

LM567/LM567C

OBSOLETE October 13, 2011

Tone Decoder

General Description

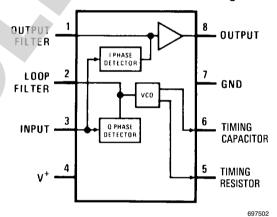
The LM567 and LM567C are general purpose tone decoders designed to provide a saturated transistor switch to ground when an input signal is present within the passband. The circuit consists of an I and Q detector driven by a voltage controlled oscillator which determines the center frequency of the decoder. External components are used to independently set center frequency, bandwidth and output delay.

Features

- 20 to 1 frequency range with an external resistor
- Logic compatible output with 100 mA current sinking capability
- Bandwidth adjustable from 0 to 14%

- High rejection of out of band signals and noise
- Immunity to false signals
- Highly stable center frequency
- Center frequency adjustable from 0.01 Hz to 500 kHz

Applications


- Touch tone decoding
- Precision oscillator
- Frequency monitoring and control
- Wide band FSK demodulation
- Ultrasonic controls
- Carrier current remote controls
- Communications paging decoders

Connection Diagrams

OUTPUT OUTPUT B OUTPUT FILTER OUTPUT B OUTPUT FILTER Tomas FILTER Tomas FILTER Tomas FILTER FIL

Top View Order Number LM567H or LM567CH See NS Package Number H08C

Dual-In-Line and Small Outline Packages

Top View
Order Number LM567CM
See NS Package Number M08A
Order Number LM567CN
See NS Package Number N08E

Absolute Maximum Ratings (Note 1)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Supply Voltage Pin 9V Power Dissipation (*Note 2*) 1100 mW V_8 15V V_3 -10V V_3 $V_4 + 0.5V$ Storage Temperature Range -65°C to +150°C Operating Temperature Range

LM567H -55°C to +125°C LM567CH, LM567CM, LM567CN 0°C to +70°C

Soldering Information
Dual-In-Line Package

Soldering (10 sec.) 260°C

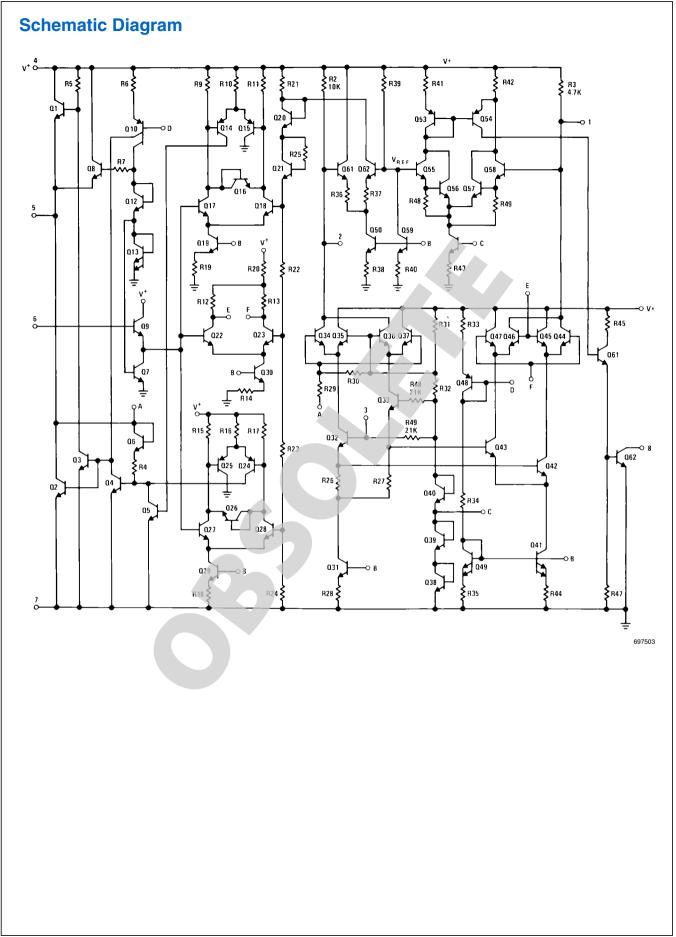
Small Outline Package

 Vapor Phase (60 sec.)
 215°C

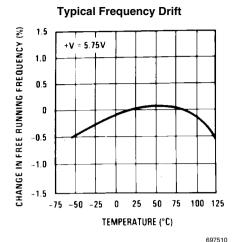
 Infrared (15 sec.)
 220°C

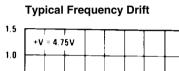
See AN-450 "Surface Mounting Methods and Their Effect on Product Reliability" for other methods of soldering surface mount devices.

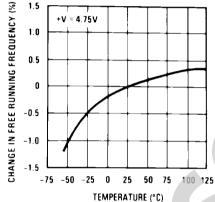
Electrical Characteristics

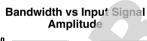

AC Test Circuit, $T_{\Delta} = 25^{\circ}\text{C}$, $V^{+} = 5\text{V}$

B	0	LM567		7 /	LM567C/LM567CM				
Parameters	Conditions	Min Typ		Max	Min	Min Typ N		Max Units	
Power Supply Voltage Range		4.75	5.0	9.0	4.75	5.0	9.0	V	
Power Supply Current Quiescent	R _L = 20k		6	8		7	10	mA	
Power Supply Current Activated	R _L = 20k		11	13		12	15	mA	
Input Resistance		18	20		15	20		kΩ	
Smallest Detectable Input Voltage	$I_L = 100 \text{ mA}, f_i = f_o$		20	25		20	25	mVrms	
Largest No Output Input Voltage	$I_C = 100 \text{ mA}, f_i = f_o$	10	15		10	15		mVrms	
Largest Simultaneous Outband Signal to Inband Signal Ratio			6			6		dB	
Minimum Input Signal to Wideband Noise Ratio	B _n = 140 kHz		-6			-6		dB	
Largest Detection Bandwidth		12	14	16	10	14	18	% of f _o	
Largest Detection Bandwidth Skew			1	2		2	3	% of f _o	
Largest Detection Bandwidth Variation with Temperature			±0.1			±0.1		%/°C	
Largest Detection Bandwidth Variation with Supply Voltage	4.75–6.75V		±1	±2		±1	±5	%V	
Highest Center Frequency		100	500		100	500		kHz	
Center Frequency Stability (4.75–5.75V)	$0 < T_A < 70$ -55 < $T_A < +125$		35 ± 60 35 ± 140			35 ± 60 35 ± 140		ppm/°C ppm/°C	
Center Frequency Shift with Supply Voltage	4.75V-6.75V 4.75V-9V		0.5	1.0 2.0		0.4	2.0 2.0	%/V %/V	
Fastest ON-OFF Cycling Rate			f _o /20			f _o /20			
Output Leakage Current	V ₈ = 15V		0.01	25		0.01	25	μΑ	
Output Saturation Voltage	e _i = 25 mV, I ₈ = 30 mA e _i = 25 mV, I ₈ = 100 mA		0.2 0.6	0.4 1.0		0.2 0.6	0.4 1.0	V	
Output Fall Time			30			30		ns	
Output Rise Time			150			150		ns	

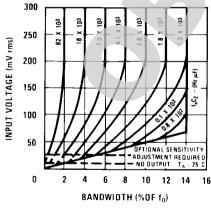

Note 1: Absolute Maximum Ratings indicate limits beyond which damage to the device may occur. Operating Ratings indicate conditions for which the device is functional, but do not guarantee specific performance limits. Electrical Characteristics state DC and AC electrical specifications under particular test conditions which guarantee specific performance limits. This assumes that the device is within the Operating Ratings. Specifications are not guaranteed for parameters where no limit is given, however, the typical value is a good indication of device performance.

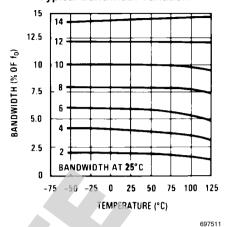

Note 2: The maximum junction temperature of the LM567 and LM567C is 150°C. For operating at elevated temperatures, devices in the TO-5 package must be derated based on a thermal resistance of 150°C/W, junction to ambient or 45°C/W, junction to case. For the DIP the device must be derated based on a thermal resistance of 110°C/W, junction to ambient. For the Small Outline package, the device must be derated based on a thermal resistance of 160°C/W, junction to ambient.

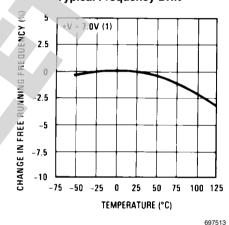

Note 3: Refer to RETS567X drawing for specifications of military LM567H version.

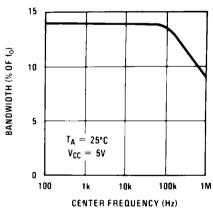


Typical Performance Characteristics

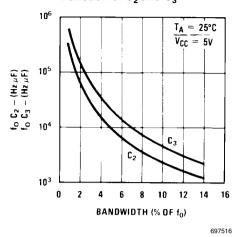




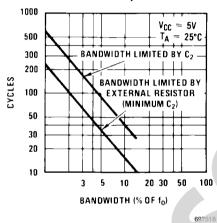

697512


Typical Bandwidth Variation

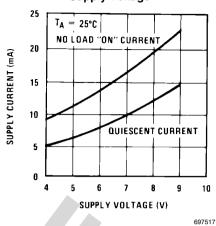
Typical Frequency Drift

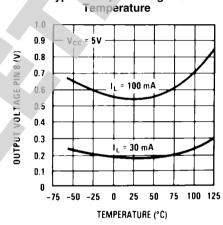


Largest Detection Bandwidth

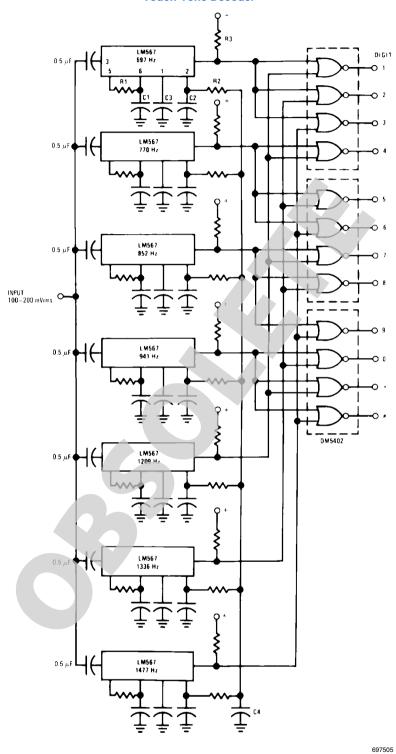


697515


$\begin{array}{c} \textbf{Detection Bandwidth as a} \\ \textbf{Function of C}_2 \ \textbf{and C}_3 \end{array}$

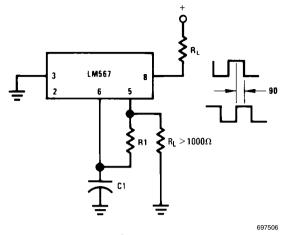

Greatest Number of Cycles Before Output

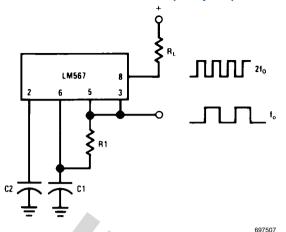
Typical Supply Current vs Supply Voltage


Typical Output Voltage vs

697519

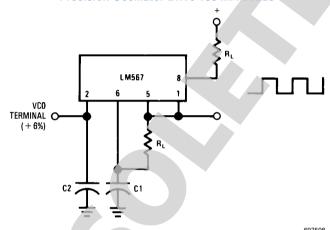
Typical Applications


Touch-Tone Decoder

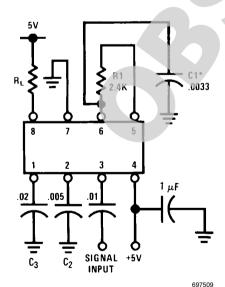

Component values (typ)

- R1 6.8 to 15k
- R2 4.7k
- R3 20k
- C1 0.10 mfd
- 1.0 mfd 6V
- 2.2 mfd 6V
- C4 250 mfd 6V

Oscillator with Quadrature Output



Oscillator with Double Frequency Output



Connect Pin 3 to 2.8V to Invert Output

Precision Oscillator Drive 100 mA Loads

AC Test Circuit

 $f_i = 100 \text{ kHz} + 5 \text{V}$

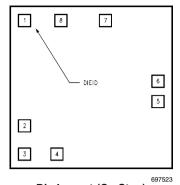
*Note: Adjust for $f_0 = 100 \text{ kHz}$.

Applications Information

The center frequency of the tone decoder is equal to the free running frequency of the VCO. This is given by

$$f_0 \cong \frac{1}{1.1 R_1 C_1}$$

The bandwidth of the filter may be found from the approximation


BW = 1070
$$\sqrt{\frac{V_i}{f_o C_2}}$$
 in % of f_o

Where:

V_i = Input voltage (volts rms), V_i ≤ 200mV

 C_2 = Capacitance at Pin 2(µF)

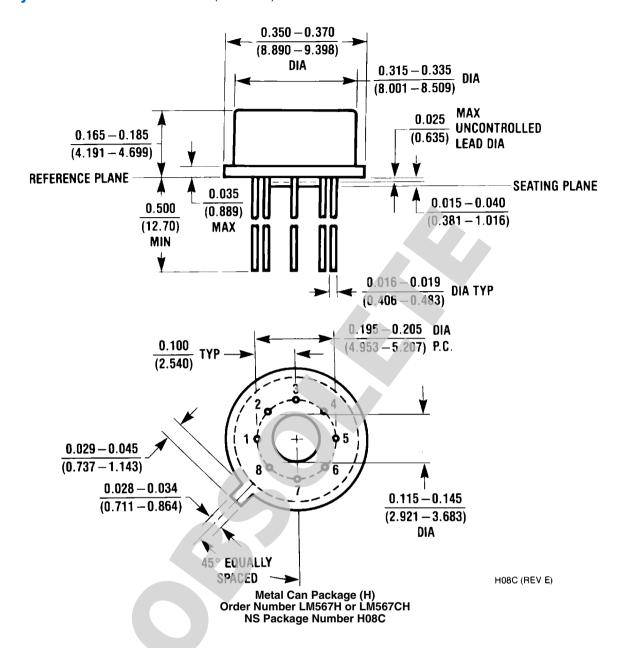
LM567C MDC MWC Tone Decoder

Die Layout (C - Step)

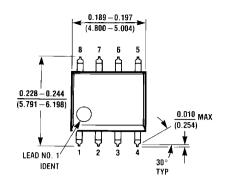
Die/Wafer Characteristics

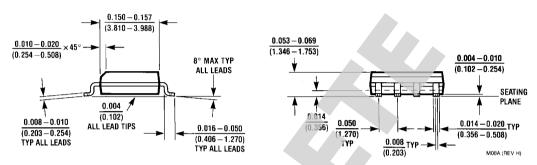

Fabrication Attributes		General Die Information			
Physical Die Identification	LM567C	Bond Pad Opening Size (min)	91µm x 91µm		
Die Step	С	Bond Pad Metalization	0.5% COPPER_BAL. ALUMINUM		
Physical Attributes		Passivation	VOM NITRIDE		
Wafer Diameter	150mm	Back Side Metal	BARE BACK		
Dise Size (Drawn)	1600µm x 1626µm 63.0mils x 64.0mils	Back Side Connection	Floating		
Thickness	406µm Nominal		•		
Min Pitch	198µm Nominal				

Special Assembly Requirements:	
Note: Actual die size is rounded to the nearest micron.	

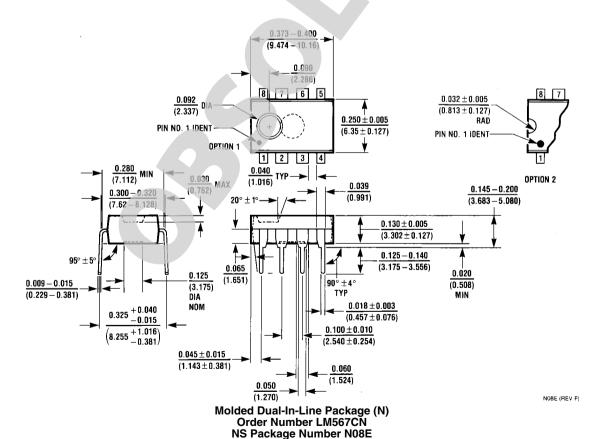

Die Bond Pad Coordinate Locations (C - Step)							
(Referenced to die center, coordinates in μm) NC = No Connection, N.U. = Not Used							
SIGNAL NAME	PAD# NUMBER	X/Y COORDINATES		PAD SIZE			
		Х	Υ	Х		Υ	
OUTPUT FILTER	1	-673	686	91	х	91	
LOOP FILTER	2	-673	-419	91	х	91	
INPUT	3	-673	-686	91	х	91	
V+	4	-356	-686	91	х	91	
TIMING RES	5	673	-122	91	Х	91	
TIMING CAP	6	673	76	91	Х	91	
GND	7	178	686	117	Х	91	
OUTPUT	8	-318	679	117	х	104	

www.national.com


IN U.S.A	
Tel #:	1 877 Dial Die 1 877 342 5343
Fax:	1 207 541 6140
IN EUROPE	
Tel:	49 (0) 8141 351492 / 1495
Fax:	49 (0) 8141 351470
IN ASIA PACIFIC	
Tel:	(852) 27371701
IN JAPAN	
Tel:	81 043 299 2308



Physical Dimensions inches (millimeters) unless otherwise noted



www.national.com 10

Small Outline Package (M) Order Number LM567CM NS Package Number M08A

Notes

For more National Semiconductor product information and proven design tools, visit the following Web sites at: www national com

Pr	oducts	Design Support		
Amplifiers	www.national.com/amplifiers	WEBENCH® Tools	www.national.com/webench	
Audio	www.national.com/audio	App Notes	www.national.com/appnotes	
Clock and Timing	www.national.com/timing	Reference Designs	www.national.com/refdesigns	
Data Converters	www.national.com/adc	Samples	www.national.com/samples	
Interface	www.national.com/interface	Eval Boards	www.national.com/evalboards	
LVDS	www.national.com/lvds	Packaging	www.national.com/packaging	
Power Management	www.national.com/power	Green Compliance	www.national.com/quality/green	
Switching Regulators	www.national.com/switchers	Distributors	www.national.com/contacts	
LDOs	www.national.com/ldo	Quality and Reliability	www.national.com/quality	
LED Lighting	www.national.com/led	Feedback/Support	www.national.com/feedback	
Voltage References	www.national.com/vref	Design Made Easy	www.national.com/easy	
PowerWise® Solutions	www.national.com/powerwise	Applications & Markets	www.national.com/solutions	
Serial Digital Interface (SDI)	www.national.com/sdi	Mil/Aero	www.national.com/milaero	
Temperature Sensors	www.national.com/tempsensors	SolarMagic™	www.national.com/solarmagic	
PLL/VCO	www.national.com/wireless	PowerWise® Design University	www.national.com/training	

THE CONTENTS OF THIS DOCUMENT ARE PROVIDED IN CONNECTION WITH NATIONAL SEMICONDUCTOR CORPORATION ("NATIONAL") PRODUCTS. NATIONAL MAKES NO REPRESENTATIONS OR WARRANTIES WITH RESPECT TO THE ACCURACY OR COMPLETENESS OF THE CONTENTS OF THIS PUBLICATION AND RESERVES THE RIGHT TO MAKE CHANGES TO SPECIFICATIONS AND PRODUCT DESCRIPTIONS AT ANY TIME WITHOUT NOTICE. NO LICENSE, WHETHER EXPRESS, IMPLIED, ARISING BY ESTOPPEL OR OTHERWISE, TO ANY INTELLECTUAL PROPERTY RIGHTS IS GRANTED BY THIS

TESTING AND OTHER QUALITY CONTROLS ARE USED TO THE EXTENT NATIONAL DEEMS NECESSARY TO SUPPORT NATIONAL'S PRODUCT WARRANTY. EXCEPT WHERE MANDATED BY GOVERNMENT REQUIREMENTS, TESTING OF ALL PARAMETERS OF EACH PRODUCT IS NOT NECESSARILY PERFORMED. NATIONAL ASSUMES NO LIABILITY FOR APPLICATIONS ASSISTANCE OR BUYER PRODUCT DESIGN. BUYERS ARE RESPONSIBLE FOR THEIR PRODUCTS AND APPLICATIONS USING NATIONAL COMPONENTS, PRIOR TO USING OR DISTRIBUTING ANY PRODUCTS THAT INCLUDE NATIONAL COMPONENTS, BUYERS SHOULD PROVIDE ADEQUATE DESIGN, TESTING AND OPERATING SAFEGUARDS.

EXCEPT AS PROVIDED IN NATIONAL'S TERMS AND CONDITIONS OF SALE FOR SUCH PRODUCTS. NATIONAL ASSUMES NO LIABILITY WHATSOEVER, AND NATIONAL DISCLAIMS ANY EXPRESS OR IMPLIED WARRANTY RELATING TO THE SALE AND/OR USE OF NATIONAL PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT.

LIFE SUPPORT POLICY

NATIONAL'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS PRIOR WRITTEN APPROVAL OF THE CHIEF EXECUTIVE OFFICER AND GENERAL COUNSEL OF NATIONAL SEMICONDUCTOR CORPORATION. As used herein:

Life support devices or systems are devices which (a) are intended for surgical implant into the body, or (b) support or sustain life and whose failure to perform when properly used in accordance with instructions for use provided in the labeling can be reasonably expected to result in a significant injury to the user. A critical component is any component in a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system or to affect its safety or effectiveness.

National Semiconductor and the National Semiconductor logo are registered trademarks of National Semiconductor Corporation. All other brand or product names may be trademarks or registered trademarks of their respective holders.

Copyright© 2011 National Semiconductor Corporation

For the most current product information visit us at www.national.com

National Semiconductor **Americas Technical** Support Center Email: support@nsc.com ww.national.com Tel: 1-800-272-9959

National Semiconductor Europe **Technical Support Center** Email: europe.support@nsc.com

National Semiconductor Asia Pacific Technical Support Center Email: ap.support@nsc.com

National Semiconductor Japan **Technical Support Center** Email: ipn.feedback@nsc.com