

8-bit
Microcontrollers

Application Note

Rev. 0936D-AVR-09/09

AVR200: Multiply and Divide Routines

Features
• 8 and 16-bit Implementations
• Signed & Unsigned Routines
• Speed & Code Size Optimized Routines
• Runable Example Programs
• Speed is Comparable with HW Multiplicators/Dividers
• Example: 8 x 8 Mul in 2.8 µs, 16 x 16 Mul in 8.7 µs (12 MHz)
• Extremely Compact Code

1 Introduction
This application note lists subroutines for multiplication and division of 8- and 16-bit
signed and unsigned numbers. A listing of all implementations with key
performance specifications is given in Table 1-1.

Table 1-1. Performance Figures Summary

Application
Code Size
(Words)

Execution Time
(Cycles)

8 x 8 = 16 bit unsigned (Code Optimized) 9 58

8 x 8 = 16 bit unsigned (Speed Optimized) 34 34

8 x 8 = 16 bit signed (Code Optimized) 10 73

16 x 16 = 32 bit unsigned (Code Optimized) 14 153

16 x 16 = 32 bit unsigned (Speed Optimized) 105 105

16 x 16 = 32 bit signed (Code Optimized) 16 218

8 / 8 = 8 + 8 bit unsigned (Code Optimized) 14 97

8 / 8 = 8 + 8 bit unsigned (Speed Optimized) 66 58

8 / 8 = 8 + 8 bit signed (Code Optimized) 22 103

16 / 16 = 16 + 16 bit unsigned (Code Optimized) 19 243

16 / 16 = 16 + 16 bit unsigned (Speed Optimized) 196 173

16 / 16 = 16 + 16 bit signed (Code Optimized) 39 255

The application note listing consists of two files:

• “avr200.asm”: Code size optimized multiplied and divide routines.
• “avr200b.asm”: Speed optimized multiply and divide routines.

2 AVR200

2 8 x 8 = 16 Unsigned Multiplication – “mpy8u”
Both program files contain a routine called “mpy8u” which performs unsigned 8-bit
multiplication. Both implementations are based on the same algorithm. The code size
optimized implementation, however, uses looped code whereas the speed optimized
code is a straight-line code implementation. Figure 2-1 shows the flow chart for the
code size optimized version.

2.1 Algorithm Description
The algorithm for the Code Size optimized version is as follows:

1. Clear result High byte.
2. Load Loop counter with eight.
3. Shift right multiplier
4. If carry (previous bit 0 of multiplier) set, add multiplicand to result High byte.
5. Shift right result High byte into result Low byte/multiplier.
6. Shift right result Low byte/multiplier.
7. Decrement Loop counter.
8. If Loop counter not zero, go to Step 4.

Figure 2-1. “mpy8u” Flow Chart (Code Size Optimized Implementation)

DECREMENT LOOP
 COUNTER

MPY8U

CLEAR RESULT
 HIGH BYTE

LOOP COUNTER ← 8

SHIFT MULTIPLIER
RIGHT

SHIFT RIGHT RESULT
HIGH BYTE

SHIFT RIGHT RESULT LOW
 BYTE AND MULTIPLIER

CARRY SET?

LOOP COUNTER = 0?

RETURN

Y

N

N

ADD MULTIPLICAND
TO RESULT HIGH BYTE

Y

0936D-AVR-09/09

 AVR200

 3

0936D-AVR-09/09

2.2 Usage
The usage of “mpy8u” is the same for both versions:

1. Load register variables “mp8u” and “mc8u” with the multiplier and multiplicand,
respectively.

2. Call “mpy8u”.
3. The 16 -bit result is found in the two register variables “m8uH” (High byte) and

“m8uL” (Low byte).
Observe that to minimize register usage, code and execution time, the multiplier and
result Low byte share the same register.

2.3 Performance

Table 2-1. “mpy8u” Register Usage (Code Size Optimized Implementation)
Register Input Internal Output

R16 “mc8u” – Multiplicand

R17 “mp8u” – Multiplier “m8uL” – Result Low Byte

R18 “m8uH” – Result High Byte

R19 “mcnt8u” – Loop Counter

Table 2-2. “mpy8u” Performance Figures (Code Size Optimized Implementation)
Parameter Value

Code Size (Words) 9 + return

Execution Time (Cycles) 58 + return

Register Usage • Low Registers
• High Registers
• Pointers

:None
:4
:None

Interrupts Usage None

Peripherals Usage None

Table 2-3. “mpy8u” Register Usage (Straight-line Implementation)
Register Input Internal Output

R16 “mc8u” – Multiplicand

R17 “mp8u” – Multiplier “m8uL” – Result Low Byte

R18 “m8uH” – Result High Byte

4 AVR200
0936D-AVR-09/09

Table 2-4. “mpy8u” Performance Figures (Straight-line Implementation)
Parameter Value

Code Size (Words) 34 + return

Execution Time (Cycles) 34 + return

Register Usage • Low Registers
• High Registers
• Pointers

:None
:3
:None

Interrupts Usage None

Peripherals Usage None

3 8 x 8 = 16 Signed Multiplication – “mpy8s”
This subroutine, which is found in “avr200.asm” implements signed 8 x 8
multiplication. Negative numbers are represented as 2’s complement numbers. The
application is an implementation of Booth's algorithm. The algorithm provides both
small and fast code. However, it has one limitation that the user should bear in mind;
If all 16 bits of the result is needed, the algorithm fails when used with the most
negative number (-128) as the multiplicand.

3.1 Algorithm Description
The algorithm for signed 8 x 8 multiplication is as follows:

1. Clear result High byte and carry.
2. Load Loop counter with eight.
3. If carry (previous bit 0 of multiplier) set, add multiplicand to result High byte.
4. If current bit 0 of multiplier set, subtract multiplicand from result High byte.
5. Shift right result High byte into result Low byte/multiplier.
6. Shift right result Low byte/multiplier.
7. Decrement Loop counter.
8. If Loop counter not zero, go to Step 3.

 AVR200

Figure 3-1. “mpy8s” Flow Chart

DECREMENT LOOP
 COUNTER

MPY8S

CLEAR RESULT
 HIGH BYTE AND CARRY

LOOP COUNTER ← 8

SHIFT RIGHT RESULT
HIGH BYTE

SHIFT RIGHT RESULT LOW
 BYTE AND MULTIPLIER

CARRY = 1?

BIT 0 OF
MULTIPLIER

 SET?

LOOP COUNTER = 0?

RETURN

Y

N

N

N

ADD MULTIPLICAND
TO RESULT HIGH BYTE

SUBTRACT MULTIPLICAND
FROM RESULT HIGH BYTE

Y

Y

3.2 Usage
The usage of “mpy8s” is as follows:

1. Load register variables “mp8s” and “mc8s” with the multiplier and multiplicand,
respectively.

2. Call “mpy8s”.
3. The 16 -bit result is found in the two register variables “m8sH” (High byte) and

“m8sL” (Low byte).
Observe that to minimize register usage, code and execution time, the multiplier and
result Low byte share the same register.

3.3 Performance
Table 3-1. “mpy8s” Register Usage

Register Input Internal Output

R16 “mc8s” – Multiplicand

R17 “mp8s” – Multiplier “m8sL” – Result Low Byte

R18 “m8sH” – Result High Byte

R19 “mcnt8s” – Loop Counter

 5

0936D-AVR-09/09

6 AVR200
0936D-AVR-09/09

Table 3-2. “mpy8s” Performance Figures
Parameter Value

Code Size (Words) 10 + return

Execution Time (Cycles) 73 + return

Register Usage • Low Registers
• High Registers
• Pointers

:None
:4
:None

Interrupts Usage None

Peripherals Usage None

4 16 x 16 = 32 Unsigned Multiplication – “mpy16u”
Both program files contain a routine called “mpy16u” which performs unsigned 16-bit
multiplication. Both implementations are based on the same algorithm. The code size
optimized implementation, however, uses looped code whereas the speed optimized
code is a straight-line code implementation. Figure 4-1 shows the flow chart for the
Code Size optimized (looped) version.

4.1 Algorithm Description
The algorithm for the Code Size optimized version is as follows:

1. Clear result High word (Bytes 2 and 3)
2. Load Loop counter with 16.
3. Shift multiplier right
4. If carry (previous bit 0 of multiplier Low byte) set, add multiplicand to result High

word.
5. Shift right result High word into result Low word/multiplier.
6. Shift right Low word/multiplier.
7. Decrement Loop counter.
8. If Loop counter not zero, go to Step 4.

 AVR200

Figure 4-1. “mpy16u” Flow Chart (Code Size Optimized Implementation)

DECREMENT LOOP
 COUNTER

MPY16U

CLEAR RESULT
 HIGH WORD

LOOP COUNTER ←�16

SHIFT MULTIPLIER
RIGHT

SHIFT RIGHT RESULT
HIGH WORD

SHIFT RIGHT RESULT LOW
WORD AND MULTIPLIER

CARRY SET?

LOOP COUNTER = 0?

RETURN

Y

N

N

ADD MULTIPLICAND
TO RESULT HIGH WORD

Y

4.2 Usage
The usage of “mpy16u” is the same for both versions:

1. Load register variables “mp16uL”/”mp16uH” with multiplier Low and High byte,
respectively.

2. Load register variables “mc16uH”/”mc16uH” with multiplicand Low and High byte,
respectively.

3. Call “mpy16u”.
4. The 32-bit result is found in the 4-byte register variable

“m16u3:m16u2:m16u1:m16u0”.
Observe that to minimize register usage, code and execution time, the multiplier and
result Low word share the same registers.

 7

0936D-AVR-09/09

8 AVR200
0936D-AVR-09/09

4.3 Performance
Table 4-1. “mpy16u” Register Usage (Code Size Optimized Implementation)

Register Input Internal Output

R16 “mc16uL” – Multiplicand Low Byte

R17 “mc16uH” – Multiplicand High Byte

R18 “mp16uL” – Multiplier Low Byte “m16u0” – Result Byte 0

R19 “mp16uH” – Multiplier High Byte “m16u1” – Result Byte 1

R20 “m16u2” – Result Byte 2

R21 “m16u2” – Result Byte 2

R22 “mcnt16u” –
Loop Counter

Table 4-2. “mpy16u” Performance Figures (Code Size Optimized Implementation)
Parameter Value

Code Size (Words) 14 + return

Execution Time (Cycles) 153 + return

Register Usage • Low Registers
• High Registers
• Pointers

:None
:7
:None

Interrupts Usage None

Peripherals Usage None

Table 4-3. “mpy16u” Register Usage (Straight-line Implementation)
Register Input Internal Output

R16 “mc16uL” – Multiplicand Low Byte

R17 “mc16uH” – Multiplicand High Byte

R18 “mp16uL” – Multiplier Low Byte “m16u0” – Result Byte 0

R19 “mp16uH” – Multiplier High Byte “m16u1” – Result Byte 1

R20 “m16u2” – Result Byte 2

R21 “m16u2” – Result Byte 2

Table 4-4. “mpy16u” Performance Figures (Straight-line Implementation)
Parameter Value

Code Size (Words) 105 + return

Execution Time (Cycles) 105 + return

Register Usage • Low Registers
• High Registers
• Pointers

:None
:6
:None

Interrupts Usage None

Peripherals Usage None

 AVR200

5 16 x 16 = 32 Signed Multiplication - “mpy16s”
This subroutine, which is found in “avr200.asm” implements signed 16 x 16
multiplication. Negative numbers are represented as 2’s complement numbers. The
application is an implementation of Booth’s algorithm. The algorithm provides both
small and fast code. However, it has one limitation that the user should bear in mind;
If all 32 bits of the result is needed, the algorithm fails when used with the most
negative number (-32768) as the multiplicand.

5.1 Algorithm Description
The algorithm for signed 16 x 16 multiplication is as follows:

1. Clear result High word (Bytes 2&3) and carry.
2. Load Loop counter with 16.
3. If carry (previous bit 0 of multiplier Low byte) set, add multiplicand to result High

word.
4. If current bit 0 of multiplier Low byte set, subtract multiplicand from result High

word.
5. Shift right result High word into result Low word/multiplier.
6. Shift right Low word/multiplier.
7. Decrement Loop counter.
8. If Loop counter not zero, go to Step 3.

Figure 5-1. “mpy16s” Flow Chart

DECREMENT LOOP
 COUNTER

MPY16S

CLEAR RESULT
 HIGH WORD AND CARRY

LOOP COUNTER ← �8

SHIFT RIGHT RESULT
HIGH WORD

SHIFT RIGHT RESULT LOW
WORD AND MULTIPLIER

CARRY = 1?

BIT 0 OF
MULTIPLIER LOW

 BYTE SET?

LOOP COUNTER = 0?

RETURN

Y

N

N

N

ADD MULTIPLICAND
TO RESULT HIGH WORD

SUBTRACT MULTIPLICAND
FROM RESULT HIGH WORD

Y

Y

 9

0936D-AVR-09/09

10 AVR200
0936D-AVR-09/09

5.2 Usage
The usage of “mpy16s” is as follows:

1. Load register variables “mp16sL”/”mp16sH” with multiplier Low and High byte,
respectively.

2. Load register variables “mc16sH”/”mc16sH” with multiplicand Low and High byte,
respectively.

3. Call “mpy16s”.
4. The 32-bit result is found in the 4-byte register variable

“m16s3:m16s2:m16s1:m16s0”.
Observe that to minimize register usage, code and execution time, the multiplier and
result Low byte share the same register.

5.3 Performance
Table 5-1. “mpy16s” Register Usage

Register Input Internal Output

R16 “mc16sL” – Multiplicand Low Byte

R17 “mc16sH” – Multiplicand High Byte

R18 “mp16sL” – Multiplier Low Byte “m16s0” – Result Byte 0

R19 “mp16sH” – Multiplier High Byte “m16s1” – Result Byte 1

R20 “m16s2” – Result Byte 2

R21 “m16s2” – Result Byte 2

R22 “mcnt16s” –
Loop Counter

Table 5-2. “mpy16s” Performance Figures
Parameter Value

Code Size (Words) 16 + return

Execution Time (Cycles) 218 + return

Register Usage • Low Registers
• High Registers
• Pointers

:None
:7
:None

Interrupts Usage None

Peripherals Usage None

 AVR200

6 8 / 8 = 8 + 8 Unsigned Division – “div8u”
Both program files contain a routine called “div8u” which performs unsigned 8-bit
division. Both implementations are based on the same algorithm. The code size
optimized implementation, however, uses looped code, whereas the speed optimized
code is a straight-line code implementation. Figure 6-1 shows the flow chart for the
code size optimized version.

6.1 Algorithm Description
The algorithm for unsigned 8/8 division (Code Size optimized code) is as follows:

1. Clear remainder and carry.
2. Load Loop counter with nine.
3. Shift left dividend into carry.
4. Decrement Loop counter.
5. If Loop counter = 0, return.
6. Shift left carry (from dividend/result) into remainder
7. Subtract divisor from remainder.
8. If result negative, add back divisor, clear carry and goto Step 3.
9. Set carry and go to Step 3.

Figure 6-1. “div8u” Flow Chart (Code Size Optimized Implementation)

CLEAR CARRY

SET CARRY

DIV8U

CLEAR REMAINDER
AND CARRY

LOOP COUNTER ← �9

DECREMENT LOOP
COUNTER

SHIFT LEFT DIVIDEND

REMAINDER ←
REMAINDER + DIVISOR

LOOP COUNTER = 0?

RESULT NEGATIVE?

RETURN

Y

SHIFT LEFT REMAINDER

REMAINDER ←
REMAINDER DIVISOR

N

Y

N

 11

0936D-AVR-09/09

12 AVR200
0936D-AVR-09/09

6.2 Usage
The usage of “div8u” is the same for both implementations and is described in the
following procedure:

1. Load register variable “dd8u” with the dividend (the number to be divided).
2. Load register variable “dv8u” with the divisor (the dividing number).
3. Call “div8u”.
4. The result is found in “dres8u” and the remainder in “drem8u”.
Observe that to minimize register usage, code and execution time, the dividend and
result share the same register.

6.3 Performance
Table 6-1. “div8u” Register Usage (Code Size Optimized Version)

Register Input Internal Output

R15 “drem8u” – Remainder

R16 “dd8u” – Dividend “dres8u” – Result

R17 “dv8u” – Divisor”

R18 “dcnt8u” – Loop Counter

Table 6-2. “div8u” Performance Figures (Code Size Optimized Version)
Parameter Value

Code Size (Words) 14

Execution Time (Cycles) 97

Register Usage • Low Registers
• High Registers
• Pointers

:1
:3
:None

Interrupts Usage None

Peripherals Usage None

Table 6-3. “div8u” Register Usage (Speed Optimized Version)
Register Input Internal Output

R15 “drem8u” – Remainder

R16 “dd8u” – Dividend “dres8u” – Result

R17 “dv8u” – Divisor”

Table 6-4. “div8u” Performance Figures (Speed Optimized Version)
Parameter Value

Code Size (Words) 66

Execution Time (Cycles) 58

Register Usage • Low Registers
• High Registers
• Pointers

:1
:2
:None

 AVR200

 13

0936D-AVR-09/09

Parameter Value

Interrupts Usage None

Peripherals Usage None

7 8 / 8 = 8 + 8 Signed Division – “div8s”
The subroutine “mpy8s” implements signed 8-bit division. The implementation is
Code Size optimized. If negative, the input values shall be represented on 2’s
complement's form.

7.1 Algorithm Description
The algorithm for signed 8/8 division is as follows:

1. XOR dividend and divisor and store in a Sign Register.
2. If MSB of dividend set, negate dividend.
3. If MSB if divisor set, negate dividend.
4. Clear remainder and carry.
5. Load Loop counter with nine.
6. Shift left dividend into carry.
7. Decrement Loop counter.
8. If Loop counter ¼ 0, goto step 11.
9. If MSB of Sign Register set, negate result.
10. Return
11. Shift left carry (from dividend/result) into remainder.
12. Subtract divisor from remainder.
13. If result negative, add back divisor, clear carry and go to Step 6.
14. Set carry and go to Step 6.

14 AVR200

Figure 7-1. “div8s” Flow Chart

DECREMENT LOOP
 COUNTER

NEGATE RESULT

DIV8S

SIGN REGISTER ←
DIVIDEND XOR DIVISOR

LOOP COUNTER ← 9

SHIFT LEFT DIVIDEND

SET CARRY

REMAINDER ←
REMAINDER + DIVISOR

CLEAR CARRY

MSB OF
DIVIDEND SET?

MSB OF
DIVISOR SET?

LOOP COUNTER = 0?

REMAINDER ←
REMAINDER DIVISOR

SHIFT LEFT REMAINDER

RESULT NEGATIVE?

N

Y MSB OF SIGN
REGISTER SET?

RETURN

N

Y

Y

Y

NEGATE DIVISOR

N

NEGATE DIVIDEND

N

N

Y

7.2 Usage
The usage of “div8s” follows the procedure below:

1. Load register variable “dd8s” with the dividend (the number to be divided).
2. Load register variable “dv8s” with the divisor (the dividing number).
3. Call “div8s”.
4. The result is found in “dres8s” and the remainder in “drem8s”.

Observe that to minimize register usage, code and execution time, the dividend and
result share the same register.

0936D-AVR-09/09

 AVR200

 15

0936D-AVR-09/09

7.3 Performance
Table 7-1. “div8u” Register Usage

Register Input Internal Output

R14 “d8s” – Sign Register

R15 “drem8s” – Remainder

R16 “dd8s” – Dividend “dres8s” – Result

R17 “dv8s” – Divisor”

R18 “dcnt8s” – Loop Counter

Table 7-2. “div8s” Performance Figures (Code Size Optimized Version)
Parameter Value

Code Size (Words) 22

Execution Time (Cycles) 103

Register Usage • Low Registers
• High Registers
• Pointers

:2
:3
:None

Interrupts Usage None

Peripherals Usage None

8 16 / 16 = 16 + 16 Unsigned Division – “div16u”
Both program files contain a routine called “div16u” which performs unsigned 16-bit
division

Both implementations are based on the same algorithm. The code size optimized
implementation, however, uses looped code whereas the speed optimized code is a
straight-line code implementation. Figure 8-1 shows the flow chart for the code size
optimized version.

8.1 Algorithm Description
The algorithm for unsigned 16 / 16 division (Code Size optimized code) is as follows:

1. Clear remainder and carry.
2. Load Loop counter with 17.
3. Shift left dividend into carry
4. Decrement Loop counter.
5. If Loop counter = 0, return.
6. Shift left carry (from dividend/result) into remainder
7. Subtract divisor from remainder.
8. If result negative, add back divisor, clear carry and go to Step 3.
9. Set carry and go to Step 3.

16 AVR200

Figure 8-1. “div16u” Flow Chart (Code Size Optimized Implementation)
DIV16U

CLEAR REMAINDER
AND CARRY

LOOP COUNTER ← 17

SHIFT LEFT DIVIDEND

DECREMENT LOOP
COUNTER

SET CARRY

REMAINDER ←
REMAINDER + DIVISOR

CLEAR CARRY

LOOP COUNTER = 0?

Y

RETURN

REMAINDER ←
REMAINDER DIVISOR

SHIFT LEFT REMAINDER

RESULT NEGATIVE?

N

N

Y

8.2 Usage
The usage of “div16u” is the same for both implementations and is described in the
following procedure:

1. Load the 16-bit register variable “dd16uH:dd16uL” with the dividend (the number to
be divided).

2. Load the 16-bit register variable “dv16uH:dv16uL” with the divisor (the dividing
number).

3. Call “div16u”.
4. The result is found in “dres16u” and the remainder in “drem16u”.

Observe that to minimize register usage, code and execution time, the dividend and
result share the same registers.

0936D-AVR-09/09

 AVR200

 17

0936D-AVR-09/09

8.3 Performance
Table 8-1. “div16u” Register Usage (Code Size Optimized Version)

Register Input Internal Output

R14 “drem16uL” – Remainder
Low Byte

R15 “drem16uH – Remainder
High Byte

R16 “dd16uL” – Dividend
Low Byte

 “dres16uL” – Result Low
Byte

R17 “dd16uH” – Dividend
High Byte

 “dres16uH” – Result High
Byte

R18 “dv16uL” – Divisor
Low Byte

 “drem16uL” – Remainder
Low Byte

R19 “dv16uH” – Divisor
High Byte

R20 “dcnt16u” – Loop Counter

Table 8-2. “div16u” Performance Figures (Code Size Optimized Version)
Parameter Value

Code Size (Words) 19

Execution Time (Cycles) 243

Register Usage • Low Registers
• High Registers
• Pointers

:2
:5
:None

Interrupts Usage None

Peripherals Usage None

Table 8-3. “div16u” Register Usage (Speed Optimized Version)
Register Input Internal Output

R14 “drem16uL” – Remainder
Low Byte

R15 “drem16uH – Remainder
High Byte

R16 “dd16uL” – Dividend
Low Byte

 “dres16uL” – Result Low
Byte

R17 “dd16uH” – Dividend
High Byte

 “dres16uH” – Result High
Byte

R18 “dv16uL” – Divisor
Low Byte

R19 “dv16uH” – Divisor
High Byte

18 AVR200
0936D-AVR-09/09

Table 8-4. “div16u” Performance Figures (Speed Optimized Version)
Parameter Value

Code Size (Words) 196 + return

Execution Time (Cycles) 173

Register Usage • Low Registers
• High Registers
• Pointers

:2
:4
:None

Interrupts Usage None

Peripherals Usage None

9 16 / 16 = 16 + 16 Signed Division – “div16s”
The subroutine “mpy16s” implements signed 16-bit division. The implementation is
Code Size optimized. If negative, the input values shall be represented on 2’s
complement’s form.

9.1 Algorithm Description
The algorithm for signed 16 / 16 division is as follows:

1. XOR dividend and divisor High bytes and store in a Sign Register.
2. If MSB of dividend High byte set, negate dividend.
3. If MSB if divisor set High byte, negate dividend.
4. Clear remainder and carry.
5. Load Loop counter with 17.
6. Shift left dividend into carry.
7. Decrement Loop counter.
8. If Loop counter ¼ 0, go to step 11.
9. If MSB of Sign register set, negate result.
10. Return
11. Shift left carry (from dividend/result) into remainder
12. Subtract divisor from remainder.
13. If result negative, add back divisor, clear carry and go to Step 6.
14. Set carry and go to Step 6.

 AVR200

Figure 9-1. “div16s” Flow Chart

DECREMENT LOOP
 COUNTER

NEGATE RESULT

DIV16S

SIGN REGISTER ←
DIVIDENDH XOR DIVISORH

LOOP COUNTER ← 17

SHIFT LEFT DIVIDEND

SET CARRY

REMAINDER ←
REMAINDER + DIVISOR

CLEAR CARRY

MSB OF
DIVIDEND SET?

MSB OF
DIVISOR SET?

LOOP COUNTER = 0?

REMAINDER ←
REMAINDER DIVISOR

SHIFT LEFT REMAINDER

RESULT NEGATIVE?

N

Y MSB OF SIGN
REGISTER SET?

RETURN

N

Y

Y

Y

NEGATE DIVISOR

N

NEGATE DIVIDEND

N

N

Y

9.2 Usage
The usage of “div16s” is described in the following procedure:

1. Load the 16-bit register variable “dd16sH:dd16sL” with the dividend (the number to
be divided).

2. Load the 16-bit register variable “dv16sH:dv16sL” with the divisor (the dividing
number).

3. Call “div16s”.
4. The result is found in “dres16s” and the remainder in “drem16s”.
Observe that to minimize register usage, code and execution time, the dividend and
result share the same registers.

 19

0936D-AVR-09/09

20 AVR200
0936D-AVR-09/09

9.3 Performance
Table 9-1. “div16s” Register Usage

Register Input Internal Output

R14 “drem16sL” – Remainder
Low Byte

R15 “drem16sH – Remainder
High Byte

R16 “dd16sL” – Dividend
Low Byte

 “dres16sL” – Result Low
Byte

R17 “dd16sH” – Dividend
High Byte

 “dres16sH” – Result High
Byte

R18 “dv16sL” – Divisor
Low Byte

R19 “dv16sH” – Divisor
High Byte

R20 “dcnt16s” – Loop Counter

Table 9-2. “div16s” Performance Figures
Parameter Value

Code Size (Words) 39

Execution Time (Cycles) 255

Register Usage • Low Registers
• High Registers
• Pointers

:2
:5
:None

Interrupts Usage None

Peripherals Usage None

Disclaimer
Headquarters International

Atmel Corporation
2325 Orchard Parkway
San Jose, CA 95131
USA
Tel: 1(408) 441-0311
Fax: 1(408) 487-2600

 Atmel Asia
Unit 1-5 & 16, 19/F
BEA Tower, Millennium City 5
418 Kwun Tong Road
Kwun Tong, Kowloon
Hong Kong
Tel: (852) 2245-6100
Fax: (852) 2722-1369

Product Contact

Atmel Europe
Le Krebs
8, Rue Jean-Pierre Timbaud
BP 309
78054 Saint-Quentin-en-
Yvelines Cedex
France
Tel: (33) 1-30-60-70-00
Fax: (33) 1-30-60-71-11

Atmel Japan
9F, Tonetsu Shinkawa Bldg.
1-24-8 Shinkawa
Chuo-ku, Tokyo 104-0033
Japan
Tel: (81) 3-3523-3551
Fax: (81) 3-3523-7581

 Web Site
http://www.atmel.com/

Technical Support
avr@atmel.com

Sales Contact
www.atmel.com/contacts

 Literature Request
www.atmel.com/literature

Disclaimer: The information in this document is provided in connection with Atmel products. No license, express or implied, by estoppel or otherwise, to any
intellectual property right is granted by this document or in connection with the sale of Atmel products. EXCEPT AS SET FORTH IN ATMEL’S TERMS AND
CONDITIONS OF SALE LOCATED ON ATMEL’S WEB SITE, ATMEL ASSUMES NO LIABILITY WHATSOEVER AND DISCLAIMS ANY EXPRESS, IMPLIED
OR STATUTORY WARRANTY RELATING TO ITS PRODUCTS INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTY OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT. IN NO EVENT SHALL ATMEL BE LIABLE FOR ANY DIRECT, INDIRECT,
CONSEQUENTIAL, PUNITIVE, SPECIAL OR INCIDENTAL DAMAGES (INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF PROFITS,
BUSINESS INTERRUPTION, OR LOSS OF INFORMATION) ARISING OUT OF THE USE OR INABILITY TO USE THIS DOCUMENT, EVEN IF ATMEL HAS
BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. Atmel makes no representations or warranties with respect to the accuracy or completeness of the
contents of this document and reserves the right to make changes to specifications and product descriptions at any time without notice. Atmel does not make any
commitment to update the information contained herein. Unless specifically provided otherwise, Atmel products are not suitable for, and shall not be used in,
automotive applications. Atmel’s products are not intended, authorized, or warranted for use as components in applications intended to support or sustain life.

© 2009 Atmel Corporation. All rights reserved. Atmel®, Atmel logo and combinations thereof, AVR®, AVR® logo and others, are registered
trademarks, XMEGA™ and others are trademarks of Atmel Corporation or its subsidiaries. Other terms and product names may be trademarks
of others.

0936D-AVR-09/09

	1 Introduction
	2 8 x 8 = 16 Unsigned Multiplication – “mpy8u”
	2.1 Algorithm Description
	2.2 Usage
	2.3 Performance

	3 8 x 8 = 16 Signed Multiplication – “mpy8s”
	3.1 Algorithm Description
	3.2 Usage
	3.3 Performance

	4 16 x 16 = 32 Unsigned Multiplication – “mpy16u”
	4.1 Algorithm Description
	4.2 Usage
	4.3 Performance

	5 16 x 16 = 32 Signed Multiplication - “mpy16s”
	5.1 Algorithm Description
	5.2 Usage
	5.3 Performance

	6 8 / 8 = 8 + 8 Unsigned Division – “div8u”
	6.1 Algorithm Description
	6.2 Usage
	6.3 Performance

	7 8 / 8 = 8 + 8 Signed Division – “div8s”
	7.1 Algorithm Description
	7.2 Usage
	7.3 Performance

	8 16 / 16 = 16 + 16 Unsigned Division – “div16u”
	8.1 Algorithm Description
	8.2 Usage
	8.3 Performance

	9 16 / 16 = 16 + 16 Signed Division – “div16s”
	9.1 Algorithm Description
	9.2 Usage
	9.3 Performance

