
Circuit Cellar INK® Issue 97 August 1998 1
www.circuitcellar.com

BitScope

FEATURE
ARTICLE

Norman Jackson

s
Has your office
become so cluttered
that you can’t find
your oscilloscope or
logic analyzer? No
problem, Norman will
help you build a low-
cost, mixed-signal
capture engine that
connects to your
computer via the
serial port.

ome time ago, I
had a bad experi-

ence with a bus—a
logic bus. It had six ram-

paging DSP cards and a SCSI control-
ler all trying to ride at the same time.

About once an hour, there was a
sickening crash. After going through
the usual stages of blaming the soft-
ware, I relented, admitted possible
culpability, and borrowed a mixed-
mode DSO.

This machine has a digital sampling
oscilloscope and a logic analyzer effec-
tively joined at the hip. They share a
common trigger module that enables
the user to identify a complex event
and record the state of the target hard-
ware before and after the trigger—in
both the analog and digital domains.

In the case of my erratic bus logic,
the culprit turned out to be a delin-
quent GAL with a ground bounce
problem. The offending chip had its
duties reassigned and the documenta-
tion police were alerted. Engineer

A Mixed-Signal Capture Engine

T H E C O M P U T E R A P P L I C A T I O N S J O U R N A L

®INK

triumphs over bug.
By employing a high-tech piece of

test equipment, I could trigger on a
complex digital event and correlate this
event to an oscilloscope trace that
showed what was really happening in
the analog domain. I was saved in the
nick of time, but despite having formed
a deep attachment to the trusty ’scope,
I had to give it back.

Following this adventure, I started
musing about how to roll my own
version of that useful electronic gadget.
After some mental tinkering and with
the added incentive of Design98, I was
soon sketching electronic stuff on the
grid pad. BitScope began to emerge
(see Photo 1).

THE BIG PICTURE
The basic idea behind BitScope is

that of a specialized piece of data-
capture hardware that doesn’t include
any user interface other than an RS-232
plug. Most engineers have more com-
puters, mice, and keyboards than they

2 Issue 97 August 1998 Circuit Cellar INK®

www.circuitcellar.com

SERIAL CONNECTION
While a serial interface may seem a

bottleneck for a capture engine that can
potentially store 64 KB of data, this is
not a problem. Thanks to the Internet
and 56k modems, most PCs now have
fast, buffered UARTs.

The transmission speed of the Bit-
Scope serial link can be scaled to
115 kbps using a fast microcontroller.
At this rate, you can transfer enough

troller firmware is designed as a
virtual machine (VM). The
BitScope design is novel because
it has an unusual arrangement of
the VM program code. The in-
structions are not located in
memory on the microcontroller
but reside in the user interface
and are executed atomically
direct from the serial port.

If you study BitScope’s vir-
tual instruction set, you see that
arranging things in this crazy
way has its advantages. All instruc-
tions are atomic. In other words, there
is no inherent syntax associated with
any command byte.

All instruction bytes are echoed to
provide a simple handshake mechanism.
And, all instructions are preemptive,
so you can always abort the previous
command and regain control simply
by sending a new command.

know what to do with. If I was going
to build a cheap ’scope, I certainly
didn’t want any more of that stuff.

What I needed was an electronic
drone that could capture and disgorge
data on command. No more, no less.

The commands had to be simple
ASCII characters that are intuitive
and easy to learn. The PC-based user
interface can then synthesize func-
tionality of arbitrary complexity by
sending scripts of command charac-
ters and receiving the replies.

The answer: a virtual instrument
where specialized hardware does the
electronic test job and a PC lets the
engineer drive it. One big advantage of
this setup is that changing the way
the virtual instrument works doesn’t
usually involve reprogramming chips
(hard) but may be done by download-
ing a new program from the ’Net (easy).

As described in the sidebar “Virtual
Machine Architecture,” the microcon-

Figure 1 —This block diagram of the mixed-signal capture engine
shows basic design architecture.

A B div
n

Analog
Supply

Power
Supply

Mux
Range

Flash
ADC

Digital
Pod

Data
Mux

32K × 8
SRAM

32K × 8
SRAM

Clock

PLD
Logic

Control

PIC
CPU

Serial

Figure 2a —The BitScope CPU and storage
engine includes the PIC, PLD logic, clock, data
muxes, and sample RAM.

Circuit Cellar INK® Issue 97 August 1998 3
www.circuitcellar.com

Virtual-Machine Architecture
A virtual machine (VM) consists of a fully functional

processor hosted on an unrelated substrate machine.
VM design has advantages over conventional coding.
Each instruction may be highly optimized for perfor-
mance—unlike a general-purpose interpreter like BASIC,
which can do anything but inefficiently. VM instructions
are compact like assembly but perform extremely
complex tasks. Once a register and command set are
devised, you can add new instructions to enhance the
machine. The original instructions remain the same,
which promotes modularity. Since the operational
definition of the VM is rigid, firmware changes tend to
be straightforward, even to the point of hosting the
target architecture on a completely new substrate.

In this design, the PIC16F84 is a substrate to imple-
ment a custom BitScope machine with its instruction set
becoming microcode to implement the VM. So, the
BitScope VM has instructions and registers but they’re
unrelated to the PIC native instruction set. The virtual
registers are hosted by PIC memory registers but have
meaning only to the BitScope. Similarly, BitScope has no
use for XOR- or DECFSZ-type instructions. Instead, it has
instructions for manipulating registers, starting sample
RAM, and dumping captured data. BitScope registers may
be option bits, timer constants, sample address, and so
on. The exact function of the register set is detailed in
Table i. Table ii shows the current command set.

Most interpreters run from a program stored in memory.
BitScope is different because it executes directly from

the serial port. BitScope’s instruction set is designed to
have no syntax, so there can be a maximum of 256 in-
structions and each is stand alone—just like a RISC in-
struction set. An atomic protocol means the software at
both ends of the serial line is simple and does not have to
preserve state information. In a PIC with 1024 words of
program, it’s advisable to be economical with code, espe-

Table i —The BitScope virtual machine has a set of 20 registers. The operation of the
machine and all its instructions refer to these registers.

R0 Byte Input Reg Assemble input data here
R1 Register Pointer Pointer to R(0–ff)
R2 Register Source Pointer to R(0–ff)
R3 Sample Preload L Low byte of RAM addr to load to Spock
R4 Sample Preload H High byte of RAM addr to load to Spock
R5 TRIG Logic Byte Logic levels for Spock to match, loaded

 during Spock Init
R6 TRIG Mask Byte Don’t Care bits in trigger match, loaded

 during Spock Init
R7 Spock OPTION byte TRIG and PG1 setup in Spock
R8 Trace Register Trace Option controls Sample operation

 of BitScope
R9 Counter capture Lo Counter low byte shifted out of Spock
R10 Counter capture Hi Counter high byte shifted out of Spock
R11 DELAY-L Post TRIG delay before halting
R12 DELAY-H Post TRIG delay before halting
R13 TimeBase TimeBase expander count
R14 Channel-A/B Channel Range settings for Chop
R15 Dump Length Counter for number of samples trans-

 mitted per request
R16 EEPROM Data Data register for EEPROM
R17 EEPROM Address Address register for EEPROM
R18 POD Transmit Register holds byte for POD
R19 POD Receive Register gets byte from POD

54 T Trace with TRIG stop Begin sample with Opt mode, until Trig
then Delay, Halt Sample Clk, and
print sample add.

5b [Clear R0 Reg R0 is cleared. This usually
precedes a nibble load

5d] Nibble swap R0 R0:(0–3) is swapped with R0:(4–7).
This command puts the entered
nibbles in the correct order.

61 a Enter nibble 'a' hex Incr R0 by 10 and nibble swap R0
62 b Enter nibble 'b' hex Incr R0 by 11 and nibble swap R0
63 c Enter nibble 'c' hex Incr R0 by 12 and nibble swap R0
64 d Enter nibble 'd' hex Incr R0 by 13 and nibble swap R0
65 e Enter nibble 'e' hex Incr R0 by 14 and nibble swap R0
66 f Enter nibble 'f' hex Incr R0 by 15 and nibble swap R0
6c l Load R0 from @R2 Copy contents of reg pointed to by R2

toR0
6e n Next Address Incr addr reg R1
70 p Print REG value @R1 Print <CR>ASCII,ASCII<CR>
73 s Store R0 to @R1 Copy contents of R0 to reg pointed to

by R1
75 u Update RAM pointers Copy contents of R3,4 to R9,10.

Updates sample addr value from
sample preload reg.

78 x Exchange byte with Transmit byte in POD_TX to POD
POD IO-0. Wait for reply byte on IO-1

and put it inPOD_RX then return it to
host.

7c | Pass Through byte Transmit byte in POD_TX to POD IO-0.
to POD Connect IO-1 to Serial Out for host.

00 • Reset Reset the machine and print its ID
string

23 # Load Source Reg Store R0 into R2. Set up R2 which is a
source reg. A reg-to-reg move may be
done by pointing to a source (R2) and
destination (R1).

2b + Inc REG Incr the reg pointed to by R1
2d – Dec REG Decr the reg pointed to by R1
30 0 Enter nibble 0 Incr R0 by 0 and nibble swap R0
31 1 Enter nibble 1 Incr R0 by 1 and nibble swap R0
32 2 Enter nibble 2 Incr R0 by 2 and nibble swap R0
33 3 Enter nibble 3 Incr R0 by 3 and nibble swap R0
34 4 Enter nibble 4 Incr R0 by 4 and nibble swap R0
35 5 Enter nibble 5 Incr R0 by 5 and nibble swap R0
36 6 Enter nibble 6 Incr R0 by 6 and nibble swap R0
37 7 Enter nibble 7 Incr R0 by 7 and nibble swap R0
38 8 Enter nibble 8 Incr R0 by 8 and nibble swap R0
39 9 Enter nibble 9 Incr R0 by 9 and nibble swap R0
3c < Get ctr value Shift the current 16 bit ctr value from

from Spock Spock into R9, R10
3e > Program Spock Load 5 bytes of data from R3–R7 into

from Registers Spock. Previous contents of ctr are
destroyed

3f ? Print Machine ID Print <CR>CHAR8–CHAR1<CR>
where CHARn is part of a string
identifying the type and revision of this
device.

40 @ Load Address Reg Store R0 into R1. Use to set up reg ptr.
53 S Dump Sample Dump lines of 16 Sample RAM

 RAM (CSV) values (digital and analog)

Table ii —The command set for the BitScope virtual machine is a subset of the byte values between 0 and 255. Active commands are confined to the ASCII range from 0 to 127.

4 Issue 97 August 1998 Circuit Cellar INK®

www.circuitcellar.com

cially given the importance of
reliably transmitting packets over
a serial link.

I decided the BitScope command
set should use common printable
ASCII commands. Since the assign-
ment of byte codes is arbitrary,
any value could mean “enter hex
nibble 3,” but obviously 3 is a
good choice. The general scheme
for allocating byte-code values and
their ASCII symbol is:

• numerals—data entry
• operators—manipulation of reg-

ister values
• lower case—general machine

operation
• upper case—major machine func-

tions
• nonprintables—reserved for fu-

ture commands

An example script for loading R6
with 0x5a is [6]@[5a]s. It may
seem obscure, but if you study it,
it should make sense. Ultimately,
a user interface will debug scripts
and writing scripts will only be
necessary if a user develops a new
mode of operation or drives it
directly from a terminal.

All BitScope operations, including
wait on trigger, may be interrupted
by any serial command. The first
part of the software UART ensures
that the sample clock is halted. When
a serial byte is assembled and
echoed, the UART turns on and,
once activated, aborts all previous
operation. In this sense, BitScope’s
command protocol is truly atomic.
Each command ends in a halt, if
not prematurely aborted. ASCII code
00 is the reset vector, so it can get
the PIC’s attention with a <break>.

Inevitably, a VM like this will
get enhanced firmware. Microchip
has devices that potentially double
the number of byte codes imple-
mented. To cope with the poten-
tial of other feature sets, ? returns
a 32-bit ID code. User-interface
software may keep a register of
feature sets supported by each
byte-code revision.

samples to draw a 640 × 480 screen—
at most 640 bytes—in about 55 ms, or
18 screens per second.

For lower frequency data or simple
sine waves, it’s necessary to only send a
handful of samples to the host and have
the user interface do some curve fitting.
Small bursts of contiguous sample data
may be used to enhance a waveform
display to show high-frequency noise.

Logic analyzers don’t need to rapidly
update their display at all. After a trigger
event, the data may stay in the sample
RAM and be downloaded only when
the host needs it. At 115 kbps, the
total contents of a 16-KB buffer can
download in less than 2 s. The user
interface may then draw logic state or
timing diagrams and manipulate them
as necessary.

USER INTERFACE
Don’t think shrink-wrapped mono-

lithic Windows software for this design.
Think more about the Linux model
where the engineering community
builds its own tools and can custom-
ize them as needs arise.

Because BitScope uses simple ASCII
commands, in a pinch, you can use a
terminal program and spreadsheet to
display waveforms. For complex applica-
tions, you need more advanced software
based on C, Delphi, or Visual Basic.

A BitScope user interface can run
under many possible environments,
including Windows, MAC, Unix,
WinCE, Palm Pilot, Psion, DOS, or
Amiga. Basically, it can work on any
machine with a serial port.

No single person could write all that
software. Instead, I made the BitScope
design open and documented so you
could create what you need.

On INK’s Web site, you’ll find some
user-interface software with source
listings to start the ball rolling. Via the
Internet, you can also find existing
programs that already simulate oscillo-
scopes, logic circuits, and data displays.
DESIGN PHILOSOPHY

A good place to start designing is with
a functional specification. For BitScope,
the main issue was sample rate. While
it seemed clear that a 200-MHz sample
rate was out of reach, I could easily
get to about 50 MS/s and still be ahead
on the price/performance curve.

For the engineer dealing with micro-
controller circuits, it’s unlikely that
frequencies of interest will exceed
20 MHz—at least for the time being.
Later on, when 3-V logic becomes
more prevalent, that 50-MS/s rate can
probably stretch to 100 MS/s in an
SMT version of the design.

To make BitScope as useful as
possible, I was determined that it should
physically stand alone. It needed to be
unconstrained to a particular machine
or bus standard, and I wanted it to
communicate with any computer
using the ubiquitous RS-232 interface.

From my experience, the most
commonly required features of this
type of test equipment are two analog
input channels and eight digital logic
inputs. Combine those features with a
flexible trigger capability, and you get
a pretty useful instrument. I set a
design goal of about $100 for the cost
of required components, all of which
should be readily available.

For the core of BitScope, I selected
a PIC16F84 micro tightly coupled with
a Lattice 1016 PLD. The PIC controls
the serial port and implements a VM
architecture. The Lattice counts RAM
addresses and waits for a trigger.

These chips are cheap and solid
performers. Both are flash-memory
based for easy upgrades, and they have
excellent entry-level development
software. Sample RAM is provided by
two 32-KB 15-ns cache memories.

These devices will take the design to
50 MS/s and have the great advantage
that about eight of them are perched
on every ’486 motherboard ever built.
That should put their head count at
about one billion, so don’t tell me you
can’t find any!

Every DSO must be built around a
flash ADC. These chips were exotic
until a few years ago when digital ma-
nipulation of video became popular.

Now, several companies have devices
that can provide 40 MS/s or better for
less than $10. Even an older device like
Motorola’s MC10319P can sample
from DC to 25 MS/s and is available
in a DIP package.

In fact, I used this device for Bit-
Scope. By selecting a 600-mil DIP
package, I could accommodate any of
the new SMD devices as a plug-in

Circuit Cellar INK® Issue 97 August 1998 5
www.circuitcellar.com

Figure 2b— BitScope power supply and comms deal with filtering, rectification, and
regulation as well as RS-232 level shifting and indicators.

module and avoid the need
for multiple PCB versions.

For vertical amplifiers
that process analog signals
to the ADC, the video in-
dustry again provides a
solution. Maxim and Ana-
log Devices both have
cheap, stable 300-MHz op-
amps that make wide-band
amplifier design easy.

Using these devices lets
the vertical-amplifier band-
width get close to 100 MHz,
matching the input specs on
the new flash ADC chips
from Analog Devices and
TI. For an insight into why we need
such wide-bandwidth vertical amplifi-
ers, see the sidebar “Subsampling—
Bending Nyquist.”
WALKING THRU SCHEMATICS

Before delving into the schematics,
take a look at Figure 1, which overviews
the functionality of the BitScope design.

The PIC, the Lattice PLD, and the
SRAMs are shown in Figure 2a. These
chips are closely coupled to form the
sample capture functions at the core
of this design.

By using a synchronous tristate
clocking circuit, the PIC is able to stop,
start, and preload the Lattice PLD
using just a handful of signals. Notice

that it’s necessary to read in data from
the RAM chips one bit at a time be-
cause there are no spare eight-bit
ports available.

One fundamental rule in mixing
analog and digital circuits is to avoid
contamination of the analog grounds.
Figure 2b shows that great care was
taken to isolate the analog and digital
sections of this circuit at high frequen-
cies. Similarly with the RS-232 port,
it’s best not to allow PC noise to have
any path to a test circuit.

Digital test signals and two spare
analog signals are shown on Figure 2c
connecting to the DB25M pod connec-
tor. Logic levels are latched and condi-

tioned ready for storage
in the digital sample
RAM.

You might guess from
the extra signals on the
pod that it’s not just
eight logic levels in. As
well as fused balanced
power supplies, there is a
digital I/O communica-
tion port. Everything you
need is there to connect
an active, programmable
extension module.

Most of the analog
conditioning circuits and
the flash ADC are shown

in Figure 2d. The circuit consists of an
amplifier chain driving through a pair
of 4:1 analog mux devices.

Modern video op-amps help here.
They give you high input impedance,
low output impedance, and unity gain
stability.

The PIC controls the mux sources
that allow implementation of range
switching and channel chop functions.
To accommodate different ADC
chips, there are adjustment pots for
both the range and offset voltages as
required by the manufacturers.

Figure 2e shows the final part of the
analog conditioning circuit. Channels
A and B are standard 1-MB input im-
pedance AC/DC BNC connectors. A
classic source follower tree driving a
unity gain buffer for each channel
completes the vertical-amplifier sec-
tion.

For engineers who like to measure
high frequencies, I added a small 1-GHz
prescaler circuit, which includes a swit-
chable 50-Ω terminator hanging off the
Channel B input circuit. Note that
BitScope has a couple of ways to mea-
sure the frequencies of applied signals.
I explain the motivation behind this
in the sidebar “Subsampling—Bending
Nyquist.”

THAT IS LOGICAL, CAPTAIN
PLDs such as the Lattice 1016 can

swallow a whole swag of logic func-
tions. In this case, about 18 medium
TTL devices with all their wiring
disappear into a 44-pin PLCC device.

Radial PLDs like the Lattice are
like eight PALs in a circle surround-

Photo 1 —BitScope was prototyped on a two-layer PCB. Notice that the components are
arranged to separate analog and digital sections of the circuit.

6 Issue 97 August 1998 Circuit Cellar INK®

www.circuitcellar.com

Subsampling—Bending Nyquist
In data-acquisition applications, there is often some

confusion about the relationship between bandwidth and
sample rate. The Nyquist rate of half of the sampling
frequency (Fs) is well known to be the maximum fre-
quency that can be captured by periodic sampling at Fs.
Given that mathematical constraint, why would we
want an instrument that has a bandwidth of 100 MHz
and yet samples at a maximum rate of only 50 MS/s?
The answer lies with subsampling.

The Nyquist rate applies to continuous time varying
signals. In that general case, the highest-frequency com-
ponent should be less than half of Fs (25 MHz at 50 MS/s)
to avoid aliasing. Repetitive waveforms are a different
matter. They’re the only high-frequency waveforms you
ever see on an analog CRO. The same waveform is redrawn
each sweep, and the eye sees a solid trace. Subsampling
is similar. You use multiple samples and overlay them
to build an image. Providing that your ADC has a wide
bandwidth and a small aperture, it is possible to sample
a repetitive waveform over many cycles and build up a
snapshot of the exact waveform, limited only by the
bandwidth of the signal path. This technique, known as
subsampling, is just an example of the RF mixer in the
digital world.

Subsampling has a few constraints. It isn’t possible to
subsample a waveform that’s harmonically related to the
sampling frequency. Practically, this means that if the
waveform of interest is related to the sample frequency,
the sample points always fall at the same relative position

on the waveform and the regions between will forever
remain a mystery.

Another concern has to do with resolving the am-
biguous period of the subsampled waveform. Let’s say
you have a signal of 28 MHz and are sampling at 40 MS/s.
In the sample buffer, you’ll see a sequence of values
with components at 12 and 68 MHz. How can these be
plotted to build up a profile of the original 28-MHz
signal? Well, if you can measure the fundamental fre-
quency of the sampled wave, that will imply period.
Since you know the sample rate accurately, you can
fractionally chop the sample buffer up into segments of
n wave periods and then plot them overlaid. You will
have traded the freedom for those n waveforms to vary
in exchange for n different points on the waveform. It
may now be apparent why the BitScope design has pro-
vision to measure the frequency of any signal presented
to the ADC.

Even if you can’t measure the frequency of a subsampled
waveform directly, all is not lost. DSP engineers have
some fancy autocorrelation algorithms that can be let
loose on a chunk of acquired data to pull a waveform out of
meaningless numbers. It is important to note, however,
that for resolving single event (such as high-frequency
pulses like logic glitches), there is only one solution:
oversample by at least a factor of 10. This performance
is exclusively in the domain of specialized test equip-
ment using state-of-the-art circuit techniques to resolve
samples to 1 ns or better.

Figure 2c— The BitScope digital capture unit has a logic pod circuit with latching buffer
and pod I/O switches.

ing a big breadboard. This
architecture favors the tight
timing requirements of
counters and glue logic.

Mostly, this PLD is a
16-bit shift register and
counter with a configurable
comparator for triggering.
The PIC can load a five-byte
configuration word that sets
the operation of the chip,
after which it may be
clocked at full speed.

THRU THE LENS
MEASURING

The SLR lens-mount sys-
tem from the photographic
world is a great design that
has stood the test of time.
You start with a camera
body with a general-purpose 50-mm
lens, and for specialized work, you
screw in any of a hundred matching
lens types. From fisheye to telescopic,

as long as the mounts match, you
have a new camera.

I tried to use the same SLR prin-
ciple in the BitScope design. The de-

vice on its own is an ex-
tremely useful DSO and
logic analyzer, but it is not
everything.

The pod connector pro-
vides an electronic lens
mount for test equipment.
Think of the sample RAM
in BitScope as a roll of 35-
mm film, and the data you
store there may come from
either built-in connectors
or any weird and wonderful
“data lens” you care to
attach via the data pod.
Because the pod architec-
ture and protocol is open
and documented, anyone
may design a specialized
data lens for BitScope.

VOLTAGE RANGES
The BitScope DSO includes four

internal attenuation ranges and four
channel inputs. Channel A and B are

Circuit Cellar INK® Issue 97 August 1998 7
www.circuitcellar.com

Figure 2e— The BitScope Input
Channel Buffers are high-
impedance voltage followers
and op-amp buffers with a
1-GHz prescaler circuit.

Figure 2d— The BitScope analog
capture features the vertical channel
muxes, attenuation switch, ADC
buffer, and ADC.

8 Issue 97 August 1998 Circuit Cellar INK®

www.circuitcellar.com

SOFTWARE

The Circuit Cellar Web site has
downloadable software listings,
technical documents, programmable
binaries, and PCB overlays. Informa-
tion about BitScope is available at
www.discrete.net or via bitscope@
discrete.net.

Norman Jackson is principal hardware
design engineer for Discrete Time
Systems P/L in Sydney, Australia. He
designs DSP-based digital audio systems
for use in film and TV postproduction.
You may reach Norman at normj@
discrete.net.

SOURCES
PIC16F84
Microchip Technology, Inc.
(602) 786-7200
Fax: (602) 786-7277
www.microchip.com

1016 PLD
Lattice Semiconductor Corp.
(503) 681-0118
Fax: (503) 681-3037
www.latticesemi.com

MC10319P ADC
Motorola SPS
(800) 521-6274
Fax: (602) 897-5725
www.mot-sps.com

Preprogrammed PIC, 1016 PLD,
 MC10319P ADC, and PCB
Discrete Time Systems
+612 9212 3469
Fax: +612 9212 3470
bitscope@discrete.net
www.discrete.net

BNC connectors that may have ×1 or
×10 probes connected. Channel C and
D (pod inputs) have a fixed attenuator,
and possibly, there’s some extra cir-
cuitry in the pod.

Table 1 details the range sensitivities.
The ranges aren’t nearly as compre-
hensive as a bench CRO, but it covers
those most useful to digital and analog
circuits. As well, I intended for the
pod connector to deal with unusual or
high voltage signals by way of an
active pod adapter.

It’s also possible to alter the gain of
some ranges. Since the ADC output is
an eight-bit number that ranges from
00 to FF, the final interface just needs
to ratiometrically apply this hex value
to the voltage range of each stage.

A little thought reveals that for a
digital oscilloscope, volts per division
and microseconds per division are quite
arbitrary notions. Provided that the
signal under consideration is within the
ADC range and the sample-buffer size, a
display can be of any size and grid spac-
ing. Similarly, the notion of y offset
becomes a display function, which has
nothing to do with the sample engine.

IN YOUR HANDS
With this design, I hope to have

presented a low-cost solution to the
engineer’s needs for sophisticated test
equipment. I have heeded the call for
more open designs and liberation from
the single-platform juggernaut.

In the coming months, I look forward
to hearing from any of you who can
think of applications for this device
that I haven’t even dreamed of. I

©Circuit Cellar INK, the Computer Applications Journal.
Reprinted by permission. For subscription information,
call (860) 875-2199 or subscribe ©circellar.com

Range BNCx1 BNCx10 POD

00 ±130 mV ±1.30 V ±632 mV
01 ±600 mV ±6.00 V ±2.90 V
10 ±1.20 V ±12.00 V ±5.80 V
11 ±3.16 V ±31.60 V ±15.28 V

Table 1—Here are the BitScope input ranges for an ADC
span of 2 V. Resistor attenuators can be found in the
schematic.

