

Copyright © 2005 Elba Corp. Rev. A Published November 2005

 Application Note
 ZBasic

AN-203 I/O Expansion Techniques

Introduction

On more complex projects it is often the case that more I/O lines are needed than the number that are available on
the chosen processor. In this situation, you might first try to redesign the application to require fewer I/O lines. For
example, you may be able to use a given output for multiple purposes. If you still need additional I/O lines, there
are several techniques that you might employ, separately or in combination, to solve the problem.

Although the examples given in this application note are based on the ZX-24, the principles can be equally well
applied to the other ZX processors.

Using a Multiplexer for Multiple Inputs

If your application has a number of signals that only need to be connected to the processor when it is time to read
the input, you may benefit from utilizing an external digital multiplexer. These devices allow 1 of N input signals to
be selected for passing on to the processor, where N is a power of two. Examples of such a device are the
74HC151 (single 8 to 1), the 74HC153 (dual 4 to 1) and the 74HC157 (quad 2 to 1). Figure 1 shows how a ‘151
can be connected to a ZX-24.

Figure 1 Multiplexing 8 Digital Inputs

In this example, using the multiplexer allows up to eight inputs to be read while only using 4 I/O lines of the
processor. The I/O pins 18-20 are used to select the desired input and pin 17 is used to read the state of the
selected input.

An example of the code required to read one of the 8 inputs is given below. Note that the example code may not
work well in a multi-tasking environment depending on how the ports are used. The reason is because the first line
in the GetInput() function reads the value of Register.PortA, modifies it and writes it back. In a multi-tasking
environment, it is possible for a task switch to occur between the time when the value of Register.PortA is read and
when it is written back. If another task gets control between those actions and that task modifies the value of
Register.PortA, the value written back when the Main() task resumes will be incorrect. This problem can be
avoided by either using a semaphore to control access to Register.PortA or by locking the Main() task before the
operation and unlocking it afterward. It should be pointed out, however, that if a task is awaiting an external

AN-203 I/O Expansion Techniques

Copyright © 2005 Elba Corp. - 2 - Published November 2005

interrupt, locking the task is not sufficient to avoid this problem because an external interrupt will cause the current
task to be suspended even if it is locked.

Private Const dataPin as Byte = 17
Private Const selMask as Byte = &H07

Dim b as Byte

Sub Main()
 ' initialize the I/O pins so that pins 18-20 are ou tputs
 Register.DDRA = Register.DDRA Or selMask

 ' read data from input channel 3
 b = GetInput(3)
End Sub

Function GetInput(ByVal channelNum as Byte) As Byte
 ' output the channel select code to the multiplexer
 channelNum = channelNum And selMask
 Register.PortA = (Register.PortA And Not selMask) Or channelNum

 ' read the selected input
 GetInput = GetPin(dataPin)
End Function

This technique can be extended even further by using stages of multiplexers. For example, the outputs of two
74HC151 devices could be multiplexed through a 74HC157. This would provide 16 inputs while using only 5 I/O
pins. Note that the S2 to S0 inputs of both ‘151 multiplexers can be driven by the same output pins. Only one
additional output pin would be required to feed to the ‘157 to select which “bank” of inputs is to be read.

The same multiplexing principle can be applied to analog inputs however an analog multiplexer must be used. The
CD4066, 74HC4066 and MAX4634 are examples of a device that would work for this purpose.

Using a Decoder/Demultiplexer for Multiple Outputs

A decoder is a device that outputs a “select” signal on 1 of N outputs based on the state of the selection inputs. A
demultiplexer is a device that routes an input signal to 1 of N outputs based on the state of the selection inputs.
The similarities between these two descriptions suggests why devices are often labeled decoder/demultiplexer –
depending on how you connect it, it can be used to perform either operation.

The 74HC138 and 74HC139 are two examples of a decoder/demultiplexer. The former is a single 1 of 8 device
while the latter is a dual 1 of 4 device. The circuit in Figure 2 shows how the 74HC138 can be connected to a ZX-
24 to provide 8 select or strobe signals using only 4 processor outputs. Pins 18 to 20 provide the 1 of N selection
code that determines which of the 8 outputs of the ‘138 will go low when the device is properly enabled. The ‘138
has three enable inputs: two active low and one active high. In this example, we’ve connected one of the active low
enable inputs to pin 17 of the ZX-24 with two remaining enable inputs hard wired to their active states. When pin
17 of the ZX-24 goes low, one of the eight ‘138 outputs will go low depending on the A2-A0 inputs.

The outputs of the ‘138 could be used as an active low device select signal to an external circuit that enables the
device to perform its function. If a device requires an active high select signal, the signal will need to be inverted
before using it. The outputs of the ‘138 could also be used with edge-sensitive devices like flip-flops, shift registers
or counters. When used this way the signal is commonly called a strobe or clock signal.

Note the pullup resistor used on the ZX output that drives the enable input. This resistor ensures that there will be
no false outputs from the decoder during processor resets.

AN-203 I/O Expansion Techniques

Copyright © 2005 Elba Corp. - 3 - Published November 2005

Figure 2: Using a Decoder/Demultiplexer

The code below illustrates how to drive an external decoder. As with the multiplexer example given earlier, this
code may not work well in a multi-tasking environment depending on how the ports are used. Be sure to review the
discussion of the multiplexer code to make certain that you understand the limitations.

Private Const enblPin as Byte = 17
Private Const selMask as Byte = &H07

Dim b as Byte

Sub Main()
 ' initialize the I/O pins so that pins 17-20 are ou tputs
 ' and pin 17 is high
 Call PutPin(enblPin, zxOutputHigh)
 Register.DDRA = Register.DDRA Or selMask

 ' send a strobe or select signal to channel 3
 Call StrobeOutput(3)
End Sub

Sub StrobeOutput(ByVal channelNum as Byte)
 ' output the channel select code to the decoder
 channelNum = channelNum And selMask
 Register.PortA = (Register.PortA And Not selMask) Or channelNum

 ' strobe the selected channel by sending the decode r a low-going pulse
 Call PulseOut(enblPin, 1, 0)
End Sub

Using a Shift Register for Multiple Outputs

A shift register can be used to free up some I/O lines by sending the states of several output lines to the register
using the synchronous serial interface. An example of the circuitry for this technique is shown in Figure 3.

The ZBasic ShiftOut() can be used to transmit data to the external shift register. The example circuit employs a
74HC595 that contains an 8-bit serial shift register and an 8-bit latch. This arrangement allows the outputs to
remain in a steady state while a new set of bits is shifted into position using pins 14 (shift data) and 11 (shift clock).
Once the bits have been shifted out, a rising edge applied to pin 12 (strobe) clocks the data into the output latch. A
simple example of the ZBasic code required to implement this logic is given below.

AN-203 I/O Expansion Techniques

Copyright © 2005 Elba Corp. - 4 - Published November 2005

Private Const dataPin as Byte = 20
Private Const clockPin as Byte = 19
Private Const strobePin as Byte = 18

Sub Main()
 ' initialize the I/O pins
 Call PutPin(dataPin, zxOutputLow)
 Call PutPin(clockPin, zxOutputLow)
 Call PutPin(strobePin, zxOutputLow)

 ' output some data to the shift register
 Call OutputData(&H55)
End Sub

Sub OutputData(ByVal dataVal as Byte)
 ' send 8 bits of data to the shift register
 Call ShiftOut(dataPin, clockPin, 8, dataVal)

 ' strobe the output latch to transfer the data to t he register’s outputs
 Call PulseOut(strobePin, 1, 1)
End Sub

Figure 3: Using a Shift Register for Multiple Outputs

This technique can be extended by connecting together several shift registers either in “parallel” or in “series”. In
parallel mode all of the shift registers would be fed the same data and clock signals but each one would have its
own output latch strobe signal. (A decoder/demultiplexer like the 74HC138 can be used to efficiently produce a
large number of such unique strobe signals.) In series mode, the shift clock inputs of all the registers would be
connected together. The data out from the ZX would be connected to the data in of the first shift register, the serial
data out of the first shift register would be connected to the data in of the second shift register, etc. It is important to
note that in the case of the ‘595 shift register, the serial data out signal (pin 9) is inverted. This can be addressed
by adding an inverter between the stages or by inverting the data destined for the second register (and other even-
numbered registers) before shifting it out.

Note that this technique can be combined with the input multiplexing technique described above, using some of the
same outputs for multiple purposes, e.g. to select the input to be read and to shift data out to the shift register. Of
course, the output latch strobe signal for the shift register would need to remain separate to avoid unwanted
strobing.

AN-203 I/O Expansion Techniques

Copyright © 2005 Elba Corp. - 5 - Published November 2005

Depending on the requirements of the application, a shift register with no output latch (e.g. the 74HC164) might
also be used. The difference is that as the data is being shifted out the outputs of this type of shift register will
“ripple” to their final state. If the data is being presented in parallel to an external device like an LCD this difference
may be insignificant since those devices usually have there own “strobe” input to direct them to accept the data.

Using a Shift Register for Multiple Inputs

A shift register can also be used to free up some I/O lines by sampling input data in parallel and then shifting it in
serially. An example circuit is shown in Figure 4. The shift register shown has an input to control the loading of
input data into the internal register (pin 1, /PL). To read the 8 data inputs you set the /PL input low and then high
again. The logic level that was present at the P7 input of the shift register when the load signal goes high appears
immediately on the Q7 output of the shift register. Then, on each subsequent rising edge of the clock input (pin 1,
CP1 or pin 2, CP2) the logic level of the next lower input will appear at the Q7 output. The DS input (pin 10) is the
data that is shifted into the internal register as it is clocked. If the Q7 output is connected to DS (instead of
grounding DS as is shown), the register will maintain its data value through a cycle of 8 clock signals. This
capability may or may not be useful in your application.

Figure 4: Using a Shift Register for Inputs

The sample code below shows how to read data in from the external shift register. Note, particularly, that the call to
ShiftInEx() uses a ‘flags’ value that causes the data input to be sampled before the clock signal is generated. This
is necessary since the shift register is already presenting the MSB of the data before the first clock transition
occurs.

Private Const dataPin as Byte = 20
Private Const clockPin as Byte = 19
Private Const latchPin as Byte = 19

Dim b as Byte

Sub Main()
 ' initialize the I/O pins
 Call PutPin(dataPin, zxInputTriState)
 Call PutPin(clockPin, zxOutputLow)
 Call PutPin(latchPin, zxOutputHigh)

 ' read data from the shift register
 b = GetInput()
End Sub

AN-203 I/O Expansion Techniques

Copyright © 2005 Elba Corp. - 6 - Published November 2005

Function GetInput() As Byte
 ' load data into the shift register
 Call PulseOut(latchPin, 1, 0)

 ' Shift in the latched data, the value of fourth pa rameter
 ' causes the data pin to be sampled before the cloc k edge.
 GetInput = CByte(ShiftInEx(dataPin, clockPin, 8, &H02))
End Function

 Using an I/O Expander Chip

The Philips PCF8574A is an I2C device that connects to the processor using only 2 I/O lines and provides 8
input/output lines. The device is also produced by Texas Instruments. Both manufacturers also produce the
PCF8574 device; the only difference between the A and non-A part is the hard-wired portion of I2C device address.
An alternate device, the Microchip MCP23016, offers 16 I/O lines and has more features at the expense of being
slightly more complicated to use.

Figure 5: Using a PCF8574A I/O Expander

The schematic in Figure 5 shows how this device might be connected to the ZX-24. One advantage of using this
device over the techniques described previously is that it provides quasi-bidirectional pins, meaning that the added
pins can be used for input or output. Moreover, it is easily expanded by just adding more devices, each wired with
its own unique combination of A2-A0 address inputs.

The example code below illustrates how data can be sent out and data can be read in using a single command.
Pins intended to be inputs to the PCF8574A should always be written as logic one bits. The example assumes that
the most significant 4 bits of the expander are used as inputs and the least significant 4 bits are used as outputs.

Private Const i2cChan as Byte = 0
Private Const i2cSpeed as Integer = 66
Private Const i2cAddr as Byte = &H70
Dim stat as Integer
Dim b as Byte

AN-203 I/O Expansion Techniques

Copyright © 2005 Elba Corp. - 7 - Published November 2005

Sub Main()
 Call OpenI2C(i2cChan, 0, 0, i2cSpeed)
 b = &Hf5

 ' write the low nibble, read back the high nibble
 stat = I2CCmd(i2cChan, i2cAddr, 1, b, 1, b)
End Sub

An interesting aspect of the PCF8574A is that it can generate an interrupt signal when the inputs to the device
change. This can be useful in many situations where the processor needs to be alerted to a pin state change. The
\INT output of the PCF8574A can be fed to one of the ZX processor’s interrupt inputs: INT0, INT1 or INT2. The
circuit shown in Figure 6 depicts the /INT output connected to the INT0 input of the ZX-24.

Figure 6: Using the /INT Output of the I/O Expander

The sample code below illustrates how this capability might be used. The task Task1 waits for a falling edge on
INT0. When the falling edge occurs, indicating that the port value changed, the I/O expander port value is read.
This action both retrieves the current port value and resets the /INT output of the PCF8574A, preparing it for the
next input change.

A note of caution is in order. The datasheet indicates that, due to the way that the interrupt output is reset by read
and write operations on the PCF8574A, there is a possibility that an input change may be missed. Consult the
datasheet for a complete explanation.

Private Const i2cChan as Byte = 0
Private Const i2cSpeed as Integer = 66
Private Const i2cAddr as Byte = &H70
Dim stat as Integer
Dim b as Byte
Dim ts1(1 to 60) as Byte

Sub Main()
 Call OpenI2C(i2cChan, 0, 0, i2cSpeed)

 ' Write a value to the port expander, note that 1’s must
 ' be written for pins that will be used as inputs.
 b = &Hf5 ' value chosen for example purposes only
 stat = I2CCmd(i2cChan, i2cAddr, 1, b, 0, 0)

AN-203 I/O Expansion Techniques

Copyright © 2005 Elba Corp. - 8 - Published November 2005

 ' invoke the task that waits for a pin change
 CallTask "Task1", ts1

 ' add code here for other activities while awaiting the pin change
 Do
 Loop
End Sub

Sub Task1()
 Do
 ' await a falling edge on INT0
 Call WaitForInterrupt(zxPinFallingEdge, 0)

 ' read out the port value, resetting the interrupt
 stat = I2CCmd(i2cChan, i2cAddr, 0, 0, 1, b)

 ' do something here with the value read
 ' for this example, we just display the hexadecimal value
 Debug.Print CStrHex(b)
 Loop
End Sub

Author
Don Kinzer is the founder and CEO of Elba Corporation. He has many years experience working with microprocessors,
microcontrollers and general purpose computers. Don can be contacted via email at dkinzer@zbasic.net.

e-mail: support@zbasic.net Web Site: http://www.zbasic.net

Disclaimer: Elba Corp. makes no warranty regarding the accuracy of the information in this document nor any warranty in regard to fitness for
any particular purpose of the information presented and the techniques described. Furthermore, no warranty is made for the use of the
Company’s products, other than those expressly contained in the Company’s standard warranty which is detailed in the Terms and Conditions
statement located on the Company’s web site. The Company reserves the right to change the devices, information or specifications described
herein at any time without notice, and does not make any commitment to update the information contained herein. No license to any patent or
other intellectual property of Elba Corp. is granted by the Company in connection with the sale or use of the Company’s products, expressly or
by implication. The Company’s products are not authorized for use as critical components in life support devices or systems or any other system
in which failure or errant operation may endanger life or cause bodily injury.

Copyright © 2005 Elba Corporation. All rights reserved. ZBasic, ZX-24, ZX-40 and combinations thereof are trademarks of Elba Corp. or its
subsidiaries. Other terms and product names may be the trademarks of others.

