PIC16F87X Tutorial by Example

Copyright, Peter H. Anderson, Baltimore, MD, Jan, ‘01

Document History.
Dec 25, '00 — Original document in html format.

Jan 5, '01 — Converted to pdf format. Added routinesrelated to data EEPROM (EEPROM_1.C, FIRST_TM and
EE_SAVE) ,use of Timer 0 (TMRO_1.c and count.c), use of a CCP maodule for input capture (capture_1.c and
capture_2.c) and for output compare (out_cmpl, out_cmp2.c and out_cmp3.c).

Jan 21, ’'01. Issue 1A. Unions, bit fields, use of a potentiometer in conjunction with EEPROM for calibration,
SPI master using bit-bang. Use of the SSP module as an SPI Master. Interfaces with Microchip 25LC640
EEPROM, Tl TLC2543 11-channel 12-bit A/D, Microchip MCP3208 8-channel 12-hit A/D and MAX7219 LED
Driver.

Mar 12,'01. Issue 1B. Continues discussion of SPI devicesincluding Atmel AT45 series EEPROM and Dallas
DS1305 Real Time Clock. Philips 12C master using bit bang and using the SSP modul e including interfaces with
Microchip 24LC256 EEPROM, Philips PCF8574 8-bit IO Expander, Dallas DS1803 Dual Potentiometer, Maxim
Dual D/A, Dallas DS1307 RTC, Dallas DS1624 Thermometer and EEPROM and Philips PCF8583 Real Time
Clock and Event Counter.

April 9,’01. Issue 1C. Dallas 1-wireinterface including DS18S20 Thermometer. Use of the hardware USART
for sending and receiving characters. Use of the PIC16F877 asan |2C Save and SPI Save. Additional routines
for the PIC16F628 including SFR definitions, flashing an LED and use of the hardware UART.

Introduction
Thisisa"tutorial by example" developed for those who have purchased our Seriadl MPLAB PIC16F87X

Development Package. All of the C routines are in a separate zipped file. Thisisan ongoing project and | will
add to this and send an updated copy in about two weeks.

Although all of this material is copyright protected, feel free to use the material for your persona use or to use the
routines in developing products. But, please do not make this narrative or the routines public.

PIC16F87X Data Sheet

It is strongly suggested that you download the 200 page "data sheet" for the PIC16F877 from the eb
site. | usually print out these manuals and take them to a copy center to have them make a back-to-back copy and
bind it in some manner.

Use of the CCSPCM Compiler

All routines in this discussion were devel oped for the CCS PCM compiler ($99.00). | have used many C

compilersand find that | keep returning to thisinexpensive compiler. All routines were tested and debugged using
the same hardware you have as detailed in Figures 1 - 6.

http://www.microchip.com/

Special Function Register and Bits

In using the CCS compiler, | avoid the blind use of the various built-in functions provided by CCS; e.g., #use
RS232, #use 12C, etc as | have no idea as to how these are implemented and what PIC resources are used. One
need only visit the CCS User Exchange to see the confusion.

Rather, | use a header file (defs_877.h) which defines each specia function register (SFR) byte and each bit
within these and then use the "data sheet” to develop my own utilities. This approach is close to assembly
language programming without the aggravation of keeping track of which SFR contains each bit and keeping
track of the register banks. The defs 877.h file was prepared from the register file map and specia function
register summary in Section 2 of the "data sheet”.

One exception to avoiding blindly using the CCS #use routinesis | do use the #int feature to implement interrupt
service routines.

Snippets of defs f877.h;

#byte TMRO = 0x01
#byte PCL = 0x02
#byt e STATUS = 0x03
#byte FSR = 0x04

#byt e PORTA = 0x05
#byt e PORTB = 0x06
#byt e PORTC = 0x07
#byt e PORTD = 0x08
#bit portd5 = PORTD. 5
#bit portd4 = PORTD. 4
#bit portd3 = PORTD. 3
#bit portd2 = PORTD. 2
#bit portdl = PORTD. 1
#bit portd0 = PORTD. 0

Note that | have identified bytes using uppercase letters and bits using lower case.

Thus, an entire byte may be used;

TRI SD = 0x00; /1 make all bits outputs

PORTD = 0xO05; /1 output 0000 0101

TRI SD = Oxff; /1 make all bits outputs

X = PORTD; /1l read PORTD or a single bit;
trisd4 = 0; /1 make bit 4 an out put

portd4 = 1;

trisd7 = 1; /1 nmake bit 7 an input

X = portd7; /1 read bit 7

Use of upper and lower case designations requires that you use the #case directive which causes the compiler to
distinguish between upper and lower case letters.

(This has a side effect that causes problems when using some of the CCS header files where CCS has been
carelessin observing case. For example they may have acall to "TOUPPER" in a..h file when the function is
named "toupper". Simply correct CCS's code to be lower case when you encounter this type of error when
compiling.)

| started programming with a PIC16F84 several years ago and there is one inconsistency in "defs 877" that | have
been hesitant to correct as doing so would require that | update scores of files. Theindividua bitsin ports A
through E are defined using the following format;

port a0 /1 bit 0 of PORTA

rbo /1 bit 0 of PORTB - note that this is
/1 inconsistent with other ports

portcO /1 bit 1 of PORTC

portdoO /1 bit 0 of PORTD

porte0 /1 bit 0 of PORTE

Program FLASH1.C. (See Figure #4).

Program FLASH1.C continually flashesan LED on portd4 on and off five times with a three second pause
between each sequence.

Note that PORTD may be used as a Paralel Slave Port or as a general purpose 10 port by setting the pspmode to
either aone or zero. In thisroutine, PORTD is used for general purpose 10 and thus;

pspnode = O;

Thusillustrates the beauty of C. For someone programming in assembly, they must remember that this bit isbit 4
in the TRISE register which islocated in RAM bank 1. Thus, the corresponding assembly would be;

BCF STATUS, RP1 ; RAM bank 1
BSF STATUS, RPO
BCF TRI SE, 4 ; clear pspnode bit

When using a bit as an input or output, the corresponding bit in the TRISD register must be set to a"one" or
"zero". | remember thisasa"1" lookslikean "i" and a"0" asan "0". In thiscase, PORTD, bit 4 ismade an
output;

trisdd = 0; /1 nmake bit 4 an out put

Routine FLASH1.C uses a short loop timing routine written in assembly to implement delay_10us() and routine
delay_ms() simply callsthis routine 100 times for each ms. Note that the these routines are intended for operation
using a4.0 MHz clock where each ingtruction is executed in 1 us. They are not absolutely accurate as | failed to
take into account the overhead associated with setting the loop and the call to delay_10us but, they are useful in
applications where absolute timeis not al that important. | can't really tell they difference between an LED being
on for 500 or 500.060 ms.

/] FLASHL.C

/1

/1 Continually flashes an LED on PORTD. 4 in bursts of five flashes.

/1

/1

/1 Al though this was witten for a 4.0 MHz clock, the hex file may be

/1 used with a target processor having 8.0, 10.0 or 20.0 MHz cl ock
/1 Note that the tine delays will be 2, 2.5 and 5 tinmes faster.

/1

/1 copyright, Peter H Anderson, Baltinmore, MD, Dec 14, 'O00

/1

#case
#devi ce PI C16F877 *=16 | CD=TRUE
#i ncl ude <defs_877. h>

void flash(byte num fl ashes);
voi d del ay_10us(byte t);
void delay_ns(long t);

voi d mai n(voi d)
whi | e(1)

pspnode = O; /1 make PORTD general purpose |0
flash(5);
del ay_ms(3000);
}
}

voi d flash(byte num fl ashes)
{
byte n;
for (n=0; n<num fl ashes; n++)
{
trisd4 0; /1 be sure bit is an output
port d4 1;
del ay_ns(500);
portd4 = O;
del ay_ns(500);

}

voi d del ay_10us(byte t)
/1 provides delay of t * 10 usecs (4.0 MHz cl ock)
{
#asm
BCF STATUS, RPO
DELAY_10US 1:
CLRWDT

DECFSZ t, F
GOTO DELAY_10US 1
#endasm

}

void delay_ns(long t) /1 delays t mllisecs (4.0 MHz cl ock)

{
do

del ay_10us(100);
} while(--t);

Program FLASH2.C.

Thisroutineis precisely the same as FLASH1.C except that the timing routines have been declared in Icd_out.h
and they areimplemented in lcd_out.c.

The CCS compiler does not support the ability to compile each of several modulesto .obj files and then link these
to asingle executable (.hex) file. However, you can put routines that are commonly used and thoroughly
debugged in a separate file and ssimply #include the files at the appropriate point.

Filelcd out.c isacollection of the two timing routines plus a number of other routinesto permit you to display
text on the LCD panel. However, the CCS compiler will not compile aroutine, which is not used, and thus no
program memory iswasted. Surprisingly, thisis not true of all compilers.

/1 FLASH2. C

/1

/1 Same as FLASHL. C except that the timng routines are |ocated in
/!l lcd out.h and lcd out.c

/1

/1 Continually flashes an LED on PORTD. 4 in bursts of five flashes.
/1

/1 This is intended as a denp routine in presenting the various

/1 features of the Serial In Circuit Debugger

/1

/1 Although this was witten for a 4.0 MHz clock, the hex file may be
/1 used with a target processor having 8.0, 10.0 or 20.0 MHz cl ock
/1 Note that the tine delays will be 2, 2.5 and 5 tinmes faster.

/1

/1 copyright, Peter H Anderson, Baltinmore, MD, Dec 14, 'O00

#case
#devi ce Pl C16F877 *=16 | CDO=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>

void flash(byte num fl ashes);
voi d mai n(voi d)
whi | e(1)

{
pspnmode = O; /1 make PORTD general purpose |0

flash(5);

del ay_ns(3000);

}
}
void flash(byte numfl ashes)
{
byte n;
for (n=0; n<num fl ashes; n++)
{
trisd4 = 0; /1 be sure bit is an output
portd4 = 1;
del ay_ns(500);
portd4 = 0;
del ay_ns(500);
}
}

#i ncl ude <l cd_out.c>
Program DIAL_1.C
This program illustrates a telephone dia er that might be used in a remote monitor or alarm.

When the pushbutton on PORTB.0 goes to ground, the processor operates an LED (dia pulse relay) on PORTD.4.
Following a brief delay to assure dial tone is probably present, the processor dias the telephone number, waits for
aparty to answer and then sends the quantity in the form of zips (or beeps) using a speaker on PORTD.0. For
example, the quantity 103 is sent as one beep, followed by ten beeps, followed by three beeps. Thisis repeated
three times and the processor then hangs up.

The momentary push button might in fact be atimer or alarm detector.

Note that the telephone number is stored as a constant array;
const byte tel nuni20];

The advantage of using a"const" array is that the array isimplemented in program memory and initialized when
programming the PIC. With the CCS compiler, a congt array cannot be passed to afunction. However, | have
never found this to be a serious obstacle.

In function dia_tel_num(), each digit isfetched from the constant array and the digit is passed to function
dia_digit() until the "end of number" indicator (0x0f) is encountered.

In function dial_digit(), the digit is pulsed out at 10 pulses per second with a 63 percent break. Note that when the
digit is zero, the number of pulses sent isten.

On completion of dialing the telephone number, and a brief delay, the quantity is sent using zip tones. In this
example, | used atemperature of 103 degrees. In function send_quan(), the hundreds, tens and units are passed in
turn to function zips(). Function zips() calls function zip() the specified number of times with a 200 ms delay
between each beep. Note that if the quantity is zero, 10 beeps are sent.

Function zip() repeatedly brings PORTD.0 high and low with two one ms delays which results in a tone of
nominally 500 Hz. Thisisrepeated duration/ 2 times.

/1 Program DI AL_1.C
/1
/1 Dials the tel ephone nunmber 1-800-555-1212 and sends data T_F using

/1 200 ms zips of nominally 500 Hz. The send data sequence is repeated

/1 three tines and the processor then hangs up

/1

/1 LED (simulating dial pulse relay) on PORTD. 4. Speaker through 47
/1 uFd on PORTD.0. Pushbutton on input PORTB. 0.

/1

/1 copyright, Peter H Anderson, Baltinore, MD, Dec, '00

#case
#devi ce Pl C16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>

void dial _tel _nunm(void);
void dial _digit(byte num;
voi d send_quan(byte q);
voi d zi ps(byte x);

void zi p(byte duration);

voi d mai n(voi d)

{
byte T_F = 103, n;
pspnode = O;
portd4 = O;
trisd4 = 0; /1 dial pulse relay
trisd0 = O; /'l speaker
trisbh0 = 1; /1 pushbutton is an input
not _rbpu = 0; /1 enable internal pullups
whi | e(1)
{
whi | e(r b0) /1 loop until pushbutton depressed
{
}
portd4 = 1; /1 go off hook
del ay_ns(1000); /1 wait for dial tone

dial _tel _num();
del ay_ns(1000); /1 wait for answer

for (n=0; n<3; n++) [/ send the quantity T _F three tinme
{

send_quan(T_F);

del ay_ns(1500);

portd4 = 0; /'l back on-hook

}
}
voi d dial _tel _nun(void)
{
const byte tel _nunf20] = {1, 8 0, O, 5, 5, 5 1, 2, 1, 2, 0Ox0f};
byte n;
for (n=0; n<20; n++) /1 up to 20 digits
{
if (tel _nunin] == 0x0f) // if no nore digits
br eak;
}
el se
dial _digit(tel _nunin]);
}
delay_ms(500); // inter digit delay
}
}
void dial _digit(byte num
{
byte n;
for (n=0; n<nuny n++)
{
portd4 = O; /1 63 percent break at 10 pul ses per second
del ay_ns(63);
portd4 = 1;
del ay_ns(37);
}
}
voi d send_quan(byte q)
{
byte x;
if (g > 99) /1 if three digits
x = g/ 100;
zi ps(x); /1 sned the hundreds
del ay_ns(500);
g = q % 100; /1 strip off the remainder
}
x =q / 10;
zi ps(x); /1 send the tens
del ay_ns(500);
X =q %10;
zi ps(x); /1 units
}

voi d zi ps(byte x)

byte n;
if (x ==0)
{

}

for (n=0; nO; n--) // duration/2 * 2 ns

x = 10;

portd0 = 1;

del ay_10us(100); // 1 ns
portd0 = O;

del ay_10us(100);

}

#i ncl ude
Usingthe LCD.

A 20X4 DM C20434 LCD aong with a 74HC595 shift register was included with the full development package
(Figures #5 and #6). The software routines to support this circuitry are contained in Icd_out.c. Note that this uses
Port E, bits 0, 1 and 2. The ideain using these bits was that aside from A/D converter inputs, they serve no
function other than general purpose 0.

A description of the various routinesisincluded in Icd_out.c but for your convenience it aso appears bel ow;

/1 Program LCD QUT.C

/1

/1 This collection of routines provides an interface with a 20X4 Optrex
/1 DMC20434 LCD using a 74HC595 Shift Register to pernit the display
/1 of text. This uses PIC outputs PORTE2::PORTEO.

/1

/1 Also provides delay 10us() and delay ns() timng routines which

/1 are inplenented using |ooping. Note that although these routines
/1 were devel oped for 4.0 MHz (1 usec per instruction cycle) they may
/1 be used with other clock frequencies by nodifying del ay_10us.

/1

/! Routine lcd init() places the LCDin a 4-bit transfer node, selects
/1 the 5X8 font, blinking block cursor, clears the LCD and pl aces the
/1 cursor in the upper left.

/1

/1 Routine Icd char(byte c) displays ASCI|I value ¢ on the LCD. Note
/1 that this pernits the use of printf statenents;

/1

/1 printf(lcd_char, "T=%", T_F).

/1

/1 Routine Icd dec_byte() displays a quantity wth a specified nunber
/1 of digits. Routine |Icd hex byte() displays a byte in tw digit hex
/1 format.

/1

/1 Routine lcd _str() outputs the string. In many applications, these
/1 may be used in place of printf statenents.

/1

/1 Routine lcd clr() clears the LCD and | ocates the cursor at the upper
/1 left. lcd_clr_line() clears the specified line and places the

/1 cursor at the beginning of that Iine. Lines are nunbered 0, 1, 2, and 3.
/1

/1 Routine Icd _cnd_byte() may be used to send a conmand to the | cd.

/1

/1 Routine Icd cursor_pos() places the cursor on the specified |ine

/1 (0-3) at the specified position (0 - 19).

/1

/1 The other routines are used to inplenent the above.

/1

/1 I cd_data_nibble() - used to inplenent |Icd char. Qutputs the
/1 speci fied nibble.

/1

/1 lcd_cnd_nibble() - used to inplement |cd_cnd_byte. The difference
/1 between | cd _data nibble and lcd cnd nibble is that with data, LCD

/1 input RSis at a |logic one.

/1

/1 lcd shift _out() - used to inplenent the nibble functions.
/1

/1 numto_char() - converts a digit to its ASCI | equival ent.
/1

/1 copyright, Peter H Anderson, Baltinore, MD, Dec, '00
Program LCD_TST.C.
Thisroutineisintended to illustrate most of the features contained in lcd_out.c.

Note that the LCD must beinitialized by acall to routine lcd_init(). Note that the ADCONL1 register (See Section
11 of the Data Sheet) must be configured such that PORTEZ::0 are not configured as A/D inputs. In the lcd_init()
routine, | opted for configuration 2/1. Icd_init() also placesthe LCD in a4-bit transfer mode, sets the font and
cursor type and homes the cursor to the upper | eft.

This routine displays byte variable g in decimal with leading zero suppression using lcd_byte() and in tow digit
hexadecimal using lcd_hex(). These are both displayed on the same line with a separation using routine
lcd cursor_pos().
Note that the standard printf may also be used in conjunction with lcd_char;
printf(lcd _char, "% w", d, Q)

Theroutine also illustrates the display of afloat using the standard printf %f format specifier and presents an
alternate technique. Although the second appears more cumbersome, you may wish to tinker with each and verify
that a printf using the "%f" format specifier uses a good deal of program memory.

/1 Program LCD TST.C

/1

/1 1llustrates how to display variables and text on LCD using
/] LCD_QUT.C

/1

/1 Copyright, Peter H Anderson, Baltinore, MD, Dec, '00
#case

#devi ce PI Cl6F877 *=16 | CD=TRUE

10

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>

voi d mai n(voi d)

{
byte q, T_F whole, T F fract;
float T_F;
| ong tenp;

pcfg3 = 0; pcfg3 = 1; pcfg2 =
/1 configure A/ID for
/1 this is necessary

led_init();
q=0;
whi | e(1)
{
lcd _clr_line(0); /1
| cd_dec_byte(q, 3);
I cd_cursor_pos(0, 10); //
| cd_hex_byte(q);
lcd clr_line(l); /1
printf(lcd_char, " Hel | o
TF=176.6 + 0.015 * ((f
lcd clr_line(2);
printf(lcd_char, "T_F = %"
lcd clr_line(3); /1
printf(lcd _char, "T F =")
temp = (long)(10.0 * T_F);
T F whole = (byte)(tenp/10
T F fract = (byte)(temp%0
if (T_F_whole > 99) /1
| cd_dec_byte(T_F_whol e,
}
else if (T_F_whole > 9)
| cd_dec_byte(T_F_whol e,
}
el se
| cd_dec_byte(T_F_whol e,
}
lcd char('.");
I cd _dec_byte(T F fract, 1);
++Q; /1 dumry up a n
del ay_ns(1000);
}

0; pcfg0 = O;
3/ 0 operation
to use PORTE2::0 for the LCD

begi nning of line O

line 0, position 10
advance to line 1

Wor |l d ")

oat) (Q));

, T_F); [/ print a float

to last |ine

/] separate T_F into two bytes
)
);

| eadi ng zero suppression

3);

2);

1);

ew val ue of ¢

11

}

#i ncl ude <l cd_out.c>

Program FONT.C

This program continually increments byte n and displays the value in decimal, hexadecimal and as a character.

Theintent isto illustrate the LCD characters assigned to each value.

/1 Program FONT. C

/1

/1 Sequentially outputs ASCI| characters to LCD

/1

/1 copyright, Peter H Anderson, Baltinmore, MD, Dec, '00

#case

#devi ce PIC16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>

voi d mai n(voi d)

{
byte n;
pcfg3 = 0; pcfg3 = 1; pcfg2 = 0; pcfg0 = O;
/1 configure A/D for 3/0 operation
/1 this is necessary to use PORTE2::0 for the LCD
lcd_init();
for (n=0; ; n++) /1 byte rolls over fromOxff to 00
{
lcd _clr_line(0); /1 beginning of line O
printf(lcd_char, "% % %", n, n, n);
del ay_ms(2000);
}

#i ncl ude <l cd_out.c>

Program TOGGLE_1.C

This program toggles the state of an LED on PORTD.4 when a pushbutton on PORTB.O/INT is depressed. It uses

the external interrupt feature of the PIC (See Section 12 of the PIC16F877 Data Sheet).

Note that weak pullup resistors are enabled,;

not _rbpu = 0;

12

The edge that causes the external interrupt is defined to be the negative going edge;

intedg = 0;

The not_rbpu and intedg bits are in the OPTION register and are discussed in Section 2 of the
PIC16F87X Data Sheet.

Interrupts are discussed in Section 12.

/1 Program TOGGLE 1.C

/1

/1l Reverses the state of an LED on PORTD. 4 when pushbutton on input PORTB.O is
/1 nonentarily depressed. Also, continually outputs to the LCD.

/1

/1 Note that there is a problemw th switch bounce where an even nunber of

/1 bounces will cause an even nunber of toggles and thus the LED will not appear
/1 to change

/1

/1 copyright, Peter H Anderson, Baltinmore, MD, Dec, '00

#case

#devi ce PIC16F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>
#i ncl ude <l cd_out. h>

voi d mai n(voi d)

{

byte n;

pspnode = 0; // PORTD as general purpose |10

portd4 = 0O; /! be sure LED is off
trisd4 = 0; /1 make it an out put
trisbh0 = 1; /1 make an input (not really neccessary)

not _rbpu = 0; // enable weak pullup resistors on PORTB
intedg = 0; /1 interrupt on falling edge

intf = 0; /1 kill any unwanted interrupt
inte = 1; /1 enable external interrupt
gie = 1; /1 enable all interrupts

pcfg3 = 0; pcfg3 = 1; pcfg2 = 0; pcfg0 = O;
/1 configure A/D for 3/0 operation
/1 this is necessary to use PORTE2::0 for the LCD

lecd_init();
for (n=0; ; n++) /1 continually
lcd _clr_line(0); /1 beginning of line O

printf(lcd_char, "% % %", n, n, n);

13

del ay_ns(2000);
}

}

#i nt _ext ext_int_handl er(voi d)

{
}

#int _default default_int_handl er(voi d)

{
}

#i nclude <l cd_out.c>

portd4 = !portd4; /1 invert the state of output

Analog to Digital Conversion.
See Section 11 of the PIC16F87X Data Sheet.
Program AD_1.C

Program AD_1.C sets up the A/D converters for a 3/0 configuration (pcfg bits), right justified result (adfm),
internal RC clock (adcsl and adcs0), measurement on channel 0 (chs2, chsl, chs0), turns on the A/D (adon) and
initiates a conversion by setting bit adgo. The routine then loops until bit adgo goes to zero.

The A/D result is then displayed on the LCD. The angle of the potentiometer is then calculated and then
displayed.

Thereisanatural inclination to fetch the result as;
ad_val = ADRESH << 8 | ADRESL; /1 wrong

However, note that ADRESH is a byte and thus, after shifting it eight bits to the left, the result of the first term
will be zero.

An dternativeis;
 ong hi gh_byte;

hiéh_byte = ADRESH
ad val = high _byte << 8 | ADRESH

In the following, | opted not to introduce the extra variable high_byte and simply used ad_val;

ADRESH,
ad_val << 8 | ADRESL;

ad val =
ad val =
/1 Program AD 1.C

/1

/1 1llustrates the use of the A/D using polling of the adgo
/1 bit. Continually neasures voltage on potentiometer on ANO

14

/1 and displays A/D val ue and angl e.

/1

/1

/1 copyright, Peter H Anderson, Baltinmore, MD, Dec, '00

#case
#devi ce Pl C16F877 *=16 | CO=TRUE

#i ncl ude <defs_877. h>
#include <lcd out.h> // LCD and del ay routines

mai n()

{
| ong ad_val;
float angle;

pcfg3 = 0; pcfg2 = 1; pcfgl = 0; pcfg0 = O;
/1 config A/D for 3/0

led_init();

adfm = 1; /1 right justified
adcsl = 1; adcsO = 1; // internal RC

adon=1; // turn on the A/D
chs2=0; chs1=0; chs0=0;

del ay_10us(10); /1 a brief delay
whi | e(1)
{

adgo = 1;

whi | e(adgo) ; /] poll adgo until zero

ad_val = ADRESH

ad val = ad_val << 8 | ADRESL;

angle = (float) ad val * 270.0 / 1024.0;
lcd _clr_line(0);

printf(lcd_char, "9%d", ad_val);

lcd clr_line(l);

printf(lcd _char, "Angle = 9. 1f", angle);
del ay_ns(3000); /1 three second del ay

}

#i nclude <l cd_out.c>
Program AD_2.C

Program AD_2.Cisfunctionally the same as AD_1.C except that the processor is placed in the sleep mode while
the A/D conversion is being performed;

adgo = 1; /1 start the conversion
#asm
CLRVDT

15

SLEEP
#endasm
/1 ald conversion is conplete

The advantage is that the switching noise associated with the processor is minimized during the A/D conversion.
Note that when using thisimplementation, the internal RC oscillator must be used.

At the recent PIC Workshop we were aso using CCP1 to PWM a motor on CCPY/RC2. | expected that the PWM
would cease during the time the processor was in the sleep mode. | was surprised to find that the PWM did not
come on after the sleep mode was exited. (I assume that simply turning timer2 on again would have resolved this
problem; tmr2on = 1).

In another application, we were rapidly switching between A/D 0 and A/D 1 and not leaving sufficient time for
the sample and hold circuit to "capture” avalid sample. Thus, when changing channels, allow a delay prior to
beginning the conversion.

One point that has bitten me dozens of timesisthat an A/D interrupt is propagated only if bit peieis set. See
Section 12.10 of the 16F87X Data Sheet.

There is one snippet that involves disabling the generd interrupt enable in the following code which may appear
confusing;

whi | e(gie)
{

gie = 0;
}

Thereisavery subtle point here. Assume the code had been written as;

#asm
CLRVWDT
SLEEP
#endasm
gie = 0;
/'l subsequent instructions

Although this routine is not a good example, assume that an interrupt occurs just as the processor beginsto
execute the gie=0. The processor will complete executing the current instruction and program flow will transfer to
the interrupt service routine. However, on return from the ISR the internal architecture of the PIC is such that the
giebit will be alogic one. Thus, the processor will continue on executing subsequent instructions with gie set to
one.

As noted, thisroutine is not a good example, but thisis abug which is very hard to find and thus | have made it a
habit to always turn off interrupts by continually setting gie to zero until it isactually at zero.

/1 Program AD 2.C

/1

/1 1llustrates the use of the A/D using interrupts. Continually measures
/1 voltage on potentionmeter on ANO and di spl ays A/ D val ue and angl e.

/1

/1

16

/1 copyright, Peter H Anderson, Baltinore, M, Dec,

#case

#devi ce PI Cl6F877 *=16 | CD=TRUE

#i ncl ude <defs_877. h>

#include <lcd_out.h> // LCD and del ay routines

mai n()

{

| ong ad_val;
float angle;

pcfg3 = 0; pcfg2 = 1; pcfgl = 0; pcfg0 = O;
/1 config AYD for 3/0

lcd_init();

adfm = 1; /1 right justified

adcsl = 1; adcsO 1; //

nternal RC

adon=1; [l turn on the A/D
chs2=0; chs1=0; chs0=0;
del ay_10us(10);
whi |l e(1)
{
adif = 0; [l Kkill any previous interrupt
adie = 1; /1 enable A/D interrupt
peie = 1; /'l enabl e peripheral interrupts
gie = 1;
adgo = 1;
#asm
CLRVWDT
SLEEP
#endasm
whi | e(gi e) /1l be sure gie is off
gie = 0; [l turn of interrupts
}
ad val = ADRESH
ad_val = ad_val << 8 | ADRESL;

angle = (float) ad_va
lcd clr_Iine(0);
printf(lcd_char, "% d"
lcd clr_line(l);

* 270.0 / 1024.0;

ad_val);

printf(lcd_char, "Angle = 9%. 1f", angle);

del ay_ns(3000);

}

#int _ad ad_i nt _handl er (voi d)
{
}

/1 three second del ay

' 00

- just to be sure

17

#int _default default_int_handl er(voi d)

{
}

#i nclude <l cd_out.c>

Program TOGGLE_2.C

This routine combines aspects of routines TOGGLE_1.C and AD_2.C. The program continually loops with an
A/D conversion being performed nominally every three seconds with the LED on PORTD.0 being toggled each
time the pushbutton on PORTB.0 is depressed.

Note that the external interrupt is momentarily disabled during the brief time the A/D conversionis being
performed.

Prior to enabling an interrupt, | usually clear the corresponding flag bit;

intf
inte

0; /1 kill flag
1; /1 and enabl e external interrupt

/1 Program TOGGLE 2. C

;; I[llustrates the use of the AAD using interrupts. Continually measures
/1 voltage on potentionmeter on ANO and di spl ays A/ D val ue and angl e.

;; Al so toggl es LED on PORTD. 0 when pushbutton on PORTB.0 is depressed.
;; copyright, Peter H Anderson, Baltinmore, MD, Dec, 'O00

#case
#devi ce Pl C16F877 *=16 | CDO=TRUE

#i ncl ude <defs_877. h>
#include <lcd out.h> // LCD and del ay routines

mai n()

{

| ong ad_val;
float angle;

pcfg3 = 0; pcfg2 = 1; pcfgl = 0; pcfg0 = O;
/1 config A/D for 3/0

lecd init();

adfm = 1; /1 right justified
adcsl = 1; adcsO = 1; // internal RC

adon=1; // turn on the A/D
chs2=0; chs1=0; chs0=0;
del ay_10us(10); /1 brief delay to allow capture

not _rbpu = 0; /1 internal pullup enabled

18

intedg = 0; /1 negative going transition

trisb0 = 1;

pspnode = O;

portd4 = O; /1 start with LED off

trisd4 = 0;

gie = 1;

whi | e(1)

{
inte = 0; /1 disable external interrupt
adif = 0; /1 kill any previous interrupt
adie = 1; /1 enable A/D interrupt
peie = 1; /1 enabl e peripherals
adgo = 1;

#asm
CLRVWDT
SLEEP
#endasm

adie = 0; /1 disable A'D interrupts
intf = 0;
inte = 1; /1 and enabl e external interrupt
ad val = ADRESH
ad val = ad_val << 8 | ADRESL;

}

angle = (float) ad val * 270.0 / 1024.0;
lcd clr_line(0);

printf(lcd_char, "9%d", ad_val);

lcd clr_line(l);

printf(lcd _char, "Angle = 9. 1f", angle);
del ay_ns(3000); /1 three second del ay

#int _ad ad_i nt _handl er (voi d)

{
}

#i nt _ext external _i nt_handl er (voi d)

portd4 = !portd4;

}

#int _default default_int_handl er(voi d)

{
}

#i ncl ude <l cd_out.c>

Program PWM_1.C

19

Note that the use of the CCP modulesis discussed in Section 8 of the PIC16F87X data sheet. Operation of Timer
2 isdiscussed in Section 7.

Thisroutine illustrates the use of the CCP modules for generating PWM. The PIC16F87X family all have two
CCP modules and both may be configured for PWM, both using the same period.

Both use 8-bit Timer 2 as atime base which is clocked by the PIC's clock; fosc/4. This may be prescaled to 1:1,
1:4 or 1:16 using bits t2ckpsl and t2ckps0. Thisroutine uses 1:1 and thus Timer 2 has a periodicity of 256 usecs
(about 4.0 kHz) when using a4.0 MHz clock.

Both use the period register PR2 which controls the periodicity of Timer 2. Thus, if PR2 is set to 0x3f (63),
Timer2 increments from zero to 63 and then rolls over to zero. Thus, the periodicity is 64 usecs (about 16 kHz)
when using a4.0 MHz clock.

CCPRIL and CCPR2L are associated with the duty of the CCP1 and CCP2 modules, respectively. Thus, if
CCPRIL isset to 63 and PR2 is set to 255, Timer 2 will count from 0 to 63 (64 usecs) and during this time, the
CCP1 output will be high and from 64 to 255 (192 usecs) the CCP1 output will be low. Thus, the duty cycle will
be 25 percent.

Most of the terminology makes sense. Timer 2 and PR2 are associated with both modules and CCPRI1L and
CCPR2L are associated with the CCP1 and the CCP2 modules, respectively. The thing that doesn't make senseis
that the CCP1 output is PORTC.2 and the CCP2 output is PORTC.1. It took me agood deal of time to decipher
this.

In thisroutine, the Timer 2 prescaleis set to 1:1 using the t2ckpsl and t2ckps0 hits. | don't believe the post scale
feature affects the CCP in the PWM mode, but | set them to 1:1 by clearing the toutps3, toutps2, toutpsl and
toutps0 bits. Timer 2 isturned on using the tmr2on bit.

The PWM mode is selected by setting bits ccplm3 and ccplm?.
PORTC.2 is configured as an output.

Changing the duty cycle isthen simply a matter of modifying CCPRLL. In this routine, the duty is decreased
toward zero when the push button on PORTB.0 is open (logic one) and increased toward 255 when the push
button is closed to ground.

| opted to increase or decrease the duty in steps of five which leads to the subtle point that when working with an
unsigned char, all values other than zero are greater than zero. That is, thereis no minus. Consider the following
that might be used when decreasing the duty;

if (duty > 0) /1 wrong
{

duty = duty - 5;
}

If duty is 3, the new duty is calculated as -2, which in reality is 254 and of course the next time the expressionis
evaluated, duty will be greater than 0. That is, it will be 254 and not -2. Thus, in the following, notethat | go
through a bit of trickery to assure that when decreasing the duty, | don't roll past 0 and when increasing the duty,
that | don't roll past Oxff (255).

20

21

