp8u” – Multiplier  “m8uL” – Result Low Byte 

R18   “m8uH” – Result High Byte 

R19  “mcnt8u” – Loop Counter  
 

Table 2-2. “mpy8u” Performance Figures (Code Size Optimized Implementation) 
Parameter Value  

Code Size (Words) 9 + return  

Execution Time (Cycles) 58 + return  

Register Usage • Low Registers 
• High Registers 
• Pointers 

:None 
:4 
:None 

Interrupts Usage None  

Peripherals Usage None  
 

Table 2-3. “mpy8u” Register Usage (Straight-line Implementation) 
Register Input Internal Output 

R16 “mc8u” – Multiplicand   

R17 “mp8u” – Multiplier  “m8uL” – Result Low Byte 

R18   “m8uH” – Result High Byte 
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Table 2-4. “mpy8u” Performance Figures (Straight-line Implementation) 
Parameter Value  

Code Size (Words) 34 + return  

Execution Time (Cycles) 34 + return  

Register Usage • Low Registers 
• High Registers 
• Pointers 

:None 
:3 
:None 

Interrupts Usage None  

Peripherals Usage None  
 

3   8 x 8 = 16 Signed Multiplication – “mpy8s” 
This subroutine, which is found in “avr200.asm” implements signed 8 x 8 
multiplication. Negative numbers are represented as 2’s complement numbers. The 
application is an implementation of Booth's algorithm. The algorithm provides both 
small and fast code. However, it has one limitation that the user should bear in mind; 
If all 16 bits of the result is needed, the algorithm fails when used with the most 
negative number (-128) as the multiplicand. 

3.1 Algorithm Description 
The algorithm for signed 8 x 8 multiplication is as follows: 

1. Clear result High byte and carry. 
2. Load Loop counter with eight. 
3. If carry (previous bit 0 of multiplier) set, add multiplicand to result High byte. 
4. If current bit 0 of multiplier set, subtract multiplicand from result High byte. 
5. Shift right result High byte into result Low byte/multiplier. 
6. Shift right result Low byte/multiplier. 
7. Decrement Loop counter. 
8. If Loop counter not zero, go to Step 3. 
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Figure 3-1. “mpy8s” Flow Chart 
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3.2 Usage 
The usage of “mpy8s” is as follows: 

1. Load register variables “mp8s” and “mc8s” with the multiplier and multiplicand, 
respectively. 

2. Call “mpy8s”. 
3. The 16 -bit result is found in the two register variables “m8sH” (High byte) and 

“m8sL” (Low byte). 
Observe that to minimize register usage, code and execution time, the multiplier and 
result Low byte share the same register. 

3.3 Performance 
Table 3-1. “mpy8s” Register Usage 

Register Input Internal Output 

R16 “mc8s” – Multiplicand   

R17 “mp8s” – Multiplier  “m8sL” – Result Low Byte 

R18   “m8sH” – Result High Byte 

R19  “mcnt8s” – Loop Counter  
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Table 3-2. “mpy8s” Performance Figures  
Parameter Value  

Code Size (Words) 10 + return  

Execution Time (Cycles) 73 + return  

Register Usage • Low Registers 
• High Registers 
• Pointers 

:None 
:4 
:None 

Interrupts Usage None  

Peripherals Usage None  
 

4   16 x 16 = 32 Unsigned Multiplication – “mpy16u” 
Both program files contain a routine called “mpy16u” which performs unsigned 16-bit 
multiplication. Both implementations are based on the same algorithm. The code size 
optimized implementation, however, uses looped code whereas the speed optimized 
code is a straight-line code implementation. Figure 4-1 shows the flow chart for the 
Code Size optimized (looped) version. 

4.1 Algorithm Description 
The algorithm for the Code Size optimized version is as follows: 

1. Clear result High word (Bytes 2 and 3) 
2. Load Loop counter with 16. 
3. Shift multiplier right 
4. If carry (previous bit 0 of multiplier Low byte) set, add multiplicand to result High 

word. 
5. Shift right result High word into result Low word/multiplier. 
6. Shift right Low word/multiplier. 
7. Decrement Loop counter. 
8. If Loop counter not zero, go to Step 4. 
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Figure 4-1. “mpy16u” Flow Chart (Code Size Optimized Implementation) 
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4.2 Usage 
The usage of “mpy16u” is the same for both versions: 

1. Load register variables “mp16uL”/”mp16uH” with multiplier Low and High byte, 
respectively. 

2. Load register variables “mc16uH”/”mc16uH” with multiplicand Low and High byte, 
respectively. 

3. Call “mpy16u”. 
4. The 32-bit result is found in the 4-byte register variable 

“m16u3:m16u2:m16u1:m16u0”. 
Observe that to minimize register usage, code and execution time, the multiplier and 
result Low word share the same registers. 
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4.3 Performance 
Table 4-1. “mpy16u” Register Usage (Code Size Optimized Implementation) 

Register Input Internal Output 

R16 “mc16uL” – Multiplicand Low Byte   

R17 “mc16uH” – Multiplicand High Byte   

R18 “mp16uL” – Multiplier Low Byte  “m16u0” – Result Byte 0 

R19 “mp16uH” – Multiplier High Byte  “m16u1” – Result Byte 1 

R20   “m16u2” – Result Byte 2 

R21   “m16u2” – Result Byte 2 

R22  “mcnt16u” – 
Loop Counter 

 

 

Table 4-2. “mpy16u” Performance Figures (Code Size Optimized Implementation) 
Parameter Value  

Code Size (Words) 14 + return  

Execution Time (Cycles) 153 + return  

Register Usage • Low Registers 
• High Registers 
• Pointers 

:None 
:7 
:None 

Interrupts Usage None  

Peripherals Usage None  
 

Table 4-3. “mpy16u” Register Usage (Straight-line Implementation) 
Register Input Internal Output 

R16 “mc16uL” – Multiplicand Low Byte   

R17 “mc16uH” – Multiplicand High Byte   

R18 “mp16uL” – Multiplier Low Byte  “m16u0” – Result Byte 0 

R19 “mp16uH” – Multiplier High Byte  “m16u1” – Result Byte 1 

R20   “m16u2” – Result Byte 2 

R21   “m16u2” – Result Byte 2 
 

Table 4-4. “mpy16u” Performance Figures (Straight-line Implementation) 
Parameter Value  

Code Size (Words) 105 + return  

Execution Time (Cycles) 105 + return  

Register Usage • Low Registers 
• High Registers 
• Pointers 

:None 
:6 
:None 

Interrupts Usage None  

Peripherals Usage None  
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5   16 x 16 = 32 Signed Multiplication - “mpy16s” 
This subroutine, which is found in “avr200.asm” implements signed 16 x 16 
multiplication. Negative numbers are represented as 2’s complement numbers. The 
application is an implementation of Booth’s algorithm. The algorithm provides both 
small and fast code. However, it has one limitation that the user should bear in mind; 
If all 32 bits of the result is needed, the algorithm fails when used with the most 
negative number (-32768) as the multiplicand. 

5.1 Algorithm Description 
The algorithm for signed 16 x 16 multiplication is as follows: 

1. Clear result High word (Bytes 2&3) and carry. 
2. Load Loop counter with 16. 
3. If carry (previous bit 0 of multiplier Low byte) set, add multiplicand to result High 

word. 
4. If current bit 0 of multiplier Low byte set, subtract multiplicand from result High 

word. 
5. Shift right result High word into result Low word/multiplier. 
6. Shift right Low word/multiplier. 
7. Decrement Loop counter. 
8. If Loop counter not zero, go to Step 3. 
 
Figure 5-1. “mpy16s” Flow Chart 
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5.2 Usage 
The usage of “mpy16s” is as follows: 

1. Load register variables “mp16sL”/”mp16sH” with multiplier Low and High byte, 
respectively. 

2. Load register variables “mc16sH”/”mc16sH” with multiplicand Low and High byte, 
respectively. 

3. Call “mpy16s”. 
4. The 32-bit result is found in the 4-byte register variable 

“m16s3:m16s2:m16s1:m16s0”. 
Observe that to minimize register usage, code and execution time, the multiplier and 
result Low byte share the same register. 

5.3 Performance 
Table 5-1. “mpy16s” Register Usage 

Register Input Internal Output 

R16 “mc16sL” – Multiplicand Low Byte   

R17 “mc16sH” – Multiplicand High Byte   

R18 “mp16sL” – Multiplier Low Byte  “m16s0” – Result Byte 0 

R19 “mp16sH” – Multiplier High Byte  “m16s1” – Result Byte 1 

R20   “m16s2” – Result Byte 2 

R21   “m16s2” – Result Byte 2 

R22  “mcnt16s” – 
Loop Counter 

 

 

Table 5-2. “mpy16s” Performance Figures 
Parameter Value  

Code Size (Words) 16 + return  

Execution Time (Cycles) 218 + return  

Register Usage • Low Registers 
• High Registers 
• Pointers 

:None 
:7 
:None 

Interrupts Usage None  

Peripherals Usage None  
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6   8 / 8 = 8 + 8 Unsigned Division – “div8u” 
Both program files contain a routine called “div8u” which performs unsigned 8-bit 
division. Both implementations are based on the same algorithm. The code size 
optimized implementation, however, uses looped code, whereas the speed optimized 
code is a straight-line code implementation. Figure 6-1 shows the flow chart for the 
code size optimized version.  

6.1 Algorithm Description 
The algorithm for unsigned 8/8 division (Code Size optimized code) is as follows: 

1. Clear remainder and carry. 
2. Load Loop counter with nine. 
3. Shift left dividend into carry. 
4. Decrement Loop counter. 
5. If Loop counter = 0, return. 
6. Shift left carry (from dividend/result) into remainder 
7. Subtract divisor from remainder. 
8. If result negative, add back divisor, clear carry and goto Step 3. 
9. Set carry and go to Step 3. 
 

Figure 6-1. “div8u” Flow Chart (Code Size Optimized Implementation) 
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6.2 Usage 
The usage of “div8u” is the same for both implementations and is described in the 
following procedure: 

1. Load register variable “dd8u” with the dividend (the number to be divided). 
2. Load register variable “dv8u” with the divisor (the dividing number). 
3. Call “div8u”. 
4. The result is found in “dres8u” and the remainder in “drem8u”. 
Observe that to minimize register usage, code and execution time, the dividend and 
result share the same register. 

6.3 Performance 
Table 6-1. “div8u” Register Usage (Code Size Optimized Version) 

Register Input Internal Output 

R15   “drem8u” – Remainder 

R16 “dd8u” – Dividend  “dres8u” – Result 

R17 “dv8u” – Divisor”   

R18  “dcnt8u” – Loop Counter  
 

Table 6-2. “div8u” Performance Figures (Code Size Optimized Version) 
Parameter Value  

Code Size (Words) 14  

Execution Time (Cycles) 97  

Register Usage • Low Registers 
• High Registers 
• Pointers 

:1 
:3 
:None 

Interrupts Usage None  

Peripherals Usage None  
 

Table 6-3. “div8u” Register Usage (Speed Optimized Version) 
Register Input Internal Output 

R15   “drem8u” – Remainder 

R16 “dd8u” – Dividend  “dres8u” – Result 

R17 “dv8u” – Divisor”   
 

Table 6-4. “div8u” Performance Figures (Speed Optimized Version) 
Parameter Value  

Code Size (Words) 66  

Execution Time (Cycles) 58  

Register Usage • Low Registers 
• High Registers 
• Pointers 

:1 
:2 
:None 
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Parameter Value  

Interrupts Usage None  

Peripherals Usage None  

7   8 / 8 = 8 + 8 Signed Division – “div8s” 
The subroutine “mpy8s” implements signed 8-bit division. The implementation is 
Code Size optimized. If negative, the input values shall be represented on 2’s 
complement's form.  

7.1 Algorithm Description 
The algorithm for signed 8/8 division is as follows: 

1. XOR dividend and divisor and store in a Sign Register. 
2. If MSB of dividend set, negate dividend. 
3. If MSB if divisor set, negate dividend. 
4. Clear remainder and carry. 
5. Load Loop counter with nine. 
6. Shift left dividend into carry. 
7. Decrement Loop counter. 
8. If Loop counter ¼ 0, goto step 11. 
9. If MSB of Sign Register set, negate result. 
10. Return  
11. Shift left carry (from dividend/result) into remainder. 
12. Subtract divisor from remainder. 
13. If result negative, add back divisor, clear carry and go to Step 6. 
14. Set carry and go to Step 6. 
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Figure 7-1. “div8s” Flow Chart 
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7.2 Usage 
The usage of “div8s” follows the procedure below: 

1. Load register variable “dd8s” with the dividend (the number to be divided). 
2. Load register variable “dv8s” with the divisor (the dividing number). 
3. Call “div8s”. 
4. The result is found in “dres8s” and the remainder in “drem8s”. 
 

Observe that to minimize register usage, code and execution time, the dividend and 
result share the same register. 
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7.3 Performance 
Table 7-1. “div8u” Register Usage 

Register Input Internal Output 

R14  “d8s” – Sign Register  

R15   “drem8s” – Remainder 

R16 “dd8s” – Dividend  “dres8s” – Result 

R17 “dv8s” – Divisor”   

R18  “dcnt8s” – Loop Counter  
 

Table 7-2. “div8s” Performance Figures (Code Size Optimized Version) 
Parameter Value  

Code Size (Words) 22  

Execution Time (Cycles) 103  

Register Usage • Low Registers 
• High Registers 
• Pointers 

:2 
:3 
:None 

Interrupts Usage None  

Peripherals Usage None  
 

8 16 / 16 = 16 + 16 Unsigned Division – “div16u” 
Both program files contain a routine called “div16u” which performs unsigned 16-bit 
division 

Both implementations are based on the same algorithm. The code size optimized 
implementation, however, uses looped code whereas the speed optimized code is a 
straight-line code implementation. Figure 8-1 shows the flow chart for the code size 
optimized version.  

8.1 Algorithm Description 
The algorithm for unsigned 16 / 16 division (Code Size optimized code) is as follows: 

1. Clear remainder and carry. 
2. Load Loop counter with 17. 
3. Shift left dividend into carry  
4. Decrement Loop counter. 
5. If Loop counter = 0, return. 
6. Shift left carry (from dividend/result) into remainder 
7. Subtract divisor from remainder. 
8. If result negative, add back divisor, clear carry and go to Step 3. 
9. Set carry and go to Step 3. 
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Figure 8-1. “div16u” Flow Chart (Code Size Optimized Implementation) 
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8.2 Usage 
The usage of “div16u” is the same for both implementations and is described in the 
following procedure: 

1. Load the 16-bit register variable “dd16uH:dd16uL” with the dividend (the number to 
be divided). 

2. Load the 16-bit register variable “dv16uH:dv16uL” with the divisor (the dividing 
number). 

3. Call “div16u”. 
4. The result is found in “dres16u” and the remainder in “drem16u”. 
 
Observe that to minimize register usage, code and execution time, the dividend and 
result share the same registers. 

0936D-AVR-09/09 
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8.3 Performance 
Table 8-1. “div16u” Register Usage (Code Size Optimized Version) 

Register Input Internal Output 

R14   “drem16uL” – Remainder 
Low Byte 

R15   “drem16uH – Remainder 
High Byte 

R16 “dd16uL” – Dividend 
Low Byte 

 “dres16uL” – Result Low 
Byte 

R17 “dd16uH” – Dividend 
High Byte 

 “dres16uH” – Result High 
Byte 

R18 “dv16uL” – Divisor 
Low Byte 

 “drem16uL” – Remainder 
Low Byte 

R19 “dv16uH” – Divisor 
High Byte 

  

R20  “dcnt16u” – Loop Counter  
 

Table 8-2. “div16u” Performance Figures (Code Size Optimized Version) 
Parameter Value  

Code Size (Words) 19  

Execution Time (Cycles) 243  

Register Usage • Low Registers 
• High Registers 
• Pointers 

:2 
:5 
:None 

Interrupts Usage None  

Peripherals Usage None  
 

Table 8-3. “div16u” Register Usage (Speed Optimized Version) 
Register Input Internal Output 

R14   “drem16uL” – Remainder 
Low Byte 

R15   “drem16uH – Remainder 
High Byte 

R16 “dd16uL” – Dividend 
Low Byte 

 “dres16uL” – Result Low 
Byte 

R17 “dd16uH” – Dividend 
High Byte 

 “dres16uH” – Result High 
Byte 

R18 “dv16uL” – Divisor 
Low Byte 

  

R19 “dv16uH” – Divisor 
High Byte 
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Table 8-4. “div16u” Performance Figures (Speed Optimized Version) 
Parameter Value  

Code Size (Words) 196 + return  

Execution Time (Cycles) 173  

Register Usage • Low Registers 
• High Registers 
• Pointers 

:2 
:4 
:None 

Interrupts Usage None  

Peripherals Usage None  
 

9   16 / 16 = 16 + 16 Signed Division – “div16s” 
The subroutine “mpy16s” implements signed 16-bit division. The implementation is 
Code Size optimized. If negative, the input values shall be represented on 2’s 
complement’s form.  

9.1 Algorithm Description 
The algorithm for signed 16 / 16 division is as follows: 

1. XOR dividend and divisor High bytes and store in a Sign Register. 
2. If MSB of dividend High byte set, negate dividend. 
3. If MSB if divisor set High byte, negate dividend. 
4. Clear remainder and carry. 
5. Load Loop counter with 17. 
6. Shift left dividend into carry. 
7. Decrement Loop counter. 
8. If Loop counter ¼ 0, go to step 11. 
9. If MSB of Sign register set, negate result. 
10. Return  
11. Shift left carry (from dividend/result) into remainder 
12. Subtract divisor from remainder. 
13. If result negative, add back divisor, clear carry and go to Step 6. 
14. Set carry and go to Step 6. 
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Figure 9-1. “div16s” Flow Chart 
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9.2 Usage 
The usage of “div16s” is described in the following procedure: 

1. Load the 16-bit register variable “dd16sH:dd16sL” with the dividend (the number to 
be divided). 

2. Load the 16-bit register variable “dv16sH:dv16sL” with the divisor (the dividing 
number). 

3. Call “div16s”. 
4. The result is found in “dres16s” and the remainder in “drem16s”. 
Observe that to minimize register usage, code and execution time, the dividend and 
result share the same registers. 
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9.3 Performance 
Table 9-1. “div16s” Register Usage 

Register Input Internal Output 

R14   “drem16sL” – Remainder 
Low Byte 

R15   “drem16sH – Remainder 
High Byte 

R16 “dd16sL” – Dividend 
Low Byte 

 “dres16sL” – Result Low 
Byte 

R17 “dd16sH” – Dividend 
High Byte 

 “dres16sH” – Result High 
Byte 

R18 “dv16sL” – Divisor 
Low Byte 

  

R19 “dv16sH” – Divisor 
High Byte 

  

R20  “dcnt16s” – Loop Counter  
 

Table 9-2. “div16s” Performance Figures 
Parameter Value  

Code Size (Words) 39  

Execution Time (Cycles) 255  

Register Usage • Low Registers 
• High Registers 
• Pointers 

:2 
:5 
:None 

Interrupts Usage None  

Peripherals Usage None  
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