
General Specifications - Class II General Purpose

DIELECTRIC - CLASS II

These ceramic capacitors have a high dielectric constant, what makes possible a high capacitance values in reduced dimensions, however temperature coefficient and loss factor are greater than Class I.

Typical applications are decoupling and by pass.

Meets IEC 384-9 (1988).

DIMENSIONS millimeters (inches)

Digit 9	D ± 2	T max.	Available Lead Spacing				
(ø)	(0.079)		Vn = 100V/500V	Vn = 1000V	Vn = 2000V	Vn = 3000V	Vn = 4000/5000V
А	4.0 (0.157)	3.0 (0.118)	A,B,D,E,O,R	A,B,E,N,R	A,B,E,N,R	B,E	
В	5.0 (0.197)	4.0 (0.157)	A,B,D,E,O,R,X	A,B,E,N,R,X	A,B,E,N,R	B,E	
С	6.0 (0.236)	4.0 (0.157)	A,B,C,D,E,O,R,X	A,B,C,E,N,R,X	A,B,C,E,N,R,	B,C,E	С
D	7.0 (0.276)	4.0 (0.157)	A,B,C,D,E,O,R,X	A,B,C,E,N,Q,R,X	A,B,C,E,N,Q,R	B,C,E	С
Е	8.0 (0.315)	4.0 (0.157)	A,B,C,D,E,O,R,X	A,B,C,E,N,Q,R,X	A,B,C,E,N,Q,R	B,C,E	С
F	9.0 (0.354)	5.0 (0.197)	A,B,C,E,O,R,X	A,B,C,E,N,R,X	A,B,C,E,N,R	B,C,E	С
G	10.0 (0.394)	5.0 (0.197)	A,B,C,E,O,R,X	A,B,C,E,N,R,X	A,B,C,E,N,R	B,C,E	С
Н	11.0 (0.433)	5.0 (0.197)	A,B,C,E,O,R,X	A,B,C,E,N,P,R,W	A,B,C,E,N,P,R,W	B,C,E,P,W	C,P
J	13.0 (0.512)	6.0 (0.236)	B,C,R,W	B,C,N,P,R,W	B,C,P,W	B,C,P,W	C,P
K	15.0 (0.591)	6.0 (0.236)	B,C,R,W	B,C,N,P,R,W	B,C,P,W	B,C,P,W	C,P
M	19.0 (0.748)	7.0 (0.276)	B,C	B,C,P	B,C,P	B,C,P	C,P

(E), (X), (W): upon request

LEAD SPACING - DIGIT 8 OF P.N. millimeters (inches)

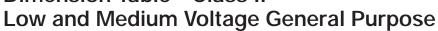
	100V/	500V	1kV5kV/100Vac150Vac			
F						
2.5 (0.100)	D			_	_	
5 (0.200)	А	0	А	_	N	
6 (0.250)	Е	Χ	Е	Χ	_	
7.5 (0.300)	В	R	В	R	Q	
10 (0.400)	С	W	С	W	_	
12.5 (0.500)	Р	_	Р	_	_	

General Specifications - Class II General Purpose

100V / 500V PERFORMANCE CHARACTERISTICS CLASS II

Voltage Rating	100V and 500V
Measured at	1.0 kHz / 0.3 Vrms / 25°C
Dissipation Factor	Y5E / Y5F / Y5P ≤ 2.5% Y5U / Y5V / Z5V ≤ 3.0%
Capacitance Tolerance	Y5E / Y5F / Y5P → ±10% Y5E / Y5E / Y5P / Y5U → ±20% Y5U / Y5V / Z5V → -20% +50%
Insulation Resistance	$@V_R \rightarrow \ge 10 \text{ G}\Omega$
Dielectric Strength NOTE: Charging current limited to 50 mA	$V_R = 100V \rightarrow Vt = 250V (DC)$ $V_R = 500V \rightarrow Vt = 1250V (DC)$
Operating Temperature Range (°C)	-30 +85
Climatic Category	30 / 085 / 21 Phenolic Coated

Note: Damp Heat Steady State: 90... 95% R.H. 40°C / 21 days. No voltage to be applied.


1kV ... 5kV PERFORMANCE CHARACTERISTICS CLASS II

Voltage Rating	1kV 5kV			
Measured at	1.0 kHz / 0.3 Vrms / 25°C			
Dissipation Factor	Y5F → ≤ 2.5% Y5U / Y5V ≤ 3.0%			
Capacitance Tolerance	Y5F $\rightarrow \pm 10\% / \pm 20\%$ Y5U $\rightarrow \pm 20\% / -20 +50\%$ Y5V $\rightarrow -20 +50\%$			
Insulation Resistance	@ 500V →≥ 10 GΩ			
Dielectric Strength NOTE: Charging current limited to 50 mA	1.5 x V _R + 500 (DC)			
Operating Temperature Range (°C)	-30 +85 Phenolic Coated -30 +125 Epoxy Coated			
Climatic Category	30 / 085 / 21 Phenolic Coated 30 / 085 / 56 Epoxy Coated			

Note: Damp Heat Steady State: 90... 95% R.H. 40°C / 21 days. No voltage to be applied.

Disc Ceramic Capacitors Dimension Table - Class II

100V / 500V CLASS II - CAPACITANCE VS. DISC DIAMETER

millimeters (inches)

Temp. Coefficient	Y5E		Y5F Y5P		Y5U		Y5V		Z5V		
Digits 1,2,3 of P.N.	5MK	5MQ	5NK	5NQ	50K	50Q	5SK	5SQ	5TK	5TQ	5UK
Rated Voltage (V_R)	100 VDC	500 VDC	100 VDC	500 VDC	100 VDC	500 VDC	100 VDC	500 VDC	100 VDC	500 VDC	100 VDC
C _R (pF)											
56											
68											
82 100											
120	4.0 (0.157)	4.0 (0.157)	Use Y5E	Use Y5E	, Ųse Y5E	Use Y5E	Use Y5E	Use Y5E	Use Y5E	Use Y5E	Use Y5E
150	(0.107)	(0.107)									
180											
220											
270 330											
390			4.0 (0.157)	4.0 (0.157)	Use Y5F	Lise Y5F	Lise Y5F	Lise V5E	Lise Y5E	Lise V5F	Lise V5E
470	E 0 (0 407)	5.0 (0.197)	110 (01107)	, ,		4.0 (0.157)	Use Y5P	Use Y5P	Use Y5P	Use Y5P	Use Y5P
560	5.0 (0.197)	6.0 (0.236)		5.0 (0.197)	4.0 (0.157)	4.0 (0.157)	///////////////////////////////////////	///////////////////////////////////////	//////////////////////////////////////		
680	(0 (0 00 ()	0.0 (0.230)	5.0 (0.197)	6.0 (0.236)		5.0 (0.197)	10(0157)	1.0 (0.157)			
820 1,000	6.0 (0.236) 7.0 (0.276)	7.0 (0.276)		7.0 (0.276)	5.0 (0.197)	, ,	4.0 (0.157)	4.0 (0.157)	Use Y5U //	Use Y5U	Úse Y5Ú
1,200	` ′	8.0 (0.315)	6.0 (0.236)			6.0 (0.236)		(<i>/////////////////////////////////////</i>	(//////////////////////////////////////	
1,500	8.0 (0.315)	, ,	` ′	8.0 (0.315)	6.0 (0.236)	7.0 (0.07/)	F 0 /0 107\	5.0 (0.197)	4.0 (0.157)	4.0 (0.157)	
1,800	9.0 (0.354)	9.0 (0.354)	7.0 (0.276)	9.0 (0.354)	7.0 (0.276)	7.0 (0.276)	5.0 (0.197)	6.0 (0.236)	4.0 (0.157)	4.0 (0.157)	
2,200	7.0 (0.001)	11.0 (0.433)	8.0 (0.315)	11.0 (0.433)	8.0 (0.315)	8.0 (0.315)		7.0 (0.276)			Use Y5V
2,700 3,300	11.0 (0.433)	15.0 (0.591)	9.0 (0.354)	13.0 (0.512)	9.0 (0.354)	9.0 (0.354)	6.0 (0.236)		5.0 (0.197)	5.0 (0.197)	
3,900					9.0 (0.334)			8.0 (0.315)	3.0 (0.197)	6.0 (0.236)	
4,700			11.0 (0.433)	15.0 (0.591)	11.0 (0.433)	11.0 (0.433)	7.0 (0.276)	9.0 (0.354)	6.0 (0.236)	7.0 (0.276)	4.0 (0.157)
5,600						13.0 (0.512)	7.0 (0.276)	9.0 (0.334)	7.0 (0.276)		
6,800					13.0 (0.512)	15.0 (0.591)	0.0 (0.35.4)	11.0 (0.400)	7.0 (0.270)	8.0 (0.315)	
8,200 10,000							9.0 (0.354)	11.0 (0.433)	8.0 (0.315)	9.0 (0.354)	5.0 (0.197)
12,000							11.0 (0.433)	13.0 (0.512)	9.0 (0.354)	11.0 (0.433)	3.0 (0.177)
15,000								` ′	11.0 (0.433)	13.0 (0.512)	
22,000									13.0 (0.512)	15.0 (0.591)	8.0 (0.315)

Diameter (φ) = 9th Part Number Digit

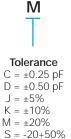
Dimension Table

1kV / 5kV CLASS II - CAPACITANCE VS. DISC DIAMETER

millimeters (inches)

Temp. Coefficient	Y5F			Y5U			Y5V				
Digits 1,2,3 of P.N.	5NR	5NS	5NT	5SR	5SS	5ST	5SU	5SW	5TR	5TS	5TT
Rated Voltage (V _R)	1000 VDC 100 VAC	2000 VDC 150 VAC	3000 VDC 150 VAC	1000 VDC 100 VAC	2000 VDC 150 VAC	3000 VDC 150 VAC	4000 VDC 150 VAC	5000 VDC 150 VAC	1000 VDC 150 VAC	2000 VDC 150 VAC	3000 VDC 150 VAC
C _R (pF)											
100 120 150	4.0 (0.157)	4.0 (0.157)		Use Y5F	Ilsa V5E	, Ųşe Y5F			Ųşe Y5F	Use Y5F	Use Y5F
180 220 270	4.0 (0.157)	5.0 (0.197)	7.0 (0.276)				8.0 (0.315)	11.0 (0.433)			
330 390 470	5.0 (0.197)	6.0 (0.236) 7.0 (0.276)	8.0 (0.315)	4.0 (0.157)	5.0 (0.197)	/////////			Use Y5U	Ųse Y5U	
560 680 820	7.0 (0.276)	8.0 (0.315)	9.0 (0.354)		6.0 (0.236)	7.0 (0.276)					Úse Y5U
1,000 1,200	` '	9.0 (0.354)	11.0 (0.433)	5.0 (0.197)	7.0 (0.276)	8.0 (0.315)	10.0 (0.394)		4.0 (0.157)	6.0 (0.236)	7.0 (0.276)
1,500 1,800	8.0 (0.315) 9.0 (0.354)	10.0 (0.394) 11.0 (0.433)	13.0 (0.512)	6.0 (0.236)	8.0 (0.315)	9.0 (0.354)	11.0 (0.433)	13.0 (0.512)	5.0 (0.197) 6.0 (0.236)	7.0 (0.276)	8.0 (0.315)
2,200 2,700	11.0 (0.433)	13.0 (0.512)	15.0 (0.591)	7.0 (0.276)	9.0 (0.354)	10.0 (0.394)	13.0 (0.512)	15.0 (0.591)	7.0 (0.276)	8.0 (0.315)	9.0 (0.354)
3,300 3,900	13.0 (0.512) 15.0 (0.591)	15.0 (0.591)	19.0 (0.748)	8.0 (0.315)	10.0 (0.394)	11.0 (0.433)	15.0 (0.512)	19.0 (0.748)	7.0 (0.276)	9.0 (0.354)	11.0 (0.433)
4,700 5,600				9.0 (0.354) 10.0 (0.394)	11.0 (0.433)	13.0 (0.512)	` ′	19.0 (0.748)	9.0 (0.354)	11.0 (0.433)	13.0 (0.512)
6,800 8,200				11.0 (0.433)	13.0 (0.512)	15.0 (0.591)	19.0 (0.748)		10.0 (0.394)	13.0 (0.512)	15.0 (0.591)
10,000 12,000 15,000				13.0 (0.512) 15.0 (0.591)	15.0 (0.591)	19.0 (0.748)			13.0 (0.512)	15.0 (0.591)	19.0 (0.748)
22,000				13.0 (0.371)					15.0 (0.591)		

Diameter (φ) = 9th Part Number Digit



Ordering Code

HOW TO ORDER 5 0 Q 222 **General Purpose Professional Switch Mode** Rated Voltage (dc) Capacitance 222 = 2.2 nF Safety D = 16V 5A = NP0/I6A = NPO / IF = 25V*5B = P100 / I *6B = P100 / I H = 50V*5C = N150 / I *6C = N150 / IK = 100V*5D = N220 / I *5E = N330 / I *6D = N220 / IN = SAFETY Capacitance = TPC code Capacitance = TPC code *6E = N330 / I O = SAFETY *5F = N470 / I100pF = 101 1 pF = 1R0*6F = N470 / I 5G = N750 / IQ = 500V1.2pF = 1R2120pF = 1216G = N750 / IR = 1000V1.5pF = 1R5 1.8pF = 1R8 150pF = 151 180pF = 181 5H = N1500 / I*6H = N1500 / I S = 2000V*5I = N2200 / I *6I = N2200 / I T = 3000V*5J = N4700 / I2.2pF = 2R2220pF = 2216J = N4700 / IU = 4000V5K = SL2.7pF = 2R7270pF = 27161 = SAFETY 5M = Y5E / II V = SAFETY3.9pF = 3R9330pF = 33162 = SAFETY W = 5000V4.7pF = 4R7390pF = 391 5N = Y5F / II65 = SAFETY 50 = Y5P / II *X = 6000V5.6pF = 5R6470pF = 471*5P = Y5R / II 67 = Y5U / SM*Y = 7500V6.8pF = 6R8560pF = 56168 = Y5V / SM8.2pF = 8R2*5Q = Y5T / II 680pF = 681 6L = Y5P / SM5S = Y5U / II 10pF = 100820pF = 8216M = X5E / II5T = Y5V / II12pF = 120 15pF = 150 1nF = 102 1.2nF = 122 6N = X5F / II5U = Z5V / II60 = X5P / II*5V = Z4V / III18pF = 180 1.8nF = 182*6P = X5R / II 5W = Y5P / III22pF = 2202.2nF = 2225Y = Y5U / III *6Q = X5T / II27pF = 2702.7nF = 2726S = X5U / II5Z = Y5V / III33pF = 3303.3nF = 3326T = X5V / II3.9nF = 39239pF = 3906U = Z5V / II47pF = 4704.7nF = 472*6V = Z4V / III 6W = Y5P / III 56pF = 5605.6nF = 56268pF = 6806.8nF = 6826Y = Y5U / III 82pF = 8208.2nF = 8226Z = Y5V / III10nF = 10315nF = 15322nF = 22333nF = 333*Upon Request 47nF = 473100nF = 104200nF = 204

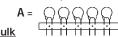
Z = -20 + 80%

P = 0+100%

Ε

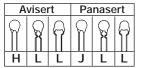
Capacitor Diameter

± 2 (0.079) A = 4 (0.157)B = 5 (0.197)C = 6 (0.236)D = 7 (0.276)E = 8 (0.315)F = 9 (0.354)G = 10 (0.394)H = 11 (0.433)J = 13 (0.512)K = 15 (0.591) $M^* = 19 (0.748)$

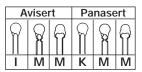

*Wire 0.8 (0.031) recommended

			î	Wire 0.8 (0.0
Lead F	\bigcap	\bigcap		
mm	inches			
2.5 ±0.5	.1 ± .025	D	-	-
5 +0.6 -0.2	.2 ± .025	А	0	N
6 ^{+0.6} _{-0.2}	.25 ± .025	E	Х	-
7.5 +1 -0.5	.3 ± .05	В	R	Q
10 ^{+0.5} _{-1.0}	.4 ± .05	С	W	-
12.5 +1	5 + 05	Р	_	_

Cardboard Strips



Bulk


 $E = 5 (0.197) \pm 1 (0.039)$ free wire length $C = 10 (0.394) \pm 1 (0.039)$ free wire length $D = 25 (0.984) \pm 1 (0.039)$ free wire length

Taping

Finishing

Diam \leq 9 (0.354) and F = 5.00 (0.197)

For every other:

Low Voltage

General) Q = Waxed phenolic Purpose A = Phenolic

S = Epoxy (Professional) cap. diameter ≤ 8 (0.315)

D = Epoxy (Professional) cap. diameter > 8 (0.315)

High Voltage

= Measured from the center of leads

C = Epoxy wire diameter

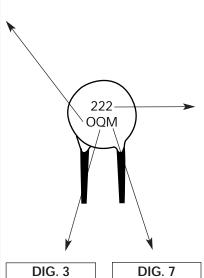
0.6 $(0.024)^{\pm} (0.004)$

I = Epoxy wire diameter

8.0 0.1 $(0.031)^{\pm} (0.004)$

L = Phenolic wire diameter

0.6 $(0.024)^{\pm} (0.004)$


Please note that not all code combinations are either possible or available.

Marking

DIG. 2						
()					
TC / (Class					
General Purpose	Professional					
A = NP0 / I	A = NP0 / I					
*B = P100 / I	B = P100 / I					
*C = N150 / I	C = N150 / I					
*D = N220 / I	D = N220 / I					
*E = N330 / I	E = N330 / I					
*F = N470 / I	F = N470 / I					
G = N750 / I	G = N750 / I					
H = N1500 / I	H = N1500 / I					
*I = N2200 / I	I = N2200 / I					
*J = N4700 / I	J = N4700 / I					
K = SL	7 = Y5U / SM					
M = Y5E / II	8 = Y5V / SM					
N = Y5F / II	L = Y5P / SM					
O = Y5P / II	M = X5E / II					
P = Y5R / II	N = X5F / II					
Q = Y5T / II	O = X5P / II					
S = Y5U / II	P = X5R / II					
T = Y5V / II	Q = X5T / II					
U = Z5V / II	S = X5U / II					
V = Z4V / III	T = X5V / II					
*W = Y5P / II	U = Z5V / II					
*X = Y5R / II	V = Z4V / III					
Y = Y5U / II	W = Y5P / III					
Z = Y5V / II	X = Y5R / III					
	Y = Y5U / III					
	Z = Y5V / III					

Logo: Only in diam. ≥ 6mm

D = 16V F = 25V H = 50V K = 100V Q = 500V

R = 1000V

S = 2000V

T = 3000V

U = 4000VW = 5000V

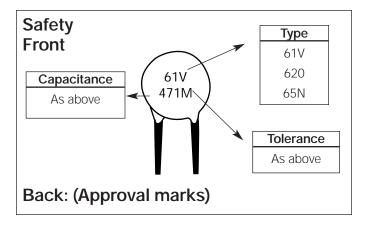
X = 6000V

Y = 7500V

M						
	To	olera	nce			
С	=	±0.2	25pF			
D	=	±0.5	рF			
J	=	±5%)			
Κ	=	±10°	%			
M	=	±20°	%			

S = -20 + 50%

Z = -20 + 80%

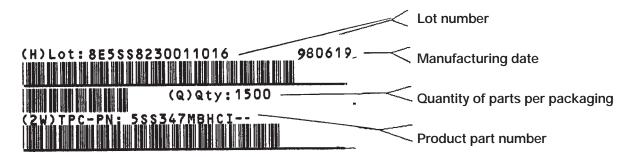

P = 0 + 100%

Capacitance	EIA
1pF = 109	100pF = 101
1.2pF = 129	120pF = 121
1.5pF = 159	150pF = 151
1.8pF = 189	180pF = 181
2.2pF = 229	220pF = 221
2.7pF = 279	270pF = 271
3.9pF = 399	390pF = 391
4.7pF = 479	470pF = 471
5.6pF = 569	560pF = 561
6.8pF = 689	680pF = 681
8.2pF = 829	820pF = 821
10pF = 100	1nF = 102
12pF = 120	1.2nF = 122
15pF = 150	1.8nF = 182
18pF = 180	2.2nF = 222
22pF = 220	2.7nF = 272
27pF = 270	3.9nF = 392
39pF = 390	4.7nF = 472
47pF = 470	5.6nF = 562
56pF = 560	6.8nF = 682
68pF = 680	8.2nF = 822
82pF = 820	10nF = 103
	15nF = 153
	22nF = 223
	33nF = 333
	47nF = 473
	100nF = 104
	200nF = 204

*Upon Request

TC – Temperature coefficient.

DIG – for better understanding, check pages 3 and 4.



Packaging

IDENTIFICATION AND TRACEABILITY

On all TPC ceramic capacitors packages, you will find a bar code label with the following information:

TAPED PARTS QUANTITY TABLE

millimeters (inches)

Rated Voltage	Rated Voltage Diameter		tities
(Vr)	D	Ammopack	Reel
Vr <= 500V	D ≤ 7 (0.276)	2000	2500
	7 < D ≤ 11 (0.433)	2000	2000
500V <vr<=2kv< th=""><th>D ≤ 11 (0.433)</th><th>1500</th><th>2000</th></vr<=2kv<>	D ≤ 11 (0.433)	1500	2000
2KV <vr=5kv< th=""><th>D ≤ 11 (0.433)</th><th>1000</th><th>1500</th></vr=5kv<>	D ≤ 11 (0.433)	1000	1500

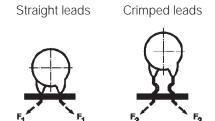
CARDBOARD STRIPS QUANTITY TABLE

millimeters (inches)

Rated Voltage	Diameter	Lead Space	
(Vr)	D	< = 5 (0.197)	> 5 (0.197)
Vr <= 500V	D ≤ 8 (0.315)	2500	1500
	8 (0.315) ≦ D≦ 11 (0.433)	1500	-
	8 (0.315) ≦ D≦ 13 (0.512)	-	1000
	11 (0.433) ≦ D≦ 15 (0.591)	1000	-
	13 (0.512) ≦ D≦ 19 (0.748)	-	500
	D ≤ 19 (0.748)	500	-
500V <vr<=2kv< td=""><td>D ≤ 9 (0.354)</td><td>1500</td><td>1000</td></vr<=2kv<>	D ≤ 9 (0.354)	1500	1000
	9 (0.354) ≤ D ≤ 11 (0.433)	-	1000
	9 (0.354) ≤ D ≤ 13 (0.512)	1000	-
	11 (0.433) ≦ D ≦ 19 (0.748)	-	500
	13 (0.512) ≤ D ≤ 19 (0.748)	500	-
2KV <vr<=5kv< td=""><td>D ≤ 9 (0.354)</td><td>1500</td><td>-</td></vr<=5kv<>	D ≤ 9 (0.354)	1500	-
Safety 65N 62O	D ≤ 11 (0.433)	-	1000
	D ≤ 13 (0.512)	500	500
Safety	D ≤ 6 (0.236)	1500	1500
61V	$7 (0.275) \le D \le 9 (0.354)$	1000	1000
	9 (0.354) ≦ D	500	500

Quantities for other package alternative, upon request.

Tape and Reel Specifications


There are two types of taped disc ceramic capacitors: Straight or crimped leads.

Both types can be shipped on reels or ammopack.

The standard packaging quantities are shown bellow:

Fig. 1 Fig. 2 Fig. 3 Fig. 2 Fig. 3 Carimbo Marking 1,5 max.

millimeters (inches)

Maximum pull force during insertion and lead cut

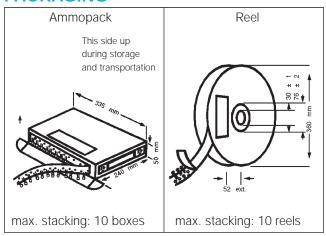
	F ₁	$F_{\scriptscriptstyle 2}$
$4 (0.157) \le D < 6 (0.236)$	12N	20N
D ≥ 6 (0.236)	20N	25N

Digit 11	Available Tapings	Digit 9
L M	Sizes 4 (0.157) ≤ D ≤ 11 (0.433)	A H
J H K I	Sizes $6 (0.236) \le D \le 11 (0.433)$	C H

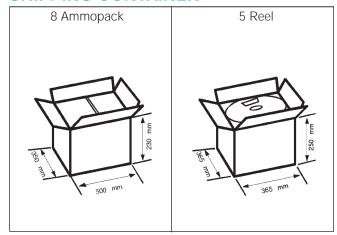
TPC Code Digit 11

Packaging	Avisert	Panasert	
Reel	H L L L FIGURE 1 FIGURE 2 FIGURE 3	FIGURE 1 FIGURE 2 FIGURE 3	
Ammopack	FIGURE 1 FIGURE 2 FIGURE 3	K M M FIGURE 1 FIGURE 2 FIGURE 3	

Figure 2: Inside Crimp 100V... 1000V Figure 3: Outside Crimp 1000V



Tape and Reel Specifications


millimeters (inches)

		Straight Leads		Crimped
		Figure 1		Figure 2 & 3
Description of Symbols		A (Avisert)	P (Panasert)	Avisert & Panasert
Crimp angle	∝	_	_	20°45°
Crimp length	С	_	_	1.7 min.
Lead diameter	d		0.60 ± 0.1	
Disc diameter	D	11 max.		
Lead hole diameter	Do	4.0 ± 0.2		
Disc thickness	Т	See Catalog		
Lead spacing	F	5.0 ^{+0.6} _{-0.2}		
Component alignment, front-rear	Δh	0 ± 1		
Height of component from tape center	Н	19.5 ± 0.5	16.5 ± 0.5 - 0	_
Height from tape center to crimp	Но	_	_	16 + 0.5 - 0
Component height	H1	32.25 max.	>23.5 <32.25	32.25 max.
Distance from component leads to tape bottom	ℓ_1	12 max.		
Tape width	W	18 +1 -0.5		
Bonding tape width	W_3	5.5 min.		
Feed hole position	W ₁	9.0 ± 0.5		
Pitch between discs	Р	12.7 ± 1		
Feed hole pitch	Ро	12.7 ± 0.3		
Hole center to lead	P1	3.85 ± 0.7		
Feed hole center to component center	P2	6.35 ± 1		
Tape + bonding tape thickness	t	0.7 ± 0.2		
Total tape thickness. including lead	t ₂	1.5 max.		
		·		

PACKAGING

SHIPPING CONTAINER

