TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

SLOS191D - FEBRUARY 1997 - REVISED NOVEMBER 2010

- Supply Current . . . 300 μA Max
- High Unity-Gain Bandwidth . . . 2 MHz Typ
- High Slew Rate . . . 0.45 V/μs Min
- Supply-Current Change Over Military Temp Range . . . 10 μ A Typ at $V_{CC\,\pm} = \pm$ 15 V
- Specified for Both 5-V Single-Supply and ±15-V Operation
- Phase-Reversal Protection

- High Open-Loop Gain . . . 6.5 V/μV (136 dB) Typ
- Low Offset Voltage . . . 100 μV Max
- Offset Voltage Drift With Time 0.005 μV/mo Typ
- Low Input Bias Current . . . 50 nA Max
- Low Noise Voltage . . . 19 nV/√Hz Typ

description

The TLE202xA, TLE202xA, and TLE202xB devices are precision, high-speed, low-power operational amplifiers using a new Texas Instruments Excalibur process. These devices combine the best features of the OP21 with highly improved slew rate and unity-gain bandwidth.

The complementary bipolar Excalibur process utilizes isolated vertical pnp transistors that yield dramatic improvement in unity-gain bandwidth and slew rate over similar devices.

The addition of a bias circuit in conjunction with this process results in extremely stable parameters with both time and temperature. This means that a precision device remains a precision device even with changes in temperature and over years of use.

This combination of excellent dc performance with a common-mode input voltage range that includes the negative rail makes these devices the ideal choice for low-level signal conditioning applications in either single-supply or split-supply configurations. In addition, these devices offer phase-reversal protection circuitry that eliminates an unexpected change in output states when one of the inputs goes below the negative supply rail.

A variety of available options includes small-outline and chip-carrier versions for high-density systems applications.

The C-suffix devices are characterized for operation from 0° C to 70° C. The I-suffix devices are characterized for operation from -40° C to 85° C. The M-suffix devices are characterized for operation over the full military temperature range of -55° C to 125° C.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

All trademarks are the property of their respective owners.

TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION **OPERATIONAL AMPLIFIERS**

SLOS191D - FEBRUARY 1997 - REVISED NOVEMBER 2010

TLE2021 AVAILABLE OPTIONS

				PACKAGEI	D DEVICES			
TA	V _{IO} max AT 25°C	SMALL OUTLINE [†] (D)	SSOP [‡] CHIP CARRIER (FK)		CERAMIC DIP (JG)	PLASTIC DIP (P)	TSSOP [‡] (PW)	CHIP FORM [§] (Y)
0°C to 70°C	200 μV 500 μV	TLE2021ACD TLE2021CD	TLE2021CDBLE	_	_	TLE2021ACP TLE2021CP	 TLE2021CPWLE	— TLE2021Y
-40°C to 85°C	200 μV 500 μV	TLE2021AID TLE2021ID	_			TLE2021AIP TLE2021IP		_
-55°C to 125°C	100 μV 500 μV	TLE2021MD	_	TLE2021BMFK TLE2021MFK	TLE2021BMJG TLE2021MJG	TLE2021MP	_	_

[†] The D packages are available taped and reeled. To order a taped and reeled part, add the suffix R (e.g., TLE2021CDR).

TLE2022 AVAILABLE OPTIONS

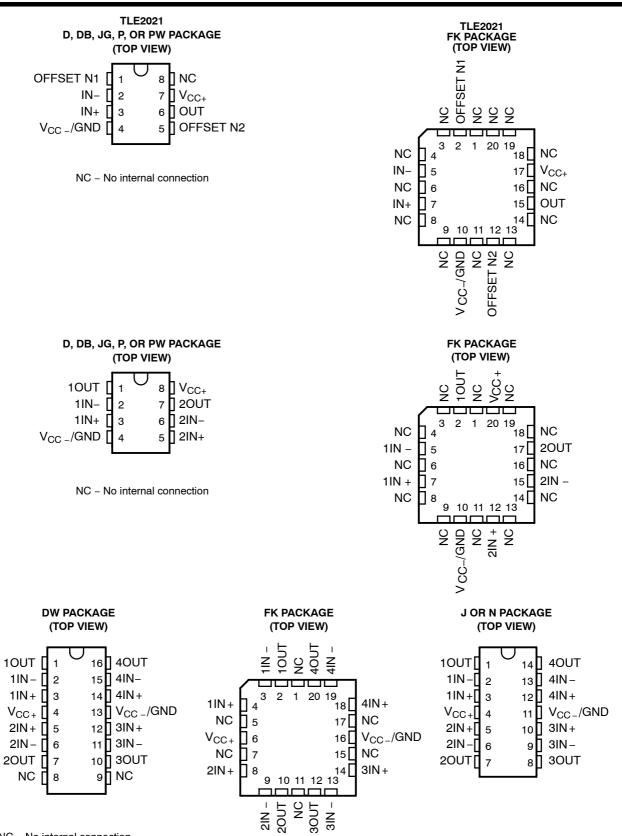
		PACKAGED DEVICES						
T _A	V _{IO} max AT 25°C	SMALL OUTLINE [†] (D)	SSOP [‡] (DB)	CHIP CARRIER (FK)	CERAMIC DIP (JG)	PLASTIC DIP (P)	TSSOP [‡] (PW)	CHIP FORM [§] (Y)
0°C to 70°C	150 μV 300 μV 500 μV	TLE2022BCD TLE2022ACD TLE2022CD	— TLE2022CDBLE	_	_	TLE2022ACP	— — TLE2022CPWLE	 TLE2022Y
-40°C to 85°C	150 μV 300 μV 500 μV	TLE2022BID TLE2022AID TLE2022ID	_	_	_	TLE2022AIP TLE2022IP	_	_
-55°C to 125°C	150 μV 300 μV 500 μV	TLE2022AMD TLE2022MD	_	 TLE2022AMFK TLE2022MFK	TLE2022BMJG TLE2022AMJG TLE2022MJG	TLE2022AMP TLE2022MP	_	_

[†] The D packages are available taped and reeled. To order a taped and reeled part, add the suffix R (e.g., TLE2022CDR).

TLE2024 AVAILABLE OPTIONS

			PACKAGED	DEVICES		OUID
T _A	V _{IO} max AT 25°C	SMALL OUTLINE (DW)	CHIP CARRIER (FK)	CERAMIC DIP (J)	PLASTIC DIP (N)	CHIP FORM [§] (Y)
0°C to 70°C	500 μV 750 μV 1000 μV	TLE2024BCDW TLE2024ACDW TLE2024CDW	l		TLE2024BCN TLE2024ACN TLE2024CN	 TLE2024Y
-40°C to 85°C	500 μV 750 μV 1000 μV	TLE2024BIDW TLE2024AIDW TLE2024IDW	l		TLE2024BIN TLE2024AIN TLE2024IN	
-55°C to 125°C	500 μV 750 μV 1000 μV	TLE2024BMDW TLE2024AMDW TLE2024MDW	TLE2024BMFK TLE2024AMFK TLE2024MFK	TLE2024BMJ TLE2024AMJ TLE2024MJ	TLE2024BMN TLE2024AMN TLE2024MN	I

[§] Chip forms are tested at 25°C only.

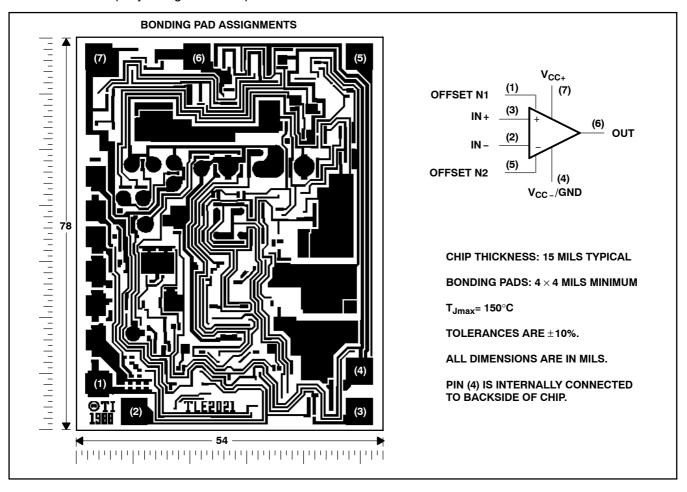

[‡] The DB and PW packages are only available left-end taped and reeled.

[§] Chip forms are tested at 25°C only.

[‡] The DB and PW packages are only available left-end taped and reeled.

[§] Chip forms are tested at 25°C only.

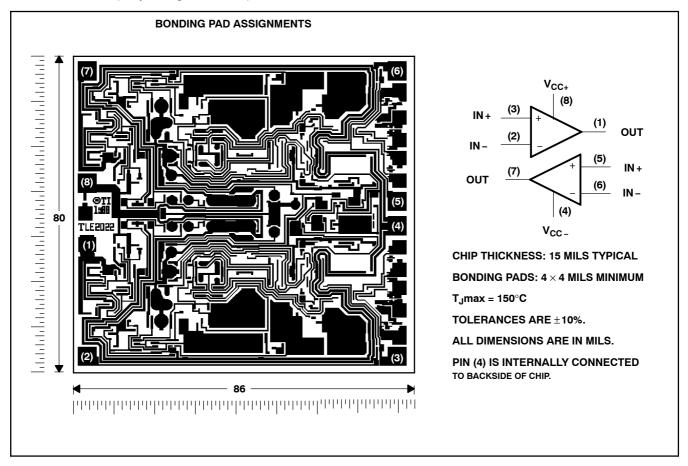
SLOS191D - FEBRUARY 1997 - REVISED NOVEMBER 2010


NC - No internal connection

TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

SLOS191D - FEBRUARY 1997 - REVISED NOVEMBER 2010

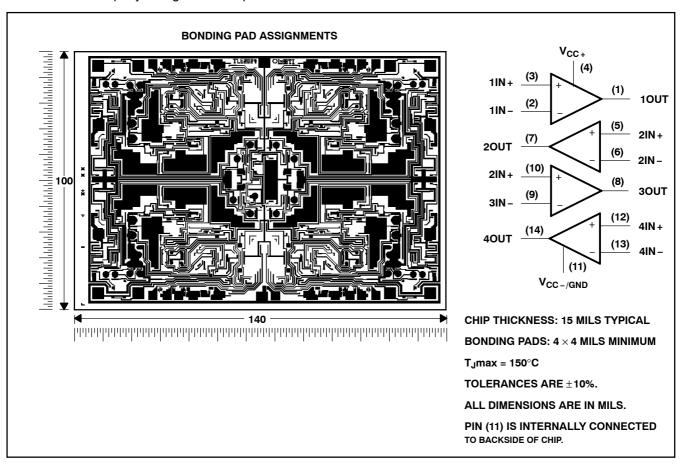
TLE2021Y chip information


This chip, when properly assembled, display characteristics similar to the TLE2021. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with conductive epoxy or a gold-silicon preform.

SLOS191D - FEBRUARY 1997 - REVISED NOVEMBER 2010

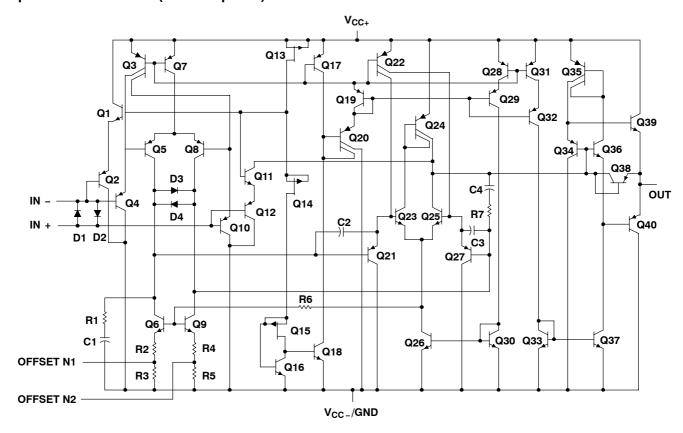
TLE2022Y chip information

This chip, when properly assembled, displays characteristics similar to TLE2022. Thermal compression or ultrasonic bonding may be used on the doped-aluminum bonding pads. This chip may be mounted with conductive epoxy or a gold-silicon preform.



TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

SLOS191D - FEBRUARY 1997 - REVISED NOVEMBER 2010


TLE2024Y chip information

This chip, when properly assembled, displays characteristics similar to the TLE2024. Thermal compression or ultrasonic bonding may be used on the doped aluminum-bonding pads. This chip may be mounted with conductive epoxy or a gold-silicon preform.

SLOS191D - FEBRUARY 1997 - REVISED NOVEMBER 2010

equivalent schematic (each amplifier)

ACTUAL DEVICE COMPONENT COUNT										
COMPONENT TLE2021 TLE2022 TLE2024										
Transistors	40	80	160							
Resistors	7	14	28							
Diodes	4	8	16							
Capacitors	4	8	16							

TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

SLOS191D - FEBRUARY 1997 - REVISED NOVEMBER 2010

absolute maximum ratings over operating free-air temperature range (unless otherwise noted)[†]

Supply voltage, V _{CC+} (see Note 1)	20 V
Supply voltage, V _{CC} (see Note 1)	
Differential input voltage, V _{ID} (see Note 2)	
Input voltage range, V _I (any input, see Note 1)	
Input current, I _I (each input)	±1 mA
Output current, IO (each output): TLE2021	±20 mA
TLE2022	±30 mA
TLE2024	±40 mA
Total current into V _{CC+}	80 mA
Total current out of V _{CC}	80 mA
Duration of short-circuit current at (or below) 25°C (see Note 3)	unlimited
Continuous total power dissipation	See Dissipation Rating Table
Operating free-air temperature range, T _A : C suffix	0°C to 70°C
I suffix	–40°C to 85°C
M suffix	–55°C to 125°C
Storage temperature range, T _{stg}	–65°C to 150°C
Case temperature for 60 seconds, T _C : FK package	
Lead temperature 1,6 mm (1/16 inch) from case for 10 seconds: D, DP, P, or F	PW package 260°C
Lead temperature 1,6 mm (1/16 inch) from case for 60 seconds: JG package	300°C

[†] Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating conditions" is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

- NOTES: 1. All voltage values, except differential voltages, are with respect to the midpoint between V_{CC+}, and V_{CC-}.
 - Differential voltages are at IN+ with respect to IN -. Excessive current flows if a differential input voltage in excess of approximately ±600 mV is applied between the inputs unless some limiting resistance is used.
 - 3. The output may be shorted to either supply. Temperature and/or supply voltages must be limited to ensure that the maximum dissipation rating is not exceeded.

DISSIPATION RATING TABLE

PACKAGE	T _A ≤ 25°C POWER RATING	DERATING FACTOR ABOVE T _A = 25°C	T _A = 70°C POWER RATING	T _A = 85°C POWER RATING	T _A = 125°C POWER RATING
D-8	725 mW	5.8 mW/°C	464 mW	377 mW	145 mW
DB-8	525 mW	4.2 mW/°C	336 mW	_	_
DW-16	1025 mW	8.2 mW/°C	656 mW	533 mW	205 mW
FK	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
J-14	1375 mW	11.0 mW/°C	880 mW	715 mW	275 mW
JG-8	1050 mW	8.4 mW/°C	672 mW	546 mW	210 mW
N-14	1150 mW	9.2 mW/°C	736 mW	598 mW	230 mW
P-8	1000 mW	8.0 mW/°C	640 mW	520 mW	200 mW
PW-8	525 mW	4.2 mW/°C	336 mW	_	_

recommended operating conditions

		C SU	FFIX	I SUF	FIX	M SU	FFIX	UNIT
		MIN	MAX	MIN	MAX	MIN	MAX	UNII
Supply voltage, V _{CC}		±2	±20	±2	±20	±2	±20	V
Common mode in a desirable of M	$V_{CC} = \pm 5 V$	0	3.5	0	3.2	0	3.2	V
Common-mode input voltage, V _{IC}	$V_{CC\pm} = \pm 15 \text{ V}$	-15	13.5	-15	13.2	-15	13.2	V
Operating free-air temperature, T _A		0	70	-40	85	-55	125	°C

TLE2021 electrical characteristics at specified free-air temperature, V_{CC} = 5 V (unless otherwise noted)

	DADAMETED	TEGT COMPLETIONS	T _A †	TI	_E20210	;	TL	E2021A	С	TLE2021BC						
	PARAMETER	TEST CONDITIONS	IA'	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT			
V _{IO}	Input offset voltage		25°C		120	600		100	300		80	200	μV			
VIO			Full range			850			600			300	μ ν			
α_{VIO}	Temperature coefficient of input offset voltage		Full range		2			2			2		μV/°C			
	Input offset voltage long-term drift (see Note 4)	$V_{IC} = 0$, $R_S = 50 \Omega$	25°C		0.005			0.005			0.005		μV/mo			
	Land Afficial accord		25°C		0.2	6		0.2	6		0.2	6	~^			
I _{IO}	Input offset current		Full range			10			10			10	nA			
	land thing coverent		25°C		25	70		25	70		25	70	nA			
I _{IB}	Input bias current		Full range			90			90			90	ΠA			
			25°C	0 to 3.5	– 0.3 to 4		0 to 3.5	– 0.3 to 4		0 to 3.5	- 0.3 to 4					
V _{ICR}	Common-mode input voltage range	$R_S = 50 \Omega$	Full range	0 to 3.5			0 to 3.5			0 to 3.5			V			
.,	Disk to all a to the state		25°C	4	4.3		4	4.3		4	4.3		V			
V _{OH}	High-level output voltage	D 1010	Full range	3.9			3.9			3.9			V			
V _{OL}	Low-level output voltage	R _L = 10 kΩ	25°C		0.7	8.0		0.7	8.0		0.7	8.0	V			
VOL	Low-level output voltage		Full range			0.85			0.85			0.85	V			
A_{VD}	Large-signal differential	$V_0 = 1.4 \text{ V to 4 V},$	25°C	0.3	1.5		0.3	1.5		0.3	1.5		V/µV			
~VD	voltage amplification	$R_L = 10 \text{ k}\Omega$	Full range	0.3			0.3			0.3			ν/μν			
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min,$	25°C	85	110		85	110		85	110		dB			
OWNTH	Common-mode rejection ratio	$R_S = 50 \Omega$	Full range	80			80			80			ub.			
k _{SVR}	Supply-voltage rejection ratio	Voc = 5 V to 30 V	Voc = 5 V to 30 V	V _{CC} = 5 V to 30 V	o V _{CC} = 5 V to 30 V	25°C	105	120		105	120		105	120		dB
ovn	$(\Delta V_{CC}/\Delta V_{IO})$	100 21.525	Full range	100			100			100						
I _{CC}	Supply current	25°C			200	300		200	300		200	300	μΑ			
Δl _{CC}	Supply-current change over operating temperature range	$V_0 = 2.5 \text{ V}$, No load	Full range		5	300		5	300		5	300	μΑ			
† Full ron	ge is 0°C to 70°C	l														

[†] Full range is 0°C to 70°C.

TLE2021 electrical characteristics at specified free-air temperature, $V_{CC} = \pm 15 \text{ V}$ (unless otherwise noted)

21AC YP MAX 80 200 500	MIN	TYP 40	MAX 100 200	UNIT μV
80 200 500 2)		100	
2		40		шV
2)		200	111//
				μv
		2		μV/°C
06		0.006		μV/mo
0.2 6	3	0.2	6	nA
10)		10	nA
		25	70	nA
90)		90	IIA
to	-15 to 13.5	–15.3 to 14		
	-15 to 13.5			V
4.3	14	14.3		V
	13.9			V
4.1	-13.7	-14.1		- V
	-13.7			,
6.5	1	6.5		V/µV
	1			ν/μν
15		115		dB
				u.b
20		120		dB
				1
		240		μΑ
6	,	6	350	μА
	10 25 70 90 5.3 to 14 4.3 4.1 6.5	0.2 6 10 25 70 90 5.3 -15 to 14 13.5 -15 to 13.5 4.3 14 13.9 4.1 -13.7 -13.7 6.5 1 115 100 96 20 105 100	0.2 6 0.2 10 25 70 25 90 5.3 -15 -15.3 to to to 14 13.5 14 -15 to 13.5 4.3 14 14.3 13.9 4.1 -13.7 -14.1 -13.7 6.5 1 6.5 1 1 115 100 115 96 20 105 120 100 240 350 240 350	0.2 6 0.2 6 10 10 25 70 25 70 90 90 5.3 -15 -15.3 to to to 14 13.5 14 -15 to 13.5 4.3 14 14.3 13.9 4.1 -13.7 -14.1 -13.7 6.5 1 6.5 1 1 6.5 1 1 6.5 20 105 120 100 240 350 240 350 350 350

TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D - FEBRUARY 1997 - REVISED NOVEMBER 2010

[†] Full range is 0°C to 70°C.

TLE2022 electrical characteristics at specified free-air temperature, V_{CC} = 5 V (unless otherwise noted)

MIN 400 5550	2	AX 250 μV μV/°C
550	4	μV
		100
	2	μ V /°C
		1
	0.005	μV/m
6	0.3	6
10		10 nA
70	30	70
90		90 nA
0 to 3.5	-0.3 to 4	
0 to 3.5		
4	4.3	.,
3.9		
0.8	0.7	0.8
).85	0.	.85 V
0.5	1.5	\(\(\frac{1}{2}\)
0.5		V/μV
90	105	dB
85		иь
105	120	dB
100		ив
600	450 6	000 μΑ
600	6	600 μΑ
	7	μА
	6	10 70 30 90 0 -0.3 to to 3.5 4 0 to 3.5 4 4.3 3.9 0.8 0.5 1.5 0.5 90 105 85 105 120 100 600 450 6

[†] Full range is 0°C to 70°C.

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T_A = 150°C extrapolated to T_A = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

TLE2022 electrical characteristics at specified free-air temperature, $V_{CC} = \pm 15 \text{ V}$ (unless otherwise noted)

	DADAMETED	TEOT 001	DITIONO	_ +	T	LE20220)	TL	E2022A	С	TL	E2022B	С	
	PARAMETER	TEST CONI	DITIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
.,	las laffast allas			25°C		150	500		120	300		70	150	
V_{IO}	Input offset voltage			Full range			700			450			300	μV
ανιο	Temperature coefficient of input offset voltage		$R_S = 50 \Omega$	Full range		2			2			2		μV/°C
	Input offset voltage long-term drift (see Note 4)	V _{IC} = 0,		25°C		0.006			0.006			0.006		μV/mo
	Input offset current			25°C		0.5	6		0.4	6		0.3	6	nA
I _{IO}	input oliset current			Full range			10			10			10	ΠA
	Input bias current			25°C		35	70		33	70		30	70	nA
I _{IB}	input bias current			Full range			90			90			90	ΠA
	Common-mode input	B 50 0		25°C	-15 to 13.5	-15.3 to 14		-15 to 13.5	-15.3 to 14		-15 to 13.5	-15.3 to 14		.,
V _{ICR}	voltage range	R _S = 50 Ω		Full range	-15 to 13.5			-15 to 13.5			-15 to 13.5			V
V	Maximum positive peak			25°C	14	14.3		14	14.3		14	14.3		V
V _{OM +}	output voltage swing	R _L = 10 kΩ		Full range	13.9			13.9			13.9			V
V _{OM} _	Maximum negative peak	HL = 10 KS2		25°C	-13.7	-14.1		-13.7	-14.1		-13.7	-14.1		V
VOM –	output voltage swing			Full range	-13.7			-13.7			-13.7			V
A _{VD}	Large-signal differential	$V_0 = \pm 10 \text{ V},$	$R_{I} = 10 \text{ k}\Omega$	25°C	0.8	4		1	7		1.5	10		V/uV
AVD	voltage amplification	ν _O = ± 10 ν,	HL = 10 K22	Full range	0.8			1			1.5			ν/μν
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min,	$R_S = 50 \Omega$	25°C	95	106		97	109		100	112		dB
OWNT	Common-mode rejection ratio	VIC - VICRIIIIII,	11g = 50 sz	Full range	91			93			96			ub.
k _{SVR}	Supply-voltage rejection ratio	$V_{CC\pm} = \pm 2.5 \text{ V to}$	+15 V	25°C	100	115		103	118		105	120		dB
"SVH	$(\Delta V_{CC\pm}/\Delta V_{IO})$	*CC± = ±2.6		Full range	95			98			100			u.b
I _{CC}	Supply current			25°C		550	700		550	700		550	700	μА
-00		V _O = 0,	No load	Full range			700			700			700	,
ΔI_{CC}	Supply current change over operating temperature range	_		Full range		9			9			9		μΑ

TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D - FEBRUARY 1997 - REVISED NOVEMBER 2010

[†] Full range is 0°C to 70°C.

TLE2024 electrical characteristics at specified free-air temperature, $V_{CC} = 5 \text{ V}$ (unless otherwise noted)

	DADAMETED	TEST COND	ITIONS	+ +	TI	_E20240		TL	E2024A	O	TLE2024BC			UNIT
	PARAMETER	TEST COND	ITIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNII
V _{IO}	Input offset voltage			25°C			1100			850			600	μV
VIO	Input onset voltage]		Full range			1300			1050			800	μν
αVIO	Temperature coefficient of input offset voltage			Full range		2			2			2		μV/°C
	Input offset voltage long-term drift (see Note 4)	V _{IC} = 0,	$R_S = 50 \Omega$	25°C		0.005			0.005			0.005		μV/mo
				25°C		0.6	6		0.5	6		0.4	6	
I _{IO}	Input offset current			Full range			10			10			10	nA
				25°C		45	70		40	70		35	70	•
I _{IB}	Input bias current			Full range			90			90			90	nA
	Common-mode input voltage			25°C	0 to 3.5	-0.3 to 4		0 to 3.5	-0.3 to 4		0 to 3.5	-0.3 to 4		
V _{ICR}	range	$R_S = 50 \Omega$		Full range	0 to 3.5			0 to 3.5			0 to 3.5			V
.,				25°C	3.9	4.2		3.9	4.2		4	4.3		
V _{OH}	High-level output voltage			Full range	3.7			3.7			3.8			٧
		$R_L = 10 \text{ k}\Omega$		25°C		0.7	0.8		0.7	0.8		0.7	0.8	
V_{OL}	Low-level output voltage			Full range			0.95			0.95			0.95	V
	Large-signal differential	V 4 4 V I 5 4 V	D 4010	25°C	0.2	1.5		0.3	1.5		0.4	1.5		\(\(\)\(\)
A_{VD}	voltage amplification	$V_0 = 1.4 \text{ V to 4 V},$	$R_L = 10 \text{ k}\Omega$	Full range	0.1			0.1			0.1			V/µV
CMRR	Common mode valention votice	\/ \/ min	D 50.0	25°C	80	90		82	92		85	95		dB
CIVINN	Common-mode rejection ratio	$V_{IC} = V_{ICR}min$,	$R_S = 50 \Omega$	Full range	80			82			85			uБ
kSVR	Supply-voltage rejection ratio	V _{CC} = 5 V to 30 V		25°C	98	112		100	115		103	117		dB
SVN	$(\Delta V_{CC}/\Delta V_{IO})$	ACC = 2 A 10 20 A		Full range	93			95			98			uъ
loo	Supply current			25°C		800	1200		800	1200		800	1200	μΑ
I _{CC}	очрріў сипепі	V _O = 2.5 V,	No load	Full range			1200			1200			1200	μΛ
Δ I _{CC}	Supply current change over operating temperature range			Full range		15			15			15		μΑ
		V 0 - 2.0 V,	110 1000	Full range		15			15			15		

[†] Full range is 0°C to 70°C.

TLE2024 electrical characteristics at specified free-air temperature, $V_{CC} = \pm 15 \text{ V}$ (unless otherwise noted)

					T	LE20240	;	TL	E2024A	С	TL	E2024B	С	
	PARAMETER	TEST CONI	DITIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
				25°C			1000			750			500	
V_{IO}	Input offset voltage			Full range			1200			950			700	μV
α _{VIO}	Temperature coefficient of input offset voltage			Full range		2			2			2		μV/°C
	Input offset voltage long-term drift (see Note 4)	V _{IC} = 0,	$R_S = 50 \Omega$	25°C		0.006			0.006			0.006		μV/mo
	Innut offeet eugrant	1		25°C		0.6	6		0.5	6		0.4	6	nA
I _{IO}	Input offset current			Full range			10			10			10	nA
1	Input bias current			25°C		50	70		45	70		40	70	nA
I _{IB}	input bias current			Full range			90			90			90	ΠA
	Common-mode input voltage			25°C	–15 to 13.5	-15.3 to 14		–15 to 13.5	-15.3 to 14		–15 to 13.5	-15.3 to 14		
V _{ICR}	range	$R_S = 50 \Omega$		Full range	-15 to 13.5			-15 to 13.5			-15 to 13.5			V
V _{OM+}	Maximum positive peak output voltage swing			25°C Full range	13.8 13.7	14.1		13.9 13.8	14.2		14 13.9	14.3		V
	Maximum negative peak output	$R_L = 10 \text{ k}\Omega$		25°C	-13.7	-14.1		-13.7	-14.1		-13.7	-14.1		
V_{OM-}	voltage swing			Full range	-13.6			-13.6			-13.6			V
	Large-signal differential			25°C	0.4	2		0.8	4		1	7		
A_{VD}	voltage amplification	$V_0 = \pm 10 \text{ V},$	$R_L = 10 \text{ k}\Omega$	Full range	0.4			0.8			1			V/µV
OMBB	0	V V	D 500	25°C	92	102		94	105		97	108		JD.
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min,$	$R_S = 50 \Omega$	Full range	88			90			93			dB
	Supply-voltage rejection ratio	V 105V40	1451/	25°C	98	112		100	115		103	117		dB
k _{SVR}	$(\Delta V_{CC\pm}/\Delta V_{IO})$	$V_{CC\pm} = \pm 2.5 \text{ V to}$	± 10 V	Full range	93			95			98			UD
laa -	Supply current			25°C		1050	1400		1050	1400		1050	1400	μА
I _{CC}	очрріў синені	V _O = 0,	No load	Full range			1400			1400			1400	μΑ
Δ I _{CC}	Supply current change over operating temperature range		= 0, No load Full			20			20			20		μА

TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D - FEBRUARY 1997 - REVISED NOVEMBER 2010

[†] Full range is 0°C to 70°C.

TLE2021 electrical characteristics at specified free-air temperature, $V_{CC} = 5 \text{ V}$ (unless otherwise noted)

MIN TYP MAX	UNIT
	<u>, </u>
80 200) μν
300) μν
2	μV/°C
0.005	μV/mo
0.2	
10	nA
25 70	
90	nA
0 -0.3	
to to	
3.5 4	_ v
0	V
	_
	V
	_
	- v
	<u>'</u>
	V/μV
	dB
105 120	dB
100	45
200 300	μΑ
300) μΑ
6	μА
	10 25 70 90 0 -0.3 to to 3.5 4 0 to 3.2 4 4.3 3.9 0.7 0.8 0.9 0.3 1.5 0.25 85 110 80 105 120 100 200 300 300

[†] Full range is – 40°C to 85°C.

TLE2021 electrical characteristics at specified free-air temperature, $V_{CC} = \pm 15 \text{ V}$ (unless otherwise noted)

			1	_	LE2021		T1	LE2021A		TI	E2021B		
	PARAMETER	TEST CONDITIONS	T _A †										UNIT
				MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	
V _{IO}	Input offset voltage		25°C		120	500		80	200		40	100	μV
- 10	<u> </u>		Full range			850			500			200	
α_{VIO}	Temperature coefficient of input offset voltage		Full range		2			2			2		μV/°C
	Input offset voltage long-term drift (see Note 4)	$V_{IC} = 0$, $R_S = 50 \Omega$	25°C		0.006			0.006			0.006		μV/mo
			25°C		0.2	6		0.2	6		0.2	6	
I _{IO}	Input offset current		Full range			10			10			10	nA
			25°C		25	70		25	70		25	70	
I _{IB}	Input bias current		Full range			90			90			90	nA
				-15	-15.3		-15	-15.3		-15	-15.3		
			25°C	to	to		to	to		to	to		
V_{ICR}	Common-mode input voltage range	$R_S = 50 \Omega$		13.5	14		13.5	14		13.5	14		V
1011		3	Full range	–15 to			–15 to			–15 to			
			Full range	13.2			13.2			13.2			
	Maximum positive peak output		25°C	14	14.3		14	14.3		14	14.3		
V _{OM +}	voltage swing		Full range	13.9			13.9			13.9			V
	Maximum negative peak output	R_L = 10 kΩ	25°C	-13.7	-14.1		-13.7	-14.1		-13.7	-14.1		
V _{OM} –	voltage swing		Full range	-13.6			-13.6			-13.6			V
	Large-signal differential	V _O = 10 V,	25°C	1	6.5		1	6.5		1	6.5		
A_{VD}	voltage amplification	$R_L = 10 \text{ k}\Omega$	Full range	0.75			0.75			0.75			V/µV
		V _{IC} = V _{ICR} min,	25°C	100	115		100	115		100	115		
CMRR	Common-mode rejection ratio	$R_S = 50 \Omega$	Full range	96			96			96			dB
	Supply-voltage rejection ratio	V _{CC ±} = ± 2. 5 V	25°C	105	120		105	120		105	120		
k _{SVR}	$(\Delta V_{CC}/\Delta V_{IO})$	to ± 15 V	Full range	100			100			100			dB
			25°C		240	350		240	350		240	350	
I_{CC}	Supply current	Ful	Full range			350			350			350	μΑ
Δl _{CC}	Supply-current change over operating temperature range	$V_0 = 0 V$, No load	Full range		7			7			7		μΑ

TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D - FEBRUARY 1997 - REVISED NOVEMBER 2010

[†] Full range is – 40°C to 85°C.

TLE2022 electrical characteristics at specified free-air temperature, V_{CC} = 5 V (unless otherwise noted)

600 800	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
						WAX	
800			400			250	μV
			550			400	μν
2		2			2		μV/°C
005		0.005			0.005		μV/mo
0.5 6		0.4	6		0.3	6	- 4
10			10			10	nA
35 70		33	70		30	70	
90			90			90	nA
-0.3 to 4	0 to 3.5	-0.3 to 4		0 to 3.5	-0.3 to 4		.,
	0 to 3.2			0 to 3.2			V
4.3	4	4.3		4	4.3		.,
	3.9			3.9			V
0.7 0.8		0.7	8.0		0.7	8.0	.,
0.9			0.9			0.9	V
1.5	0.4	1.5		0.5	1.5		\ <i>U</i> \ \
	0.2			0.2			V/μV
100	87	102		90	105		dB
	82			85			иь
115	103	118		105	120		dB
	98			100			uБ
450 600		450	600		450	600	μΑ
600			600			600	μΛ
15		15			15		μΑ
1 1	0.5 6 10 35 70 90 0.3 to 4 4.3 0.7 0.8 0.9 1.5	0.5 6 10 35 70 90 0.3 0 to 4 3.5 0 to 3.2 4.3 4 3.9 0.7 0.8 0.9 1.5 0.4 0.2 100 87 82 115 103 98 450 600 600	0.005	0.05	0.05	0.05	0.05

[†] Full range is – 40°C to 85°C.

TLE2022 electrical characteristics at specified free-air temperature, $V_{CC} = \pm 15 \text{ V}$ (unless otherwise noted)

	DADAMETED	TEST SON	DITIONS	-+	Т	LE2022I		Т	LE2022A	l	TI	_E2022B	I	UNIT
	PARAMETER	TEST CON	DITIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNII
, , , , , , , , , , , , , , , , , , ,	land effect veltage			25°C		150	500		120	300		70	150	/
V_{IO}	Input offset voltage			Full range			700			450			300	μV
ανιο	Temperature coefficient of input offset voltage			Full range		2			2			2		μV/°C
	Input offset voltage long-term drift (see Note 4)	V _{IC} = 0,	$R_S = 50 \Omega$	25°C		0.006			0.006			0.006		μV/mo
1.	Innet effect correct			25°C		0.5	6		0.4	6		0.3	6	nA
I _{IO}	Input offset current			Full range			10			10			10	nA
1.	Input bias current			25°C		35	70		33	70		30	70	nA
I _{IB}	input bias current			Full range			90			90			90	ΠA
	Common-mode input	B 50.0		25°C	- 15 to 13.5	-15.3 to 14		- 15 to 13.5	-15.3 to 14		- 15 to 13.5	-15.3 to 14		V
V _{ICR}	voltage range	$R_S = 50 \Omega$		Full range	- 15 to 13.2			- 15 to 13.2			- 15 to 13.2			V
, , , , , , , , , , , , , , , , , , ,	Maximum positive peak			25°C	14	14.3		14	14.3		14	14.3		V
V _{OM +}	output voltage swing	D 40160		Full range	13.9			13.9			13.9			V
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	Maximum negative peak	$R_L = 10 \text{ k}\Omega$		25°C	- 13.7	- 14.1		- 13.7	- 14.1		- 13.7	- 14.1		٧
V _{OM} –	output voltage swing			Full range	- 13.6			- 13.6			- 13.6			V
	Large-signal differential	V +40V	D 401-0	25°C	0.8	4		1	7		1.5	10		\//.\/
A _{VD}	voltage amplification	$V_0 = \pm 10 \text{ V},$	$R_L = 10 \text{ k}\Omega$	Full range	0.8			1			1.5			V/μV
CMRR	Common made rejection retin	\ \ \ \ min	D 50.0	25°C	95	106		97	109		100	112		dB
CIVIAN	Common-mode rejection ratio	$V_{IC} = V_{ICR}min$	$R_S = 50 \Omega$	Full range	91			93			96			иь
	Supply-voltage rejection ratio	V 105V/to	145 V	25°C	100	115		103	118		105	120		dB
k _{SVR}	$(\Delta V_{CC\pm}/\Delta V_{IO})$	$V_{CC} = \pm 2.5 \text{ V to}$	±10 V	Full range	95			98			100			иь
	Cupply ourront			25°C		550	700		550	700		550	700	
I _{CC}	Supply current	V _O = 0,	No load	Full range			700			700			700	μΑ
ΔI_{CC}	Supply current change over operating temperature range	-0 - 0,	110 1044	Full range		30			30			30		μΑ

[†] Full range is – 40°C to 85°C.

TLE2024 electrical characteristics at specified free-air temperature, $V_{CC} = 5 \text{ V}$ (unless otherwise noted)

	DADAMETED	TEST COND	ITIONS	- +	T	LE2024I		TL	E2024A	I	TL	E2024B	I	UNIT
	PARAMETER	TEST COND	IIIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNII
Via	Input offset voltage			25°C			1100			850			600	μV
V_{IO}	iliput oliset voltage			Full range			1300			1050			800	μν
αVIO	Temperature coefficient of input offset voltage			Full range		2			2			2		μV/°C
	Input offset voltage long-term drift (see Note 4)	V _{IC} = 0,	R _S = 50 Ω	25°C		0.005			0.005			0.005		μV/mo
		1		25°C		0.6	6		0.5	6		0.4	6	
I _{IO}	Input offset current			Full range			10			10			10	nA
	land this summer			25°C		45	70		40	70		35	70	- 0
I _{IB}	Input bias current			Full range			90			90			90	nA
,,	Common-mode input voltage	B 500		25°C	0 to 3.5	-0.3 to 4		0 to 3.5	-0.3 to 4		0 to 3.5	-0.3 to 4		.,
V _{ICR}	range	$R_S = 50 \Omega$		Full range	0 to 3.2			0 to 3.2			0 to 3.2			V
V	Maximum positive peak			25°C	3.9	4.2		3.9	4.2		4	4.3		V
V _{OM+}	output voltage swing	D 1010		Full range	3.7			3.7			3.8			V
V	Maximum negative peak	$R_L = 10 \text{ k}\Omega$		25°C		0.7	8.0		0.7	0.8		0.7	0.8	V
V_{OM-}	output voltage swing			Full range			0.95			0.95			0.95	V
A	Large-signal differential	V _O = 1.4 V to 4 V,	$R_L = 10 \text{ k}\Omega$	25°C	0.2	1.5		0.3	1.5		0.4	1.5		V/µV
A _{VD}	voltage amplification	V _O = 1.4 V to 4 V,	U[= 10 K22	Full range	0.1			0.1			0.1			ν/μν
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min,	$R_S = 50 \Omega$	25°C	80	90		82	92		85	95		dB
OWNT	Common-mode rejection ratio	VIC - VICRITIIII,	118 - 30 22	Full range	80			82			85			uБ
ksvr	Supply-voltage rejection ratio	$V_{CC\pm} = \pm 2.5 \text{ V to } \pm 1.0 \text{ V}$	15 V	25°C	98	112		100	115		103	117		dB
OVIT	$(\Delta V_{CC\pm}/\Delta V_{IO})$	V _{UU±} - ±2.5 V t0 ±	10 v	Full range	93			95			98			uD.
I _{CC}	Supply current			25°C		800	1200		800	1200		800	1200	μA
		$V_{O} = 0,$	$V_{O} = 0$, No load	Full range			1200			1200			1200	μ, .
ΔI_{CC}	Supply current change over operating temperature range		= 0, No load			30			30			30		μΑ

[†] Full range is – 40°C to 85°C.

TLE2024 electrical characteristics at specified free-air temperature, $V_{CC} = \pm 15 \text{ V}$ (unless otherwise noted)

					Т	LE20241		TI	E2024A	N .	TL	E2024B	I	
	PARAMETER	TEST CONI	DITIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
.,				25°C			1000			750			500	.,
V_{IO}	Input offset voltage			Full range			1200			950			700	μV
α _{VIO}	Temperature coefficient of input offset voltage]		Full range		2			2			2		μV/°C
	Input offset voltage long-term drift (see Note 4)	V _{IC} = 0,	$R_S = 50 \Omega$	25°C		0.006			0.006			0.006		μV/mo
	Innut offeet eugrant]		25°C		0.6	6		0.5	6		0.4	6	nA
I _{IO}	Input offset current			Full range			10			10			10	ΠA
1	Input bias current			25°C		50	70		45	70		40	70	nA
I _{IB}	input bias current			Full range			90			90			90	ПА
	Common-mode input voltage			25°C	–15 to 13.5	-15.3 to 14		–15 to 13.5	-15.3 to 14		–15 to 13.5	-15.3 to 14		
V _{ICR}	range	$R_S = 50 \Omega$		Full range	-15 to 13.2			-15 to 13.2			-15 to 13.2			V
V _{OM+}	Maximum positive peak output voltage swing			25°C Full range	13.8 13.7	14.1		13.9 13.7	14.2		14 13.8	14.3		٧
	Maximum negative peak output	$R_L = 10 \text{ k}\Omega$		25°C	-13.7	-14.1		-13.7	-14.1		-13.7	-14.1		
V_{OM-}	voltage swing			Full range	-13.6			-13.6			-13.6			٧
	Large-signal differential		5 1010	25°C	0.4	2		0.8	4		1	7		
A_{VD}	voltage amplification	$V_0 = \pm 10 \text{ V},$	$R_L = 10 \text{ k}\Omega$	Full range	0.4			0.8			1			V/µV
OMBB	0	V V	D 500	25°C	92	102		94	105		97	108		-ID
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min$,	$R_S = 50 \Omega$	Full range	88			90			93			dB
le.	Supply-voltage rejection ratio	$V_{CC\pm} = \pm 2.5 \text{ V to}$	±15 \/	25°C	98	112		100	115		103	117		dB
k _{SVR}	$(\Delta V_{CC\pm}/\Delta V_{IO})$	v _{CC±} = ± 2.3 v to	, _ 10 V	Full range	93			95			98			uБ
I _{CC}	Supply current			25°C		1050	1400		1050	1400		1050	1400	μА
icc	очрріў очноні	V _O = 0,	No load	Full range			1400			1400			1400	μΛ
Δ I _{CC}	Supply current change over operating temperature range	,	= 0, No load Full			50			50			50		μΑ

TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D - FEBRUARY 1997 - REVISED NOVEMBER 2010

[†] Full range is – 40°C to 85°C.

TLE2021 electrical characteristics at specified free-air temperature, $V_{CC} = 5 \text{ V}$ (unless otherwise noted)

PARAMETER	TEST CONI	OITIONS	+ +	TL	E2021N	1	TLI	E2021BI	М	UNIT
PANAMETEN	TEST CONI	DITIONS	'A'	MIN	TYP	MAX	MIN	TYP	MAX	UNII
Input offeet voltage			25°C		120	600		80	200	μV
			Full range			1100			300	μν
Temperature coefficient of input offset voltage			Full range		2			2		μV/°C
Input offset voltage long-term drift (see Note 4)	V _{IC} = 0,	$R_S = 50 \Omega$	25°C		0.005			0.005		μV/mo
Innut offect current			25°C		0.2	6		0.2	6	nA
input onset current			Full range			10			10	ΠA
Input bigg ourrent			25°C		25	70		25	70	nA
input bias current			Full range			90			90	ΠA
				0	-0.3		0	-0.3		
			25°C	to	to		to			
•	$R_S = 50 \Omega$				4			4		٧
voltage range			Full range							
			T dil Tarigo	3.2			3.2			
			25°C	4	4.3		4	4.3		
High-level output voltage			Full range	3.8			3.8			V
	$R_L = 10 \text{ k}\Omega$		25°C		0.7	0.8		0.7	0.8	.,
Low-level output voltage			Full range			0.95			0.95	V
Large-signal differential		D 4010	25°C	0.3	1.5		0.3	1.5		
voltage amplification	$V_0 = 1.4 \text{ V to 4 V},$	$H_L = 10 \text{ K}\Omega$	Full range	0.1			0.1			V/µV
	., ., .	D 500	25°C	85	110		85	110		i.
Common-mode rejection ratio	$V_{IC} = V_{ICR}min,$	$H_S = 50 \Omega$	Full range	80			80			dB
Supply-voltage rejection ratio	V _{CC} = 5 V to 30 V		25°C	105	120		105	120		i.
$(\Delta V_{CC\pm}/\Delta V_{IO})$			Full range	100			100			dB
Const. consent			25°C		170	230		170	230	
Supply current	Vo = 25 V	No load	Full range			230			230	μΑ
Supply current change over operating temperature range	V() - 2.5 V,	I VO IUQU	Full range	_	9	_	_	9	_	μΑ
	Input offset voltage Temperature coefficient of input offset voltage Input offset voltage long-term drift (see Note 4) Input offset current Input bias current Common-mode input voltage range High-level output voltage Large-signal differential voltage amplification Common-mode rejection ratio Supply-voltage rejection ratio Supply current Supply current change over			$ \begin{array}{c} \label{eq:localization} \label{eq:localization} \\ \mbox{Input offset voltage} \\ \mbox{Temperature coefficient of input offset voltage} \\ \mbox{Input offset voltage long-term drift (see Note 4)} \\ \mbox{Input offset voltage long-term drift (see Note 4)} \\ \mbox{Input offset current} \\ \mbox{Input offset current} \\ \mbox{Input bias current} \\ \mbox{V}_{IC} = 0, \qquad R_S = 50 \Omega \\ \mbox{25°C$} \\ \mbox{$25^{\circ}C} \\ \mbox{Full range} \\ \mbox{25°C$} \\ \mbox{$40$ Full range} \\ \mbox{40 Common-mode rejection ratio} \\ \mbox{40 V_{CC} = 5 \ V to 30 \ V$} \\ \mbox{$40$ V_{CC} = 5 \ V to 30 \ V$} \\ \mbox{$40$ Pull range} \\ \mbox{40 Pull range}$	PARAMETER TEST CONDITIONS T _A MIN	PARAMETER TEST CONTIONS TA	Result	PARAMETER TEST CONTIONS TA	PARAMETER TEST CONDITIONS TA MIN TYP MAX MIN MIN	PARAMETER TEST CONDITIONS TA

[†] Full range is – 55°C to 125°C.

TLE2021 electrical characteristics at specified free-air temperature, $V_{CC} = \pm 15 \text{ V}$ (unless otherwise noted)

	242445772		DITIONS		TI	LE2021N	1	TL	E2021B	М	
	PARAMETER	TEST CON	DITIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
V	land offer wellers			25°C		120	500		40	100	
V_{IO}	Input offset voltage			Full range			1000			200	μV
ανιο	Temperature coefficient of input offset voltage			Full range		2			2		μV/°C
	Input offset voltage long-term drift (see Note 4)	V _{IC} = 0,	$R_S = 50 \Omega$	25°C		0.006			0.006		μV/mo
	Landa Marka a sand]		25°C		0.2	6		0.2	6	- 4
I _{IO}	Input offset current			Full range			10			10	nA
	land big a summer]		25°C		25	70		25	70	- ^
I _{IB}	Input bias current			Full range			90			90	nA
	Common-mode input	B 500		25°C	-15 to 13.5	-15.3 to 14		–15 to 13.5	-15.3 to 14		.,
V _{ICR}	voltage range	R _S = 50 Ω		Full range	-15 to 13.2			-15 to 13.2			V
V	Maximum positive peak			25°C	14	14.3		14	14.3		V
V _{OM+}	output voltage swing	D 40160		Full range	13.8			13.8			V
V	Maximum negative peak	$R_L = 10 \text{ k}\Omega$		25°C	-13.7	-14.1		-13.7	-14.1		V
V _{OM} –	output voltage swing			Full range	-13.6			-13.6			V
_	Large-signal differential	V _O = ±10 V,	$R_I = 10 \text{ k}\Omega$	25°C	1	6.5		1	6.5		V/µV
A_{VD}	voltage amplification	$\mathbf{v}_{O} = \pm 10 V,$	HL = 10 K22	Full range	0.5			0.5			ν/μν
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min,	$R_S = 50 \Omega$	25°C	100	115		100	115		dB
CIVITA	Common-mode rejection ratio	VIC = VICRITIIII,	NS = 30 22	Full range	96			96			uБ
k _{SVR}	Supply-voltage rejection ratio	$V_{CC} = \pm 2.5 \text{ V to}$	+15 V	25°C	105	120		105	120		dB
"SVH	$(\Delta V_{CC\pm}/\Delta V_{IO})$	VCC± = ± 2.6 V to	±10 (Full range	100			100			u.D
laa -	Supply current			25°C		200	300		200	300	μА
I _{CC}	очрру сипен	$V_0 = 0$,	No load	Full range			300			300	μΛ
ΔI_{CC}	Supply current change over operating temperature range	-5,		Full range		10			10		μА

TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D - FEBRUARY 1997 - REVISED NOVEMBER 2010

[†] Full range is – 55°C to 125°C.

TLE2022 electrical characteristics at specified free-air temperature, V_{CC} = 5 V (unless otherwise noted)

	PARAMETER	TEST COND	ITIONS	- +	TL	E2022N	1	TL	E2022A	М	TLI	E2022B	М	UNIT
	PANAMETEN	TEST COND	ITIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNII
. ,	Input offset voltage			25°C			600			400			250	μV
V_{IO}	input onset voltage			Full range			800			550			400	μν
ανιο	Temperature coefficient of input offset voltage			Full range		2			2			2		μV/°C
	Input offset voltage long-term drift (see Note 4)	V _{IC} = 0,	R _S = 50 Ω	25°C		0.005			0.005			0.005		μ V /mo
		1		25°C		0.5	6		0.4	6		0.3	6	- 4
I _{IO}	Input offset current			Full range			10			10			10	nA
	Lea Distance and	1		25°C		35	70		33	70		30	70	- 4
I _{IB}	Input bias current			Full range			90			90			90	nA
.,	Common-mode input	B 500		25°C	0 to 3.5	-0.3 to 4		0 to 3.5	-0.3 to 4		0 to 3.5	-0.3 to 4		.,
V _{ICR}	Common-mode input CR voltage range	$R_S = 50 \Omega$		Full range	0 to 3.2			0 to 3.2			0 to 3.2			V
, , , , , , , , , , , , , , , , , , ,	High lavel autout vallages			25°C	4	4.3		4	4.3		4	4.3		V
V _{OH}	High-level output voltage	D 401-0		Full range	3.8			3.8			3.8			V
, , , , , , , , , , , , , , , , , , ,	I am laval autorit valta aa	$R_L = 10 \text{ k}\Omega$		25°C		0.7	0.8		0.7	0.8		0.7	0.8	V
V_{OL}	Low-level output voltage			Full range			0.95			0.95			0.95	V
	Large-signal differential	\/ 4 4\\\\	D 401-0	25°C	0.3	1.5		0.4	1.5		0.5	1.5		MA
A_{VD}	voltage amplification	$V_0 = 1.4 \text{ V to 4 V},$	HL = 10 K22	Full range	0.1			0.1			0.1			V/µV
CMRR	Common-mode rejection ratio	\ \ \ min	$R_S = 50 \Omega$	25°C	85	100		87	102		90	105		dB
CIVINN	Common-mode rejection ratio	$V_{IC} = V_{ICR}$ min,	n _S = 50 12	Full range	80			82			85			иБ
k	Supply-voltage rejection ratio	V _{CC} = 5 V to 30 V		25°C	100	115		103	118		105	120		dB
k _{SVR}	$(\Delta V_{CC\pm}/\Delta V_{IO})$	ACC = 2 A 10 30 A		Full range	95			98			100			uБ
loo	Supply current			25°C		450	600		450	600		450	600	μА
I _{CC}	ойрріу сипені	V _O = 2.5 V,	No load	Full range			600			600			600	μΛ
ΔI_{CC}	Supply current change over operating temperature range	V	140 1000	Full range		37			37			37		μΑ
† Eull ran	ge is _55°C to 125°C	·	·	·			·							· <u></u>

[†] Full range is – 55°C to 125°C

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at T_A = 150°C extrapolated to T_A = 25°C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

TLE2022 electrical characteristics at specified free-air temperature, $V_{CC} = \pm 15 \text{ V}$ (unless otherwise noted)

	DADAMETED	TEGT CON	DITIONS	_ +	TI	_E2022N	1	TL	E2022A	М	TL	E2022B	M	
	PARAMETER	TEST CONI	DITIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
,,				25°C		150	500		120	300		70	150	
V_{IO}	Input offset voltage			Full range			700			450			300	μV
αVIO	Temperature coefficient of input offset voltage			Full range		2			2			2		μV/°C
	Input offset voltage long-term drift (see Note 4)	V _{IC} = 0,	$R_S = 50 \Omega$	25°C		0.006			0.006			0.006		μV/mo
	Innet effect correct			25°C		0.5	6		0.4	6		0.3	6	nA
I _{IO}	Input offset current			Full range			10			10			10	nA
	Input bias current			25°C		35	70		33	70		30	70	nA
I _{IB}	input bias current			Full range			90			90			90	ΠA
	Common-mode input	B 500		25°C	-15 to 13.5	-15.3 to 14		-15 to 13.5	-15.3 to 14		-15 to 13.5	-15.3 to 14		.,
V _{ICR}	voltage range	R _S = 50 Ω		Full range	-15 to 13.2			-15 to 13.2			-15 to 13.2			V
V _{OM+}	Maximum positive peak output voltage swing			25°C Full range	14 13.9	14.3		14 13.9	14.3		14 13.9	14.3		٧
	Maximum negative peak	$R_L = 10 \text{ k}\Omega$		25°C	-13.7	-14.1		-13.7	-14.1		-13.7	-14.1		
V_{OM-}	output voltage swing			Full range	-13.6			-13.6			-13.6			V
	Large-signal differential			25°C	0.8	4		1	7		1.5	10		
A_{VD}	voltage amplification	$V_0 = \pm 10 \text{ V},$	$R_L = 10 \text{ k}\Omega$	Full range	0.8			1			1.5			V/µV
				25°C	95	106		97	109		100	112		
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min,$	$R_S = 50 \Omega$	Full range	91			93			96			dB
.	Supply-voltage rejection ratio			25°C	100	115		103	118		105	120		
k _{SVR}	$(\Delta V_{CC\pm}/\Delta V_{IO})$	$V_{CC\pm} = \pm 2.5 \text{ V to}$	±15 V	Full range	95			98			100			dB
	0			25°C		550	700		550	700		550	700	
Icc	Supply current	V _O = 0,	No load	Full range			700			700			700	μΑ
ΔI_{CC}	Supply current change over operating temperature range	v _O – 0,	140 IOQU	Full range	_	60		_	60	_	_	60	_	μА

[†] Full range is –55°C to 125°C.

TLE2024 electrical characteristics at specified free-air temperature, $V_{CC} = 5 \text{ V}$ (unless otherwise noted)

	DADAMETED	TEST COND	ITIONS	- +	TL	.E2024N	1	TL	E2024A	M	TLI	E2024BI	M	UNIT
	PARAMETER	TEST COND	IIIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNII
V	Input offoot voltage			25°C			1100			850			600	μV
V_{IO}	Input offset voltage			Full range			1300			1050			800	μν
αVIO	Temperature coefficient of input offset voltage			Full range		2			2			2		μV/°C
	Input offset voltage long-term drift (see Note 4)	V _{IC} = 0,	R _S = 50 Ω	25°C		0.005			0.005			0.005		μV/mo
	Les Lefferde med]		25°C		0.6	6		0.5	6		0.4	6	- 4
I _{IO}	Input offset current			Full range			10			10			10	nA
	land him a mant			25°C		45	70		40	70		35	70	- 0
I _{IB}	Input bias current			Full range			90			90			90	nA
,,	Common-mode input voltage	B 500		25°C	0 to 3.5	-0.3 to 4		0 to 3.5	-0.3 to 4		0 to 3.5	-0.3 to 4		.,
V _{ICR}	range	$R_S = 50 \Omega$		Full range	0 to 3.2			0 to 3.2			0 to 3.2			V
V	Maximum positive peak			25°C	3.9	4.2		3.9	4.2		4	4.3		V
V _{OM+}	output voltage swing	D 1010		Full range	3.7			3.7			3.8			V
V	Maximum negative peak	$R_L = 10 \text{ k}\Omega$		25°C		0.7	0.8		0.7	8.0		0.7	0.8	V
V _{OM} –	output voltage swing			Full range			0.95			0.95			0.95	V
A	Large-signal differential	V _O = 1.4 V to 4 V,	$R_L = 10 \text{ k}\Omega$	25°C	0.2	1.5		0.3	1.5		0.4	1.5		V/µV
A _{VD}	voltage amplification	v ₀ = 1.4 v to 4 v,	U[= 10 K22	Full range	0.1			0.1			0.1			ν/μν
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min,	$R_S = 50 \Omega$	25°C	80	90		82	92		85	95		dB
OWNT	Common-mode rejection ratio	VIC - VICRITIIII,	118 - 30 22	Full range	80			82			85			uБ
ksvr	Supply-voltage rejection ratio	$V_{CC\pm} = \pm 2.5 \text{ V to } \pm 1.0 \text{ V}$	15 V	25°C	98	112		100	115		103	117		dB
OVIT	$(\Delta V_{CC\pm}/\Delta V_{IO})$	V _{UU±} - ±2.5 V t0 ±	10 v	Full range	93			95			98			uD.
I _{CC}	Supply current			25°C		800	1200		800	1200		800	1200	μA
		$V_{O} = 0,$	$V_{\Omega} = 0$, No load	Full range			1200			1200			1200	μ, .
ΔI_{CC}	Supply current change over operating temperature range		= 0, No load			50			50			50		μΑ

[†] Full range is – 55°C to 125°C.

TLE2024 electrical characteristics at specified free-air temperature, $V_{CC} = \pm 15 \text{ V}$ (unless otherwise noted)

	DADAMETED	TEST CON	NTIONO	- +	Т	LE2024N	1	TL	E2024A	М	TL	E2024B	M	UNIT
	PARAMETER	TEST CONI	DITIONS	T _A †	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNII
, , , , , , , , , , , , , , , , , , ,	land affect with the			25°C			1000			750			500	
V_{IO}	Input offset voltage			Full range			1200			950			700	μV
α VIO	Temperature coefficient of input offset voltage			Full range		2			2			2		μV/°C
	Input offset voltage long-term drift (see Note 4)	V _{IC} = 0,	$R_S = 50 \Omega$	25°C		0.006			0.006			0.006		μV/mo
	11	1		25°C		0.6	6		0.5	6		0.4	6	- 0
I _{IO}	Input offset current			Full range			10			10			10	nA
				25°C		50	70		45	70		40	70	
I _{IB}	Input bias current			Full range			90			90			90	nA
	Common-mode input voltage			25°C	-15 to 13.5	-15.3 to 14		-15 to 13.5	-15.3 to 14		-15 to 13.5	-15.3 to 14		
V _{ICR}	range	$R_S = 50 \Omega$		Full range	-15 to 13.2			-15 to 13.2			-15 to 13.2			V
V _{OM+}	Maximum positive peak output voltage swing			25°C Full range	13.8 13.7	14.1		13.9 13.7	14.2		14 13.8	14.3		V
	Maximum negative peak output	$R_L = 10 \text{ k}\Omega$		25°C	-13.7	-14.1		-13.7	-14.1		-13.7	-14.1		
V_{OM-}	voltage swing			Full range	-13.6			-13.6			-13.6			V
	Large-signal differential			25°C	0.4	2		0.8	4		1	7		
A_{VD}	voltage amplification	$V_0 = \pm 10 \text{ V},$	$R_L = 10 \text{ k}\Omega$	Full range	0.4			0.8			1			V/µV
01455		., ., .		25°C	92	102		94	105		97	108		
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR}min,$	$R_S = 50 \Omega$	Full range	88			90			93			dB
	Supply-voltage rejection ratio	V 1057/1-	1451/	25°C	98	112		100	115		103	117		-10
k _{SVR}	$(\Delta V_{CC\pm}/\Delta V_{IO})$	$V_{CC\pm} = \pm 2.5 \text{ V to}$	± 15 V	Full range	93			95			98			dB
,	Cupply ourrent			25°C		1050	1400		1050	1400		1050	1400	^
I _{CC}	Supply current	V _O = 0,	No load	Full range			1400			1400			1400	μА
ΔI_{CC}	Supply current change over operating temperature range	-0,	110 1000	Full range		85			85			85		μА

TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D - FEBRUARY 1997 - REVISED NOVEMBER 2010

[†] Full range is – 55°C to 125°C.

TLE2021 operating characteristics, V_{CC} = 5 V, T_A = 25°C

	DADAMETED	TEST SOMBITIONS	-	С	SUFFIX		18	SUFFIX		М	SUFFIX		
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain	V _O = 1 V to 3 V, See Figure 1	25°C		0.5			0.5			0.5		V/μs
, , , , , , , , , , , , , , , , , , ,	Equivalent input noise voltage	f = 10 Hz	25°C		21	50		21	50		21		->///
V _n	(see Figure 2)	f = 1 kHz	25°C		17	30		17	30		17		nV/Hz
,,	Peak-to-peak equivalent input	f = 0.1 to 1 Hz	25°C		0.16			0.16			0.16		.,
$V_{N(PP)}$	noise voltage	f = 0.1 to 10 Hz	25°C		0.47			0.47			0.47		μV
In	Equivalent input noise current		25°C		0.09			0.09			0.9		pA/Hz
B ₁	Unity-gain bandwidth	See Figure 3	25°C		1.2			1.2			1.2		MHz
φ _m	Phase margin at unity gain	See Figure 3	25°C		42°			42°			42°		

TLE2021 operating characteristics at specified free-air temperature, V_{CC} = $\pm 15~V$

DADAMETED	TEST SOL	IDITIONS	_ · ·	С	SUFFIX	(SUFFIX	,	М	SUFFIX	<			
PARAMETER	TEST CON	DITIONS	IAI	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT		
Class rate at smits rain	V 4V4=0V	One Figure 4	25°C	0.45	0.65		0.45	0.65		0.45	0.65		Mar		
Siew rate at unity gain	$V_0 = 1V \text{ to 3 V},$	See Figure 1	Full range	0.45			0.42			0.45			V/μs		
Equivalent input noise voltage	f = 10 Hz		25°C		19	50		19	50	1	19		-> //! !-		
(see Figure 2)	f = 1 kHz		25°C		15	30	ĺ	15	30	ĺ	15		nV/Hz		
Peak-to-peak equivalent input	f = 0.1 to 1 Hz		25°C		0.16			0.16		1	0.16				
noise voltage	f = 0.1 to 10 Hz		25°C		0.47			0.47	7	[0.47		μV		
Equivalent input noise current			25°C		0.09		ĺ	0.09	7	ĺ	0.09		pA/Hz		
Unity-gain bandwidth	See Figure 3		25°C		2			2	1	1	2		MHz		
Phase margin at unity gain	See Figure 3		25°C		46°			46°		1	46°				
	(see Figure 2) Peak-to-peak equivalent input noise voltage Equivalent input noise current Unity-gain bandwidth	Slew rate at unity gain $V_O = 1V \text{ to } 3 \text{ V},$ Equivalent input noise voltage (see Figure 2) Peak-to-peak equivalent input noise voltage $f = 10 \text{ Hz}$ $f = 1 \text{ kHz}$ $f = 0.1 \text{ to } 1 \text{ Hz}$ $f = 0.1 \text{ to } 10 \text{ Hz}$ Equivalent input noise current Unity-gain bandwidth See Figure 3	Slew rate at unity gain $V_0 = 1V \text{ to } 3 \text{ V}$, See Figure 1 Equivalent input noise voltage (see Figure 2) Peak-to-peak equivalent input noise voltage $f = 10 \text{ Hz}$ $f = 1 \text{ kHz}$ $f = 0.1 \text{ to } 1 \text{ Hz}$ $f = 0.1 \text{ to } 10 \text{ Hz}$ Equivalent input noise current Unity-gain bandwidth See Figure 3	Slew rate at unity gain $V_{O} = 1 \text{V to 3 V}, \text{See Figure 1} \frac{25^{\circ}\text{C}}{\text{Full range}}$ Equivalent input noise voltage (see Figure 2) $f = 10 \text{ Hz} \qquad 25^{\circ}\text{C}$ (see Figure 2) $f = 1 \text{ kHz} \qquad 25^{\circ}\text{C}$ Peak-to-peak equivalent input noise voltage $f = 0.1 \text{ to 1 Hz} \qquad 25^{\circ}\text{C}$ Equivalent input noise current $f = 0.1 \text{ to 10 Hz} \qquad 25^{\circ}\text{C}$ Unity-gain bandwidth $See \text{ Figure 3} \qquad 25^{\circ}\text{C}$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	Slew rate at unity gain $V_{O} = 1 \text{V to 3 V}, \text{See Figure 1} \begin{array}{c} 25^{\circ}\text{C} & 0.45 & 0.65 \\ \hline \text{Full range} & 0.45 \\ \hline \text{Full range} & 0.$	PARAMETERTEST CONDITIONS T_A^{\dagger} MINTYPMAXMINSlew rate at unity gain $V_0 = 1V \text{ to } 3 \text{ V}$,	PARAMETER TEST CONDITIONS T_A^{\dagger} MIN TYP MAX MIN 0.45 0.45 0.42 Equivalent input noise current f = 10 Hz 25°C 0.16 0.16 Equivalent input noise current 25°C 0.47 0.47 Equivalent input noise current 25°C 0.09 0.09 Unity-gain bandwidth See Figure 3 25°C 25°C <td cols<="" td=""><td>PARAMETER TEST CONDITIONS T_A^{\dagger} MIN TYP MAX MIN TYP MAX Slew rate at unity gain $V_O = 1V \text{ to } 3 \text{ V}$, $V_O = 1V$</td><td>PARAMETER TEST CONDITIONS T_A^{\dagger} MIN TYP MAX MIN 0.45 0.45 0.45 0.45 0.45 0.45 0.45 19 50 0.45 19 50 0.45 19 50 0.15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 <th c<="" td=""><td>PARAMETER TEST CONDITIONS T_A^{\dagger} MIN TYP MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN<td>PARAMETER TEST CONDITIONS T_A[†] MIN TYP MAX Slew rate at unity gain TYP MAX 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15</td></td></th></td></td>	<td>PARAMETER TEST CONDITIONS T_A^{\dagger} MIN TYP MAX MIN TYP MAX Slew rate at unity gain $V_O = 1V \text{ to } 3 \text{ V}$, $V_O = 1V$</td> <td>PARAMETER TEST CONDITIONS T_A^{\dagger} MIN TYP MAX MIN 0.45 0.45 0.45 0.45 0.45 0.45 0.45 19 50 0.45 19 50 0.45 19 50 0.15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 <th c<="" td=""><td>PARAMETER TEST CONDITIONS T_A^{\dagger} MIN TYP MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN<td>PARAMETER TEST CONDITIONS T_A[†] MIN TYP MAX Slew rate at unity gain TYP MAX 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15</td></td></th></td>	PARAMETER TEST CONDITIONS T_A^{\dagger} MIN TYP MAX MIN TYP MAX Slew rate at unity gain $V_O = 1V \text{ to } 3 \text{ V}$, $V_O = 1V $	PARAMETER TEST CONDITIONS T_A^{\dagger} MIN TYP MAX MIN 0.45 0.45 0.45 0.45 0.45 0.45 0.45 19 50 0.45 19 50 0.45 19 50 0.15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 30 15 <th c<="" td=""><td>PARAMETER TEST CONDITIONS T_A^{\dagger} MIN TYP MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN<td>PARAMETER TEST CONDITIONS T_A[†] MIN TYP MAX Slew rate at unity gain TYP MAX 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15</td></td></th>	<td>PARAMETER TEST CONDITIONS T_A^{\dagger} MIN TYP MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN<td>PARAMETER TEST CONDITIONS T_A[†] MIN TYP MAX Slew rate at unity gain TYP MAX 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15</td></td>	PARAMETER TEST CONDITIONS T_A^{\dagger} MIN TYP MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN MAX MIN <td>PARAMETER TEST CONDITIONS T_A[†] MIN TYP MAX Slew rate at unity gain TYP MAX 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15</td>	PARAMETER TEST CONDITIONS T _A [†] MIN TYP MAX Slew rate at unity gain TYP MAX 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15

[†] Full range is 0°C to 70°C for the C-suffix devices, -40°C to 85°C for the I-suffix devices, and -55°C to 125°C for the M-suffix devices.

TLE2022 operating characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

	DADAMETED	TEGT COMPITIONS	С	SUFFIX	κ '	I	SUFFIX	(M	I SUFFIX	(
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain	V _O = 1 V to 3 V, See Figure 1		0.5			0.5			0.5		V/μs
\ <u>'</u>	Equivalent input noise voltage	f = 10 Hz		21	50		21	50		21		nV/√ Hz
V _n	(see Figure 2)	f = 1 kHz		17	30		17	30		17		nv/∀Hz
	Deal to each aminolanting desire college	f = 0.1 to 1 Hz		0.16			0.16			0.16		
$V_{N(PP)}$	Peak-to-peak equivalent input noise voltage	f = 0.1 to 10 Hz		0.47	'		0.47			0.47		μV
In	Equivalent input noise current			0.1			0.1			0.1	'	pA/√ Hz
B ₁	Unity-gain bandwidth	See Figure 3		1.7			1.7			1.7		MHz
ϕ_{m}	Phase margin at unity gain	See Figure 3		47°			47°			47°		

TLE202x, TLE202xA, TLE202xB, TLE202xY
EXCALIBUR HIGH-SPEED LOW-POWER PRECISION
OPERATIONAL AMPLIFIERS
SLOS191D - FEBRUARY 1997 - REVISED NOVEMBER 2010

TLE2022 operating characteristics at specified free-air temperature, V_{CC} = $\pm 15~V$

	PARAMETER	TEST CON	IDITIONS	_	С	SUFFIX	t	1:	SUFFIX	t	М	SUFFIX	t	LINUT
	PARAMETER	TEST CON	IDITIONS	TA	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
0.0	0		0 5 1	25°C	0.45	0.65		0.45	0.65		0.45	0.65		
SR	Slew rate at unity gain	$V_0 = \pm 10 \text{ V},$	See Figure 1	Full range	0.45			0.42			0.4			V/μs
.,	Equivalent input noise	f = 10 Hz		25°C		19	50		19	50		19		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
V_n	voltage (see Figure 2)	f = 1 kHz		25°C		15	30		15	30		15		nV/√Hz
.,	Peak-to-peak equivalent	f = 0.1 to 1 Hz		25°C		0.16			0.16			0.16		.,
$V_{N(PP)}$	input noise voltage	f = 0.1 to 10 Hz		25°C		0.47			0.47			0.47		μV
In	Equivalent input noise current			25°C		0.1			0.1			0.1		pA/√ Hz
B ₁	Unity-gain bandwidth	See Figure 3		25°C		2.8			2.8			2.8		MHz
φ _m	Phase margin at unity gain	See Figure 3		25°C		52°			52°			52°		

[†] Full range is 0°C to 70°C for the C-suffix devices, -40°C to 85°C for the I suffix devices and -55°C to 125°C for the I-suffix devices.

TLE2024 operating characteristics, V_{CC} = 5 V, T_A = 25°C

	DADAMETER	TEST CONDITIONS	С	SUFFIX	<	18	SUFFIX		М	SUFFIX	(
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain	V _O = 1 V to 3 V, See Figure 1		0.5			0.5			0.5		V/μs
\ <u>'</u>	Facilitation to acide walkers (see Figure 0)	f = 10 Hz		21	50		21	50		21		nV/√ Hz
V _n	Equivalent input noise voltage (see Figure 2)	f = 1 kHz		17	30		17	30		17		ΠV/∀Π∠
.,	Production industrial training allows	f = 0.1 to 1 Hz		0.16			0.16	T I		0.16		
V _{N(PP)}	Peak-to-peak equivalent input noise voltage	f = 0.1 to 10 Hz		0.47			0.47			0.47		μV
In	Equivalent input noise current			0.1			0.1			0.1		pA/√ Hz
B ₁	Unity-gain bandwidth	See Figure 3		1.7			1.7			1.7		MHz
φ _m	Phase margin at unity gain	See Figure 3		47°			47°	T		47°		

TLE2024 operating characteristics at specified free-air temperature, $V_{CC} = \pm 15 \text{ V}$ (unless otherwise noted)

	DADAMETER	TEST CONDITIONS	_ '	C	SUFFIX [†]	t	17	SUFFIX†	i	М	SUFFIX	<u>,</u> †	
	PARAMETER	TEST CONDITIONS	T _A	MIN	TYP	MAX	MIN	TYP	MAX	MIN	TYP	MAX	UNIT
O.D.	Olemente et meitre enie	V 140 V 000 Figure 4	25°C	0.45	0.7		0.45	0.7		0.45	0.7	7	\/\(\sigma_{-}\)
SR	Slew rate at unity gain	$V_O = \pm 10 \text{ V}$, See Figure 1	Full range	0.45			0.42			0.4			V/μs
<u></u>	Equivalent input noise voltage	f = 10 Hz	25°C		19	50		19	50	í	19		NU/III
V _n	(see Figure 2)	f = 1 kHz	25°C		15	30		15	30		15		nV/√ Hz
,,	Peak-to-peak equivalent input noise	f = 0.1 to 1 Hz	25°C		0.16	1		0.16		i	0.16		
V _{N(PP)}	voltage	f = 0.1 to 10 Hz	25°C		0.47			0.47		i	0.47		μV
In	Equivalent input noise current	1	25°C		0.1			0.1		i	0.1		pA/√ Hz
B ₁	Unity-gain bandwidth	See Figure 3	25°C		2.8			2.8		i	2.8		MHz
φ _m	Phase margin at unity gain	See Figure 3	25°C		52°			52°		i	52°		

[†] Full range is 0°C to 70°C for the C-suffix devices, -40°C to 85°C for the I suffix devices and -55°C to 125°C for the I-suffix devices.

TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

SLOS191D - FEBRUARY 1997 - REVISED NOVEMBER 2010

TLE2021Y electrical characteristics at V_{CC} = 5 V, T_A = 25°C (unless otherwise noted)

	DADAMETED	TEST SOME	NITIONO	Τι	E2021Y	′	LINUT
	PARAMETER	TEST COND	DITIONS	MIN	TYP	MAX	UNIT
V_{IO}	Input offset voltage				150		μV
	Input offset voltage long-term drift (see Note 4)	., .	D 500		0.005		μV/mo
I _{IO}	Input offset current	$V_{IC} = 0,$	$R_S = 50 \Omega$		0.5		nA
I_{IB}	Input bias current				35		nA
V _{ICR}	Common-mode input voltage range	R _S = 50 Ω			- 0.3 to 4		٧
V_{OH}	Maximum high-level output voltage	D 4010			4.3		V
V _{OL}	Maximum low-level output voltage	$R_L = 10 \text{ k}\Omega$			0.7		V
A_{VD}	Large-signal differential voltage amplification	$V_0 = 1.4 \text{ to } 4 \text{ V},$	$R_L = 10 \text{ k}\Omega$		1.5		V/µV
CMRR	Common-mode rejection ratio	$V_{IC} = V_{ICR} min,$	$R_S = 50 \Omega$		100		dB
k _{SVR}	Supply-voltage rejection ratio ($\Delta V_{CC\pm}/\Delta V_{IO}$)	$V_{CC} = 5 \text{ V to } 30 \text{ V}$			115		dB
I _{CC}	Supply current	V _O = 2.5 V,	No load		400		μА

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}C$ extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV.

TLE2021Y operating characteristics at V_{CC} = 5 V, T_A = 25°C

	242445	TEGT COMPLETIONS	TL	E2021Y	,	
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain	V _O = 1 V to 3 V		0.5		V/μs
,,	Facility along the sales well as a	f = 10 Hz		21		nV/√ Hz
V _n	Equivalent input noise voltage	f = 1 kHz		17		nv/√Hz
.,	Dools to cools on the standard institution of the standard	f = 0.1 to 1 Hz		0.16		
$V_{N(PP)}$	Peak-to-peak equivalent input noise voltage	f = 0.1 to 10 Hz		0.47		μV
In	Equivalent input noise current			0.1		pA/√ Hz
B ₁	Unity-gain bandwidth			1.7		MHz
φ _m	Phase margin at unity gain			47°		

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

SLOS191D - FEBRUARY 1997 - REVISED NOVEMBER 2010

TLE2022Y electrical characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$ (unless otherwise noted)

	DADAMETED	TEGT COM	NITIONIO.	TL	E2022Y		
	PARAMETER	TEST COND	DITIONS	MIN	TYP	MAX	UNIT
V_{IO}	Input offset voltage				150	600	μV
	Input offset voltage long-term drift (see Note 4)],, ,	D 500		0.005		μV/mo
I _{IO}	Input offset current	$V_{IC} = 0,$	$R_S = 50 \Omega$		0.5		nA
I _{IB}	Input bias current				35		nA
V _{ICR}	Common-mode input voltage range	R _S = 50 Ω			- 0.3 to 4		٧
V _{OH}	Maximum high-level output voltage	5 4010			4.3		V
V _{OL}	Maximum low-level output voltage	$R_L = 10 \text{ k}\Omega$			0.7		V
A_{VD}	Large-signal differential voltage amplification	V _O = 1.4 to 4 V,	R _L = 10 kΩ		1.5		V/µV
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min,	$R_S = 50 \Omega$		100		dB
k _{SVR}	Supply-voltage rejection ratio ($\Delta V_{CC\pm}/\Delta V_{IO}$)	$V_{CC} = 5 \text{ V to } 30 \text{ V}$			115		dB
I _{CC}	Supply current	V _O = 2.5 V,	No load		450		μΑ

NOTE 4: Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150$ °C extrapolated to $T_A = 25$ °C using the Arrhenius equation and assuming an activation energy of 0.96 eV.

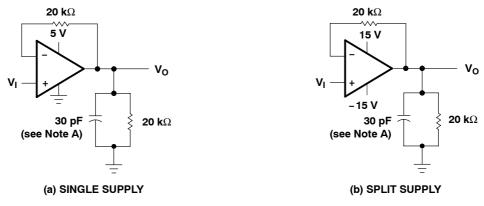
TLE2022Y operating characteristics, $V_{CC} = 5 \text{ V}$, $T_A = 25^{\circ}\text{C}$

			TLE	E2022Y		
	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
SR	Slew rate at unity gain	V _O = 1 V to 3 V, See Figure 1		0.5		V/μs
.,	For industrial desires allows (see Fig. 12.9)	f = 10 Hz		21) (T
V _n	Equivalent input noise voltage (see Figure 2)	f = 1 kHz		17		nV/√ Hz
.,	Post to cost on tradeotics tradeo allows	f = 0.1 to 1 Hz		0.16		V
$V_{N(PP)}$	Peak-to-peak equivalent input noise voltage	f = 0.1 to 10 Hz		0.47		μV
In	Equivalent input noise current			0.1		pA/√ Hz
B ₁	Unity-gain bandwidth	See Figure 3		1.7		MHz
φ _m	Phase margin at unity gain	See Figure 3		47°		

TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

SLOS191D - FEBRUARY 1997 - REVISED NOVEMBER 2010

TLE2024Y electrical characteristics, V_{CC} = 5 V, T_A = 25°C (unless otherwise noted)


	DADAMETED	TEST SOUR	TIONS	TI	E2024Y	,	
	PARAMETER	TEST COND	TIONS	MIN	TYP	MAX	UNIT
	Input offset voltage long-term drift (see Note 4)				0.005		μV/mo
I _{IO}	Input offset current	$V_{IC} = 0$,	$R_S = 50 \Omega$		0.6		nA
I_{IB}	Input bias current				45		nA
V _{ICR}	Common-mode input voltage range	R _S = 50 Ω			-0.3 to 4		٧
V _{OH}	High-level output voltage	D 401-0			4.2		V
V _{OL}	Low-level output voltage	$R_L = 10 \text{ k}\Omega$			0.7		V
A _{VD}	Large-signal differential voltage amplification	V _O = 1.4 V to 4 V,	R _L = 10 kΩ		1.5		V/µV
CMRR	Common-mode rejection ratio	V _{IC} = V _{ICR} min,	$R_S = 50 \Omega$		90		dB
^k SVR	Supply-voltage rejection ratio $(\Delta V_{CC}/\Delta V_{IO})$	V _{CC} = 5 V to 30 V			112	·	dB
Icc	Supply current	$V_0 = 2.5 V$,	No load		800		μΑ

NOTE 4. Typical values are based on the input offset voltage shift observed through 168 hours of operating life test at $T_A = 150^{\circ}C$ extrapolated to $T_A = 25^{\circ}C$ using the Arrhenius equation and assuming an activation energy of 0.96 eV.

TLE2024Y operating characteristics, V_{CC} = 5 V, T_A = 25°C

PARAMETER		TEST CONDITIONS		TLE2024Y				
				MIN	TYP	MAX	UNIT	
SR	Slew rate at unity gain	$V_O = 1 V \text{ to } 3 V$,	See Figure 1		0.5		V/μs	
V _n	Equivalent input noise voltage (see Figure 2)	f = 10 Hz			21		nV/√ Hz	
		f = 1 kHz			17			
V _{N(PP)}	Peak-to-peak equivalent input noise voltage	f = 0.1 to 1 Hz			0.16			
		f = 0.1 to 10 Hz			0.47		μV	
In	Equivalent input noise current				0.1		pA/√ Hz	
B ₁	Unity-gain bandwidth	See Figure 3			1.7		MHz	
φ _m	Phase margin at unity gain	See Figure 3	·		47°			

PARAMETER MEASUREMENT INFORMATION

NOTE A: C_L includes fixture capacitance.

Figure 1. Slew-Rate Test Circuit

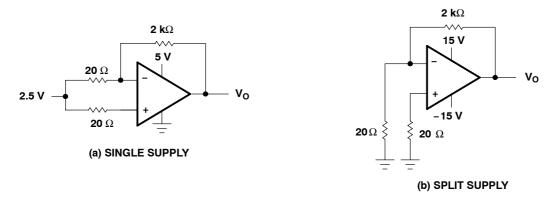
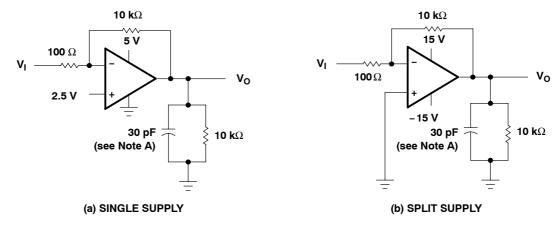



Figure 2. Noise-Voltage Test Circuit

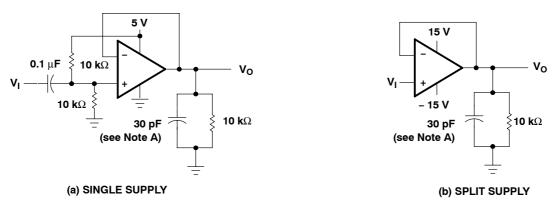

NOTE A: C_L includes fixture capacitance.

Figure 3. Unity-Gain Bandwidth and Phase-Margin Test Circuit

TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

SLOS191D - FEBRUARY 1997 - REVISED NOVEMBER 2010

PARAMETER MEASUREMENT INFORMATION

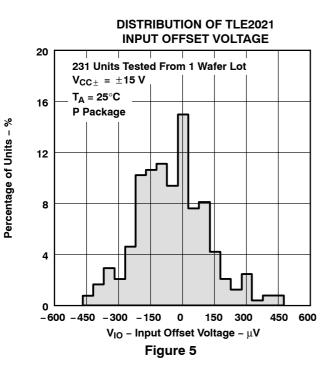
NOTE A: C_L includes fixture capacitance.

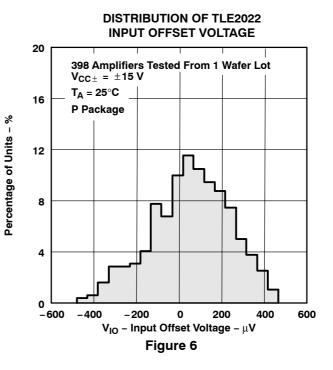
Figure 4. Small-Signal Pulse-Response Test Circuit

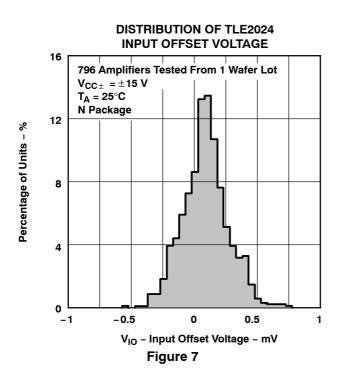
typical values

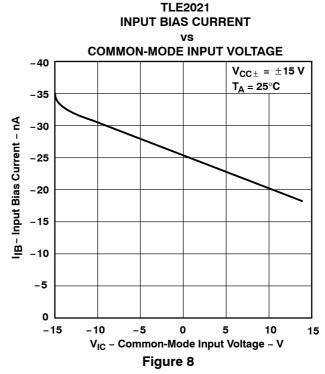
Typical values presented in this data sheet represent the median (50% point) of device parametric performance.

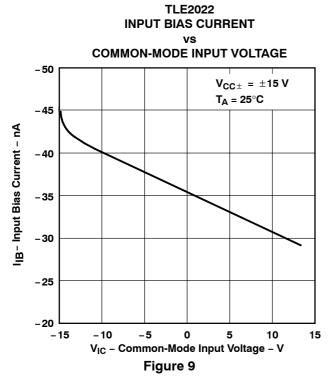
SLOS191D - FEBRUARY 1997 - REVISED NOVEMBER 2010

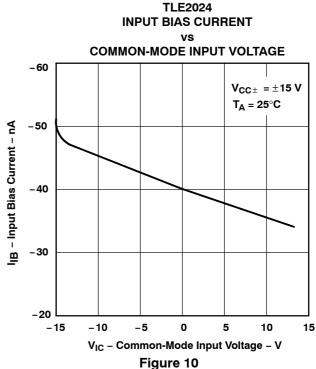

TYPICAL CHARACTERISTICS

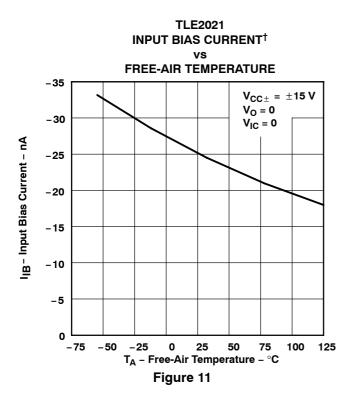

Table of Graphs

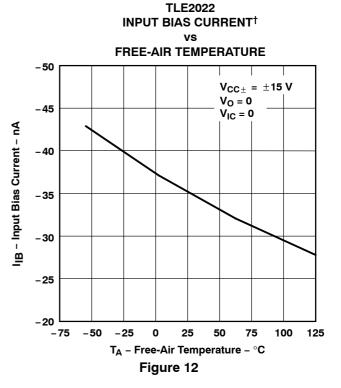

			FIGURE	
V _{IO}	Input offset voltage	Distribution	5, 6, 7	
I _{IB}	Input bias current	vs Common-mode input voltage vs Free-air temperature	8, 9, 10 11, 12, 13	
l _l	Input current	vs Differential input voltage	14	
V_{OM}	Maximum peak output voltage	vs Output current vs Free-air temperature	15, 16, 17 18	
V _{OH}	High-level output voltage	vs High-level output current vs Free-air temperature	19, 20 21	
V _{OL}	Low-level output voltage	vs Low-level output current vs Free-air temperature	22 23	
V _{O(PP)}	Maximum peak-to-peak output voltage	vs Frequency	24, 25	
A _{VD}	Large-signal differential voltage amplification	vs Frequency vs Free-air temperature	26 27, 28, 29	
Ios	Short-circuit output current	vs Supply voltage vs Free-air temperature	30 – 33 34 – 37	
I _{CC}	Supply current	vs Supply voltage vs Free-air temperature	38, 39, 40 41, 42, 43	
CMRR	Common-mode rejection ratio	vs Frequency	44, 45, 46	
SR	Slew rate	vs Free-air temperature	47, 48, 49	
	Voltage-follower small-signal pulse response		50, 51	
	Voltage-follower large-signal pulse response		52 – 57	
V _{N(PP)}	Peak-to-peak equivalent input noise voltage	0.1 to 1 Hz 0.1 to 10 Hz	58 59	
V _n	Equivalent input noise voltage	vs Frequency	60	
B ₁	Unity-gain bandwidth	vs Supply voltage vs Free-air temperature	61, 62 63, 64	
φ _m	Phase margin	vs Supply voltage vs Load capacitance vs Free-air temperature	65, 66 67, 68 69, 70	
	Phase shift	vs Frequency	26	

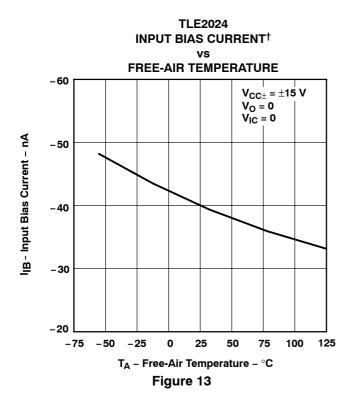



TYPICAL CHARACTERISTICS

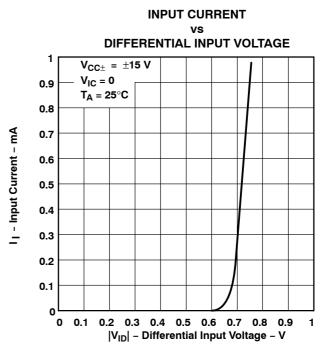
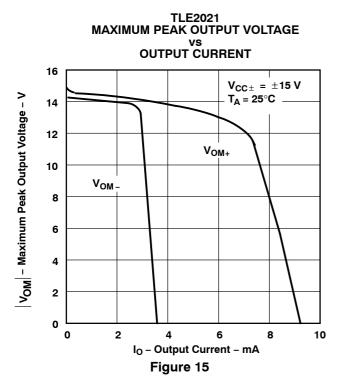
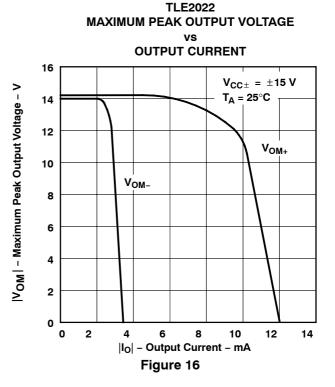


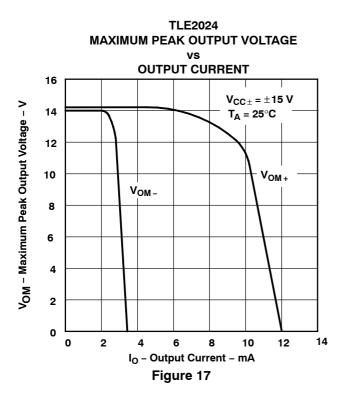


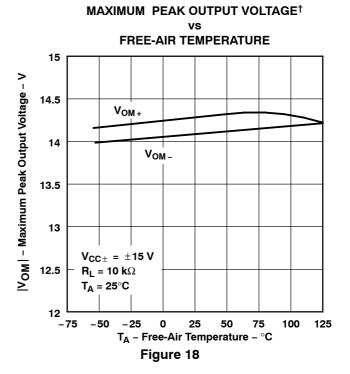


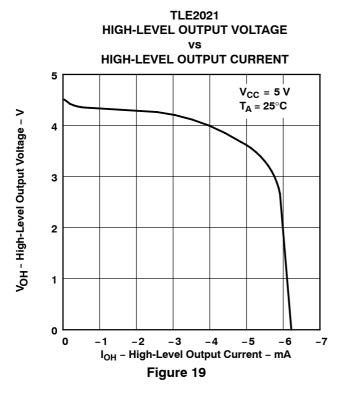


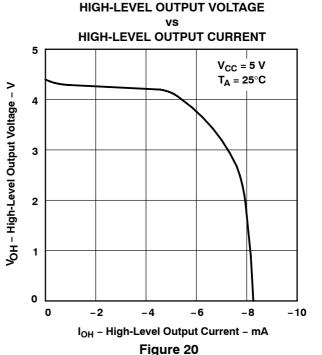
[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

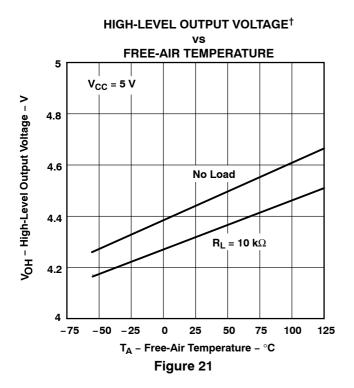




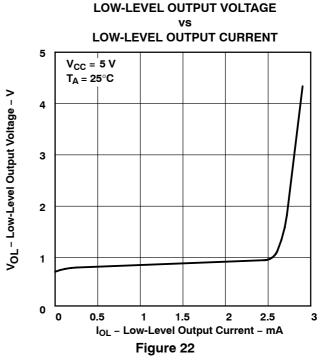

Figure 14

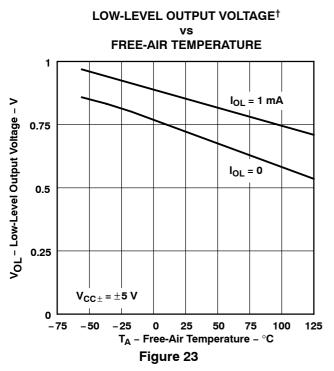



[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.




TLE2022 AND TLE2024





[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

MAXIMUM PEAK-TO-PEAK OUTPUT VOLTAGE

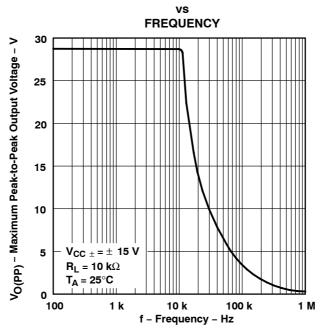


Figure 25

LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION AND PHASE SHIFT

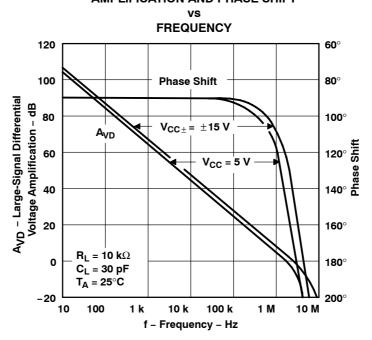
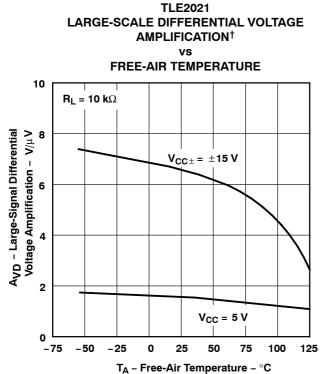
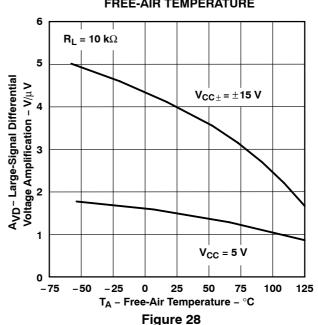



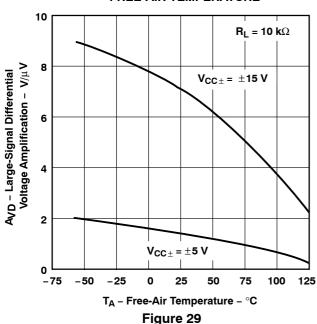
Figure 26


TLE2022

LARGE-SIGNAL DIFFERENTIAL VOLTAGE

AMPLIFICATION†

vs


FREE-AIR TEMPERATURE

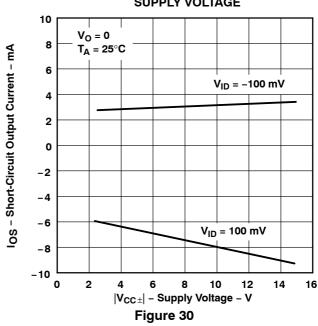

TLE2024 LARGE-SCALE DIFFERENTIAL VOLTAGE AMPLIFICATION[†]

Figure 27

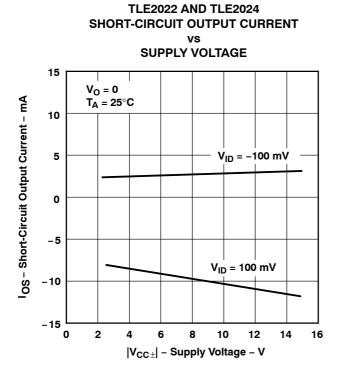
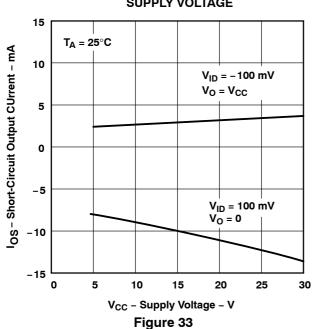
vs FREE-AIR TEMPERATURE

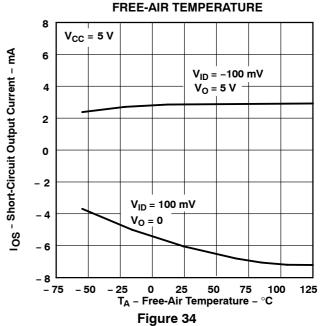
TLE2021 SHORT-CIRCUIT OUTPUT CURRENT vs SUPPLY VOLTAGE

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

TLE2021

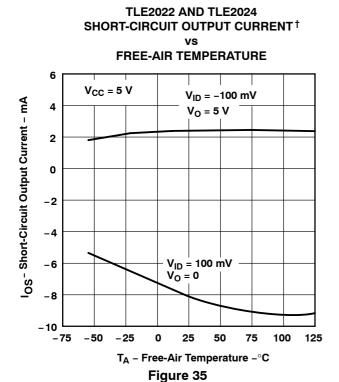
TYPICAL CHARACTERISTICS

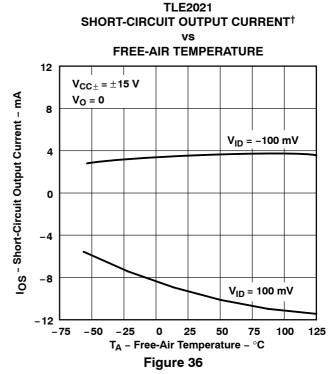



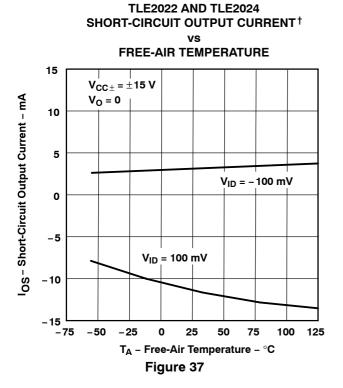

Figure 31

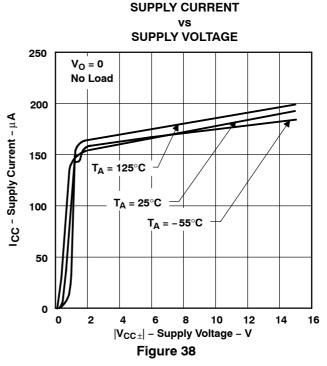
SHORT-CIRCUIT OUTPUT CURRENT **SUPPLY VOLTAGE** 12 T_A = 25°C OS - Short-Circuit Output Current - mA 8 $V_{ID} = -100 \text{ mV}$ $V_O = V_{CC}$ 4 -4 $V_{ID} = 100 \text{ mV}$ $V_0 = 0$ -8 - 12 0 15 30 V_{CC} - Supply Voltage - V Figure 32

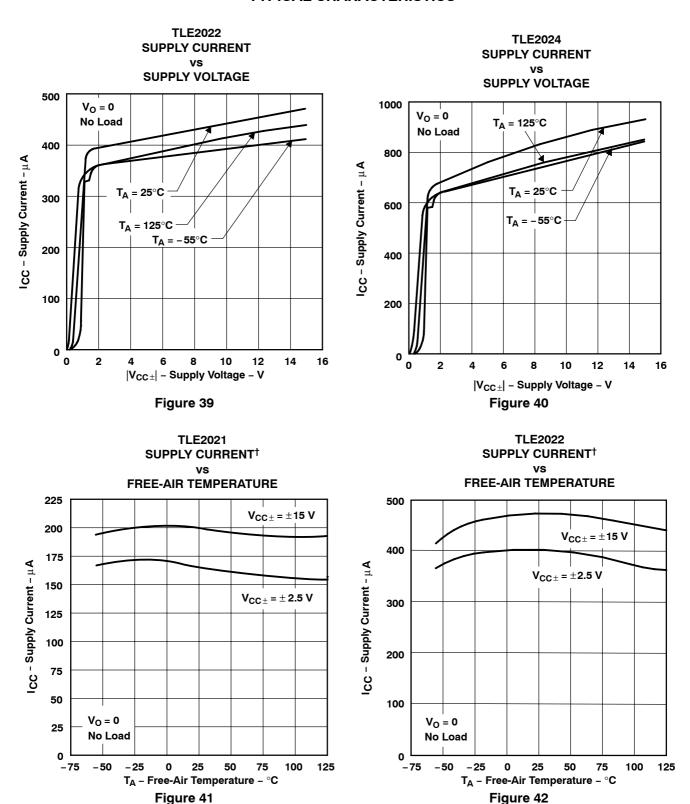
TLE2022 AND TLE2024
SHORT-CIRCUIT OUTPUT CURRENT
vs
SUPPLY VOLTAGE



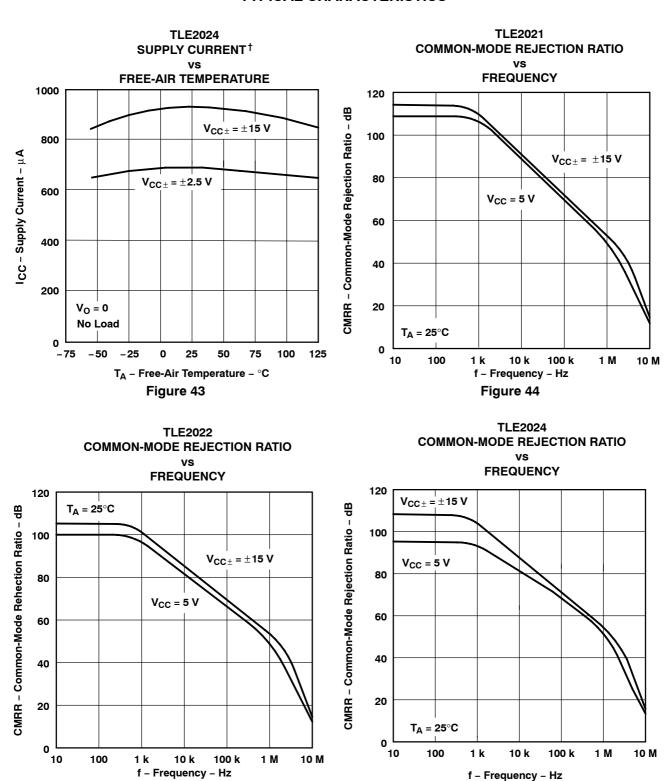

TLE2021
SHORT-CIRCUIT OUTPUT CURRENT†
vs



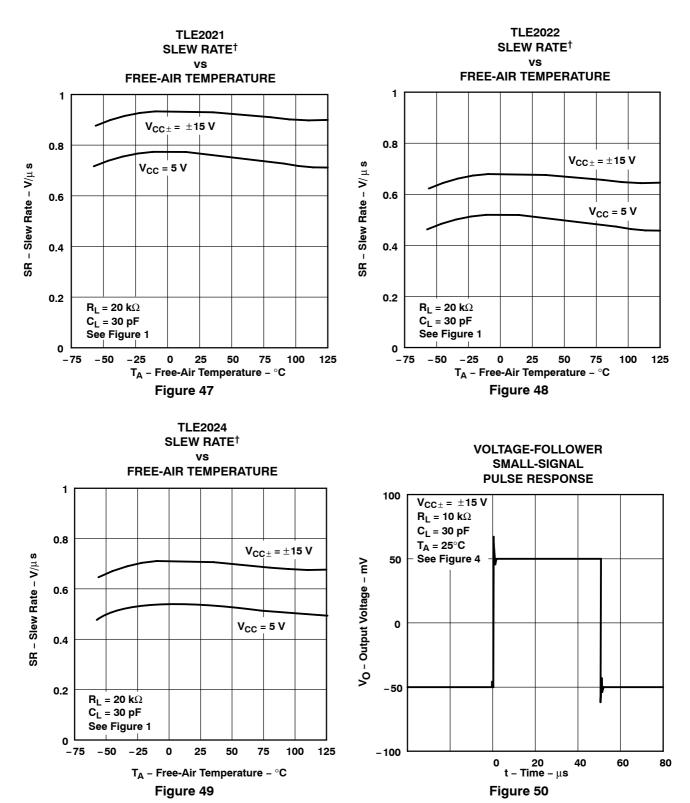

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.



TLE2021


[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.



[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

Figure 45

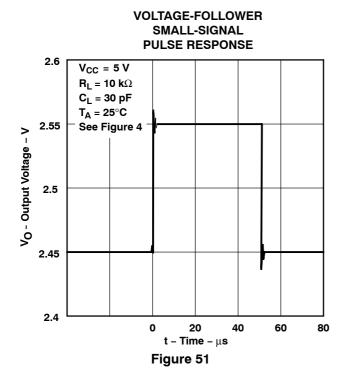
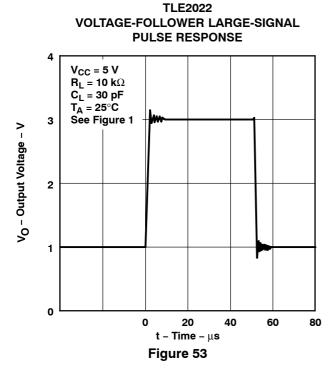
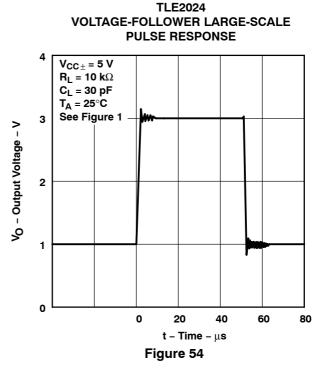
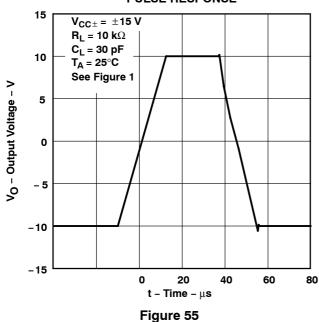
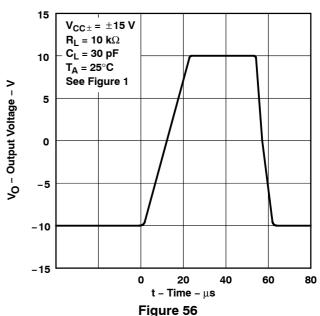


Figure 46




[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

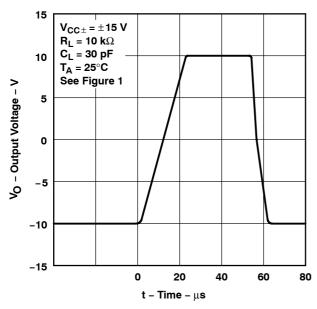
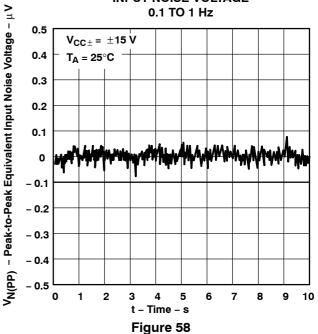
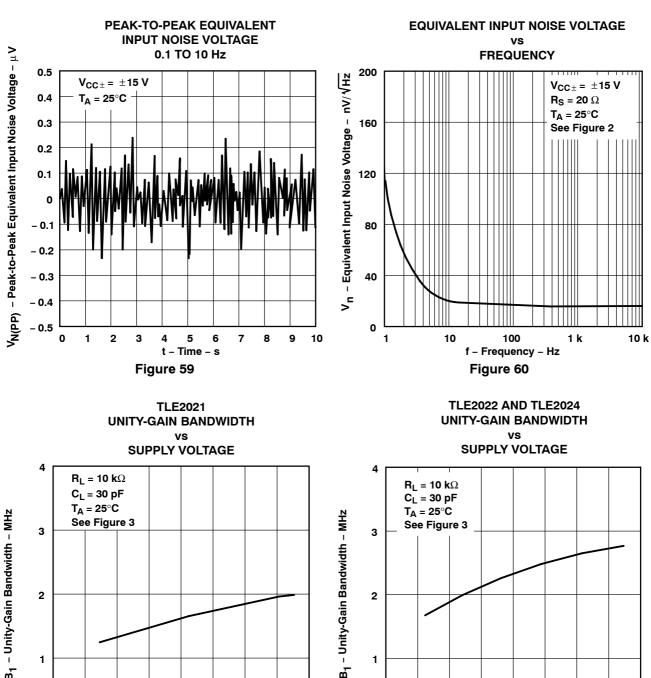
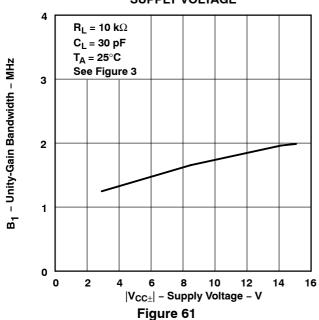


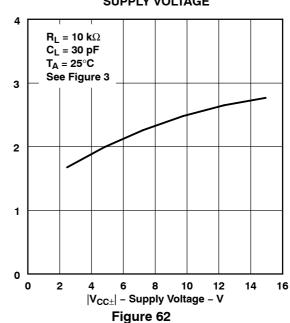


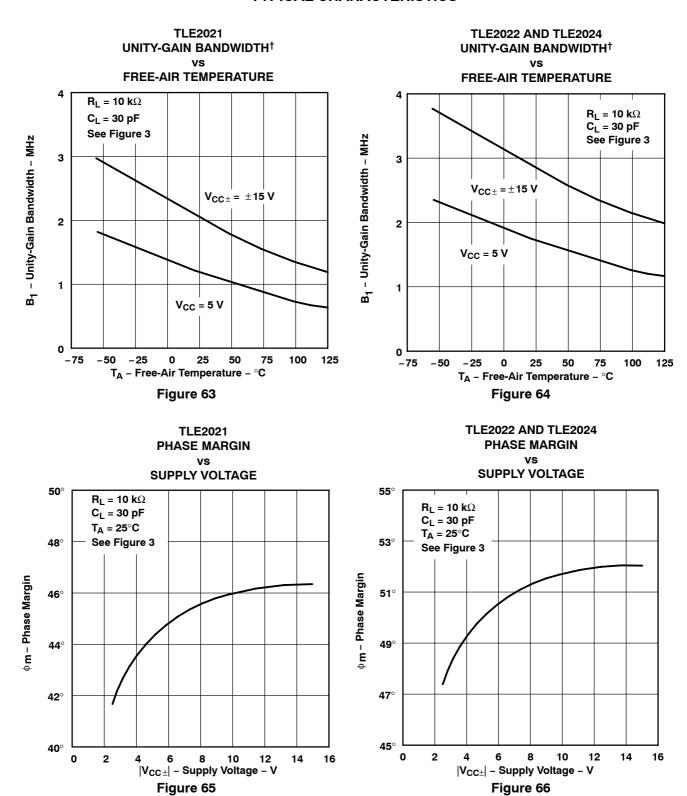
TLE2021 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE

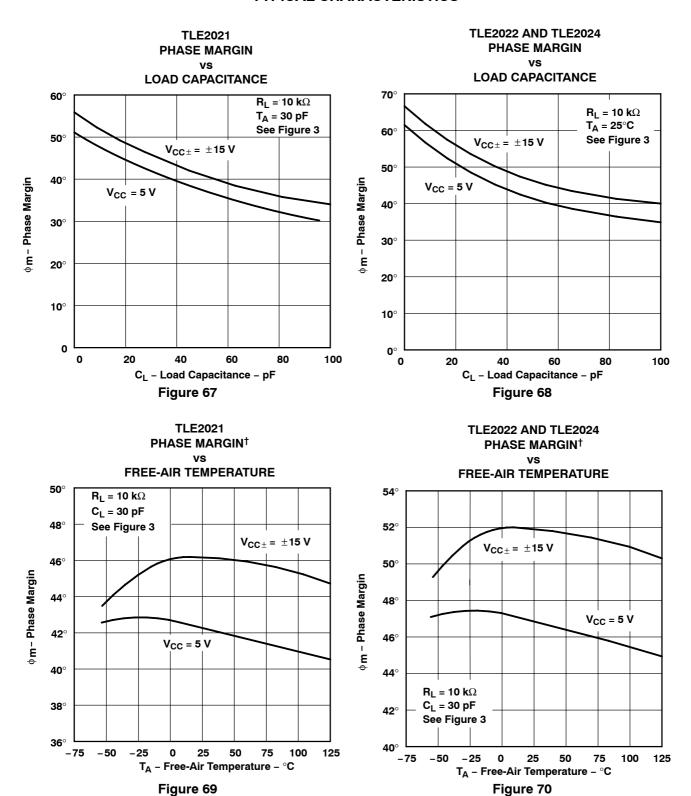
TLE2022 VOLTAGE-FOLLOWER LARGE-SIGNAL PULSE RESPONSE

TLE2024
VOLTAGE-FOLLOWER LARGE-SIGNAL
PULSE RESPONSE


Figure 57


PEAK-TO-PEAK EQUIVALENT INPUT NOISE VOLTAGE



 $^{^\}dagger$ Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

[†] Data at high and low temperatures are applicable only within the rated operating free-air temperature ranges of the various devices.

SLOS191D - FEBRUARY 1997 - REVISED NOVEMBER 2010

APPLICATION INFORMATION

voltage-follower applications

The TLE202x circuitry includes input-protection diodes to limit the voltage across the input transistors; however, no provision is made in the circuit to limit the current if these diodes are forward biased. This condition can occur when the device is operated in the voltage-follower configuration and driven with a fast, large-signal pulse. It is recommended that a feedback resistor be used to limit the current to a maximum of 1 mA to prevent degradation of the device. This feedback resistor forms a pole with the input capacitance of the device. For feedback resistor values greater than 10 k Ω , this pole degrades the amplifier phase margin. This problem can be alleviated by adding a capacitor (20 pF to 50 pF) in parallel with the feedback resistor (see Figure 71).

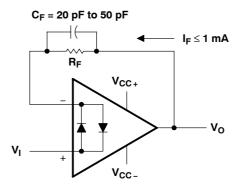


Figure 71. Voltage Follower

Input offset voltage nulling

The TLE202x series offers external null pins that further reduce the input offset voltage. The circuit in Figure 72 can be connected as shown if this feature is desired. When external nulling is not needed, the null pins may be left disconnected.

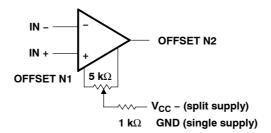


Figure 72. Input Offset Voltage Null Circuit

SLOS191D - FEBRUARY 1997 - REVISED NOVEMBER 2010

APPLICATION INFORMATION

macromodel information

Macromodel information provided was derived using Microsim *Parts*™, the model generation software used with Microsim *PSpice*™. The Boyle macromodel (see Note 5) and subcircuit in Figure 73, Figure 74, and Figure 75 were generated using the TLE202x typical electrical and operating characteristics at 25°C. Using this information, output simulations of the following key parameters can be generated to a tolerance of 20% (in most cases):

- Maximum positive output voltage swing
- Maximum negative output voltage swing
- Slew rate
- Quiescent power dissipation
- Input bias current
- Open-loop voltage amplification

- Unity-gain frequency
- Common-mode rejection ratio
- Phase margin
- DC output resistance
- AC output resistance
- Short-circuit output current limit

NOTE 5: G. R. Boyle, B. M. Cohn, D. O. Pederson, and J. E. Solomon, "Macromodeling of Integrated Circuit Operational Amplifiers", *IEEE Journal of Solid-State Circuits*, SC-9, 353 (1974).

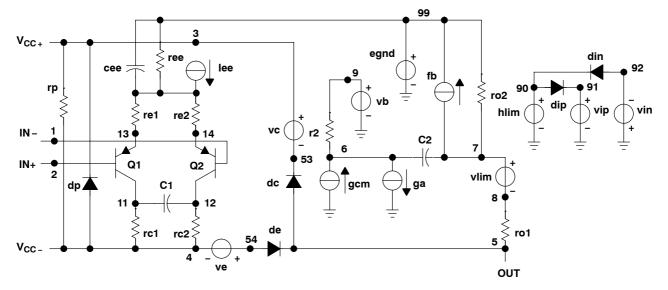


Figure 73. Boyle Subcircuit

PSpice and Parts are trademarks of MicroSim Corporation.

TLE202x, TLE202xA, TLE202xB, TLE202xY EXCALIBUR HIGH-SPEED LOW-POWER PRECISION OPERATIONAL AMPLIFIERS

SLOS191D - FEBRUARY 1997 - REVISED NOVEMBER 2010

```
.SUBCKT TLE2021 12345
                                                                             poly(2) vcm+ vcm- 0 1E2 1E2
                                                                hcmr 80
                                                                      3
                                                                          4
                                                                              185E-6
            12 6.244E-12
 с1
        11
                                                                      3
                                                                          10 dc 15.67E-6
                                                                iee
 c2
        6
            7 13.4E-12
                                                                             2F-9
                                                                iio
                                                                      2
                                                                          0
            0 10.64E-9
 сЗ
        87
                                                                      88
                                                                         0
                                                                             1E-21
            86 15.9E-9
       85
 cosr
                                                                      11
                                                                          89 13 qx
                                                                q1
 dcm+ 81
            82 dx
                                                                q2
                                                                      12
                                                                          80
                                                                             14 qx
 dcm- 83
            81 dx
                                                                Ŕ2
                                                                      6
                                                                             100.0E3
 dc
        5
            53 dx
                                                                      84
                                                                          81 1K
                                                                rcm
        54 5 dx
                                                                ree
                                                                      10
                                                                          99
                                                                             14.76E6
 qlb
        90
            91 dx
                                                                rn1
                                                                      87
                                                                          0
                                                                             2.55E8
 dln
        92
            90 dx
                                                                          88 11.67E3
                                                                rn2
                                                                      87
        4
 dp
            3 dx
                                                                ro1
                                                                      8
                                                                          5
                                                                             62
 ecmr 84
            99 (2 99) 1
                                                                ro2
                                                                      7
                                                                          99 63
 egnd
       99
            0 poly(2) (3,0) (4,0) 0 .5 .5
                                                                vcm+ 82
                                                                          99 13.3
 epsr
            0 poly(1) (3,4) -60E-6 2.0E-6
                                                                vcm- 83
                                                                          99
                                                                             -14.6
            2 poly(1) (88,0) 120E-6 1
 ense 89
                                                                vh
                                                                      9
                                                                          0 dc 0
 fb
            99 poly(6) vb vc ve vlp vln vpsr 0 547.3E6
                                                                VC
                                                                      3
                                                                          53 dc 1.300
 + -50E7 50E7 50E7 -50E7 547E6
                                                                ve
                                                                      54
                                                                          4
                                                                             dc 1.500
 ga
        6
            0 11 12 188.5E-6
                                                                vlim 7
                                                                          8
                                                                             dc 0
 gcm
        0
            6 10 99 335.2E-12
                                                                vlp
                                                                      91
                                                                          0
                                                                             dc 3.600
       85 86 (85,86) 100E-6
 gpsr
                                                                vln
                                                                      0
                                                                          92 dc 3.600
 grc1
       4
            11 (4,11) 1.885E-4
                                                                vpsr 0
                                                                          86 dc 0
            12 (4,12) 1.885E-4
 grc2
                                                              .model dx d(is=800.0E-18)
       13 10 (13,10) 6.82E-4
 gre1
                                                              .model qx pnp(is=800.0E-18 bf=270)
 gre2
       14 10 (14,10) 6.82E-4
       90 0 vlim 1k
 hlim
```

Figure 74. Boyle Macromodel for the TLE2021

```
.SUBCKT TLE2022 1 2 3 4 5
                                                               11 2.842E3
                                                            4
                                                               12 2.842E3
                                                       rc2
 c1
       11 12 6.814E-12
                                                       ge1 13 10 (10,13) 31.299E-3
 c2
          7 20.00E-12
                                                               10 (10,14) 31.299E-3
                                                       ge2
                                                            14
 dc
          53 dx
                                                           10 99 11.07E6
                                                       ree
       54 5 dx
 de
                                                       rol 8
                                                               5 250
     90 91 dx
 dlp
                                                               99 250
                                                       ro2
 dln 92 90 dx
                                                               4 137.2E3
                                                            3
                                                       rp
       4
          3 dx
 dp
                                                       vb
                                                            9
                                                               0 dc 0
 egnd 99
          0 poly(2) (3,0) (4,0) 0 .5 .5
                                                       VC
                                                            3
                                                               53 dc 1.300
 fb
      7
          99 poly(5) vb vc ve vlp vln 0
                                                            54 4 dc 1.500
                                                       ve
 45.47E6 -50E6 50E6 50E6 -50E6
                                                       vlim 7
                                                               8 dc 0
 ga 6 0
          11 12 377.9E-6
                                                       vlp 91 0 dc 3
 gcm 0 6
          10 99 7.84E-10
                                                       vln 0
                                                               92 dc 3
          10 DC 18.07E-6
 iee 3
                                                     .model dx d(is=800.0E-18)
 hlim 90
          0 vlim 1k
                                                     .model qx pnp(is=800.0E-18 bf=257.1)
      11 2 13 qx
 q1
                                                      .ends
       12 1 14 qx
 q2
          9 100.0E3
 r2
       6
```

Figure 75. Boyle Macromodel for the TLE2022

18-Nov-2011

PACKAGING INFORMATION

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
5962-9088101MPA	ACTIVE	CDIP	JG	8	1	TBD	Call TI	Call TI	
5962-9088102M2A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Call TI	
5962-9088102MPA	ACTIVE	CDIP	JG	8	1	TBD	Call TI	Call TI	
5962-9088103M2A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Call TI	
5962-9088103MCA	ACTIVE	CDIP	J	14	1	TBD	Call TI	Call TI	
5962-9088104Q2A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Call TI	
5962-9088104QPA	ACTIVE	CDIP	JG	8	1	TBD	Call TI	Call TI	
5962-9088105Q2A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Call TI	
5962-9088105QPA	ACTIVE	CDIP	JG	8	1	TBD	Call TI	Call TI	
5962-9088106Q2A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Call TI	
5962-9088106QCA	ACTIVE	CDIP	J	14	1	TBD	Call TI	Call TI	
5962-9088107Q2A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Call TI	
5962-9088107QPA	ACTIVE	CDIP	JG	8	1	TBD	Call TI	Call TI	
5962-9088108Q2A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Call TI	
5962-9088108QPA	ACTIVE	CDIP	JG	8	1	TBD	Call TI	Call TI	
5962-9088109Q2A	ACTIVE	LCCC	FK	20	1	TBD	Call TI	Call TI	
5962-9088109QCA	ACTIVE	CDIP	J	14	1	TBD	Call TI	Call TI	
TLE2021ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2021ACDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2021ACDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2021ACDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2021ACP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
TLE2021ACPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
TLE2021ACPS	OBSOLETE	SO	PS	8		TBD	Call TI	Call TI	
TLE2021ACPSG4	OBSOLETE	SO	PS	8		TBD	Call TI	Call TI	
TLE2021AID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	

18-Nov-2011

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
TLE2021AIDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2021AIP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
TLE2021AIPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
TLE2021AMFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	
TLE2021AMJGB	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	
TLE2021BMFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	
TLE2021BMJG	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	
TLE2021BMJGB	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	
TLE2021CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2021CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2021CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2021CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2021CP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
TLE2021CPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
TLE2021CPWLE	OBSOLETE	TSSOP	PW	8		TBD	Call TI	Call TI	
TLE2021CPWR	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2021CPWRG4	ACTIVE	TSSOP	PW	8	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2021ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2021IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2021IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2021IDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2021IP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
TLE2021IPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	

www.ti.com 18-Nov-2011

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
TLE2021MD	ACTIVE	SOIC	D	8	75	TBD	CU NIPDAU	Level-1-220C-UNLIM	
TLE2021MDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2021MJG	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	
TLE2021MJGB	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	
TLE2022ACD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2022ACDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2022ACDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2022ACDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2022ACP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
TLE2022ACPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
TLE2022AID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2022AIDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2022AIDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2022AIDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2022AIP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
TLE2022AIPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
TLE2022AMD	ACTIVE	SOIC	D	8	75	TBD	CU NIPDAU	Level-1-220C-UNLIM	
TLE2022AMDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2022AMDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU Level-1-260C-UNLIM		
TLE2022AMDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU Level-1-260C-UNLIM		
TLE2022AMFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	
TLE2022AMJGB	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	

18-Nov-2011

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
TLE2022BCDR	OBSOLETE	SOIC	D	8		TBD	Call TI	Call TI	
TLE2022BMFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	
TLE2022BMJG	OBSOLETE	CDIP	JG	8	-	TBD	Call TI	Call TI	
TLE2022BMJGB	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	
TLE2022CD	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2022CDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2022CDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2022CDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2022CP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
TLE2022CPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
TLE2022CPSR	OBSOLETE	so	PS	8		TBD	Call TI	Call TI	
TLE2022ID	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2022IDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2022IDR	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2022IDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2022IP	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
TLE2022IPE4	ACTIVE	PDIP	Р	8	50	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
TLE2022MD	ACTIVE	SOIC	D	8	75	TBD	CU NIPDAU	Level-1-220C-UNLIM	
TLE2022MDG4	ACTIVE	SOIC	D	8	75	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2022MDR	ACTIVE	SOIC	D	8	2500	TBD	CU NIPDAU	Level-1-220C-UNLIM	
TLE2022MDRG4	ACTIVE	SOIC	D	8	2500	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2022MFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	
TLE2022MJG	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	
TLE2022MJGB	ACTIVE	CDIP	JG	8	1	TBD	A42	N / A for Pkg Type	

18-Nov-2011

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
TLE2024ACDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2024ACDWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2024ACDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2024ACDWRG4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2024ACN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
TLE2024ACNE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
TLE2024AIDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2024AIDWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2024AIN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
TLE2024AINE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
TLE2024AMFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	
TLE2024AMJ	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	
TLE2024AMJB	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	
TLE2024BCDW	OBSOLETE	SOIC	DW	16		TBD	Call TI	Call TI	
TLE2024BCN	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI	
TLE2024BIDW	OBSOLETE	SOIC	DW	16		TBD	Call TI	Call TI	
TLE2024BIN	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI	
TLE2024BMDW	ACTIVE	SOIC	DW	16	40	TBD	CU NIPDAU	Level-1-220C-UNLIM	
TLE2024BMDWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2024BMFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	
TLE2024BMJ	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	
TLE2024BMJB	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	
TLE2024BMN	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI	
TLE2024CDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	

www.ti.com 18-Nov-2011

Orderable Device	Status (1)	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
TLE2024CDWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2024CDWR	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2024CDWRG4	ACTIVE	SOIC	DW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2024CN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
TLE2024CNE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
TLE2024IDW	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2024IDWG4	ACTIVE	SOIC	DW	16	40	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2024IN	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
TLE2024INE4	ACTIVE	PDIP	N	14	25	Pb-Free (RoHS)	CU NIPDAU	N / A for Pkg Type	
TLE2024MDW	ACTIVE	SOIC	DW	16	40	TBD	CU NIPDAU	Level-1-220C-UNLIM	
TLE2024MDWG4	ACTIVE	SOIC	DW	16	100	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TLE2024MFKB	ACTIVE	LCCC	FK	20	1	TBD	POST-PLATE	N / A for Pkg Type	
TLE2024MJ	OBSOLETE	CDIP	J	14		TBD	Call TI	Call TI	
TLE2024MJB	ACTIVE	CDIP	J	14	1	TBD	A42	N / A for Pkg Type	
TLE2024MN	OBSOLETE	PDIP	N	14		TBD	Call TI	Call TI	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

ww.ti.com 18-Nov-2011

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

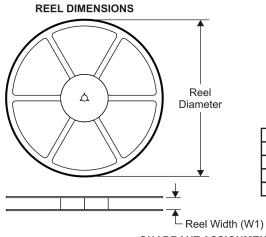
(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

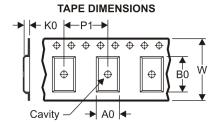
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

OTHER QUALIFIED VERSIONS OF TLE2021A, TLE2021A, TLE2021AM, TLE2021M, TLE2022A, TLE2022AM, TLE2022BM, TLE2022BM, TLE2022BM, TLE2022BM, TLE2024BM, TLE2024BM, TLE2024BM; TLE2024BM

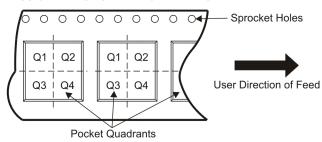
- Catalog: TLE2021A, TLE2021, TLE2022A, TLE2022B, TLE2022, TLE2024A, TLE2024B, TLE2024
- Automotive: TLE2021-Q1, TLE2021A-Q1, TLE2021A-Q1, TLE2021-Q1, TLE2022-Q1, TLE2022A-Q1, TLE2022A-Q1, TLE2022-Q1, TLE2024-Q1, TLE2024-Q1, TLE2024-Q1
- Enhanced Product: TLE2021-EP, TLE2021A-EP, TLE2021A-EP, TLE2021-EP, TLE2022-EP, TLE2022A-EP, TLE2022A-EP, TLE2022-EP, TLE2024-EP, TLE202
- Military: TLE2021M, TLE2021AM, TLE2022M, TLE2022AM, TLE2022BM, TLE2024BM, TLE2024AM, TLE2024BM


NOTE: Qualified Version Definitions:

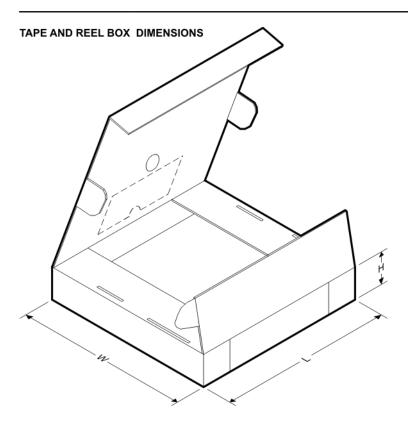

- Catalog TI's standard catalog product
- Automotive Q100 devices qualified for high-reliability automotive applications targeting zero defects
- Enhanced Product Supports Defense, Aerospace and Medical Applications
- Military QML certified for Military and Defense Applications

PACKAGE MATERIALS INFORMATION

www.ti.com 9-Aug-2011


TAPE AND REEL INFORMATION

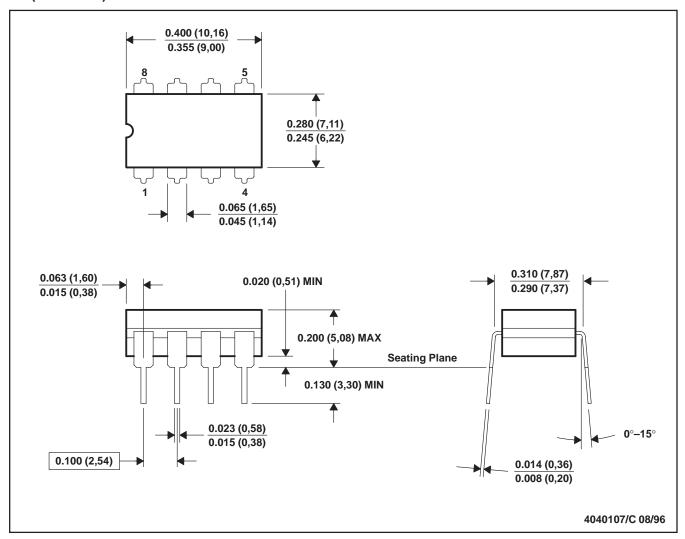
Α	Dimension designed to accommodate the component width
В	Dimension designed to accommodate the component length
K	Dimension designed to accommodate the component thickness
V	/ Overall width of the carrier tape
Б	1 Pitch between successive cavity centers


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE

*All dimensions are nominal

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TLE2021ACDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLE2021ACDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLE2021CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLE2021CPWR	TSSOP	PW	8	2000	330.0	12.4	7.0	3.6	1.6	8.0	12.0	Q1
TLE2021IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLE2022ACDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLE2022AIDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLE2022AMDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLE2022CDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLE2022IDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLE2022MDR	SOIC	D	8	2500	330.0	12.4	6.4	5.2	2.1	8.0	12.0	Q1
TLE2024ACDWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1
TLE2024CDWR	SOIC	DW	16	2000	330.0	16.4	10.75	10.7	2.7	12.0	16.0	Q1

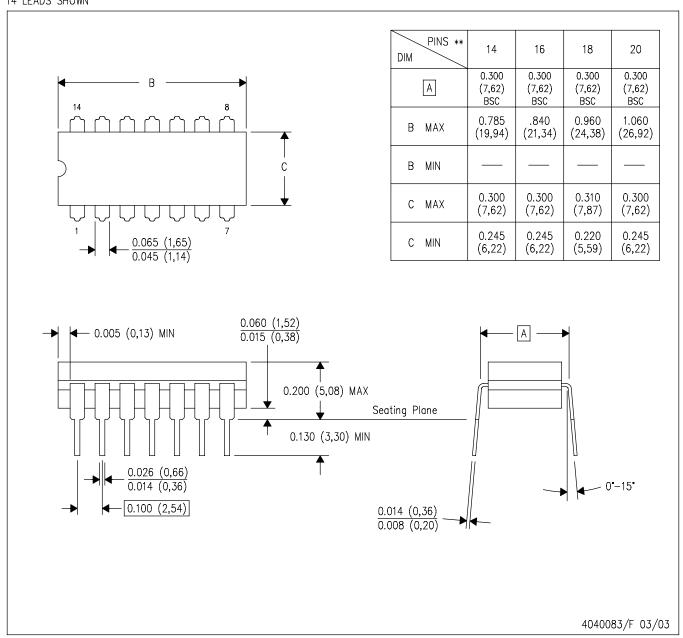
www.ti.com 9-Aug-2011



*All dimensions are nominal

Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TLE2021ACDR	SOIC	D	8	2500	340.5	338.1	20.6
TLE2021ACDR	SOIC	D	8	2500	346.0	346.0	29.0
TLE2021CDR	SOIC	D	8	2500	340.5	338.1	20.6
TLE2021CPWR	TSSOP	PW	8	2000	346.0	346.0	29.0
TLE2021IDR	SOIC	D	8	2500	340.5	338.1	20.6
TLE2022ACDR	SOIC	D	8	2500	340.5	338.1	20.6
TLE2022AIDR	SOIC	D	8	2500	340.5	338.1	20.6
TLE2022AMDR	SOIC	D	8	2500	346.0	346.0	29.0
TLE2022CDR	SOIC	D	8	2500	340.5	338.1	20.6
TLE2022IDR	SOIC	D	8	2500	340.5	338.1	20.6
TLE2022MDR	SOIC	D	8	2500	346.0	346.0	29.0
TLE2024ACDWR	SOIC	DW	16	2000	346.0	346.0	33.0
TLE2024CDWR	SOIC	DW	16	2000	346.0	346.0	33.0

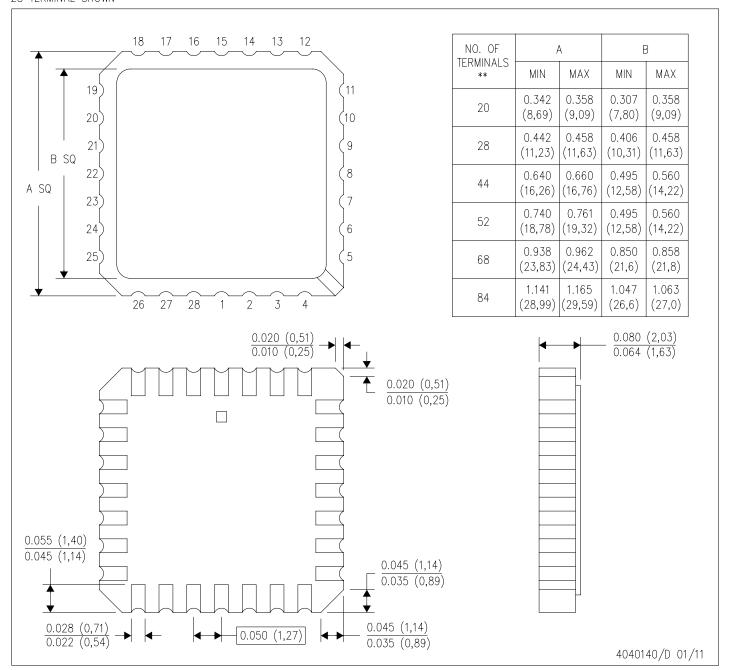
JG (R-GDIP-T8)


CERAMIC DUAL-IN-LINE

NOTES: A. All linear dimensions are in inches (millimeters).

- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification.
- E. Falls within MIL STD 1835 GDIP1-T8

14 LEADS SHOWN

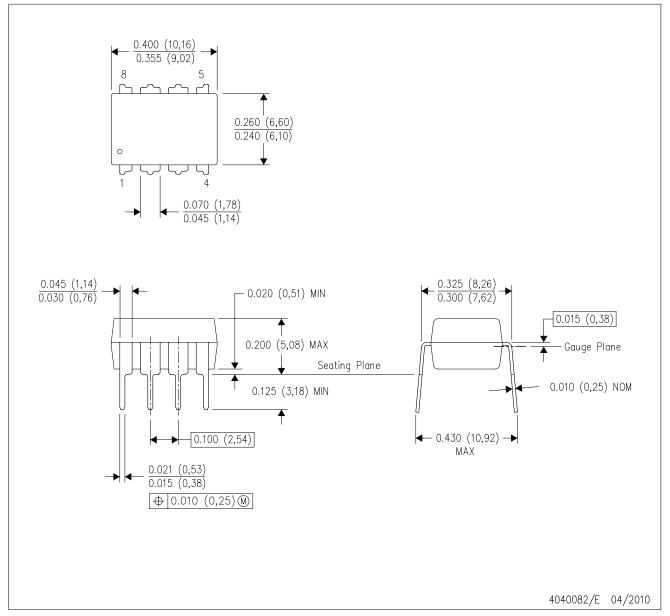


- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package is hermetically sealed with a ceramic lid using glass frit.
- D. Index point is provided on cap for terminal identification only on press ceramic glass frit seal only.
- E. Falls within MIL STD 1835 GDIP1-T14, GDIP1-T16, GDIP1-T18 and GDIP1-T20.

FK (S-CQCC-N**)

LEADLESS CERAMIC CHIP CARRIER

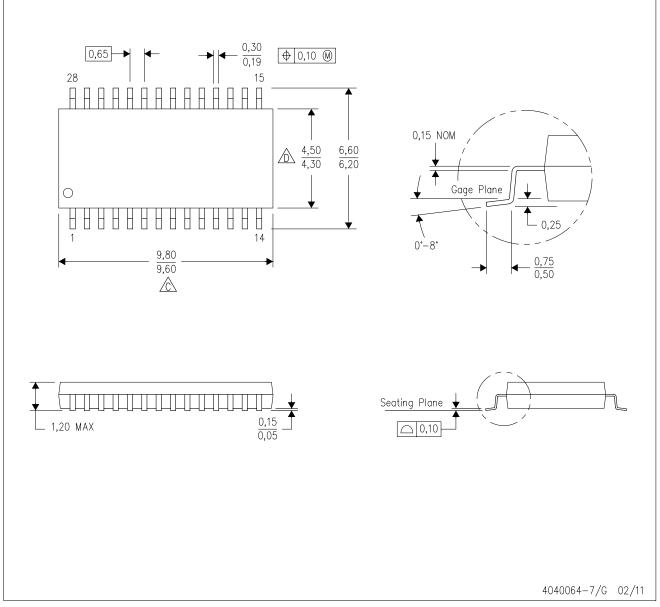
28 TERMINAL SHOWN



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. This package can be hermetically sealed with a metal lid.
- D. Falls within JEDEC MS-004

P (R-PDIP-T8)

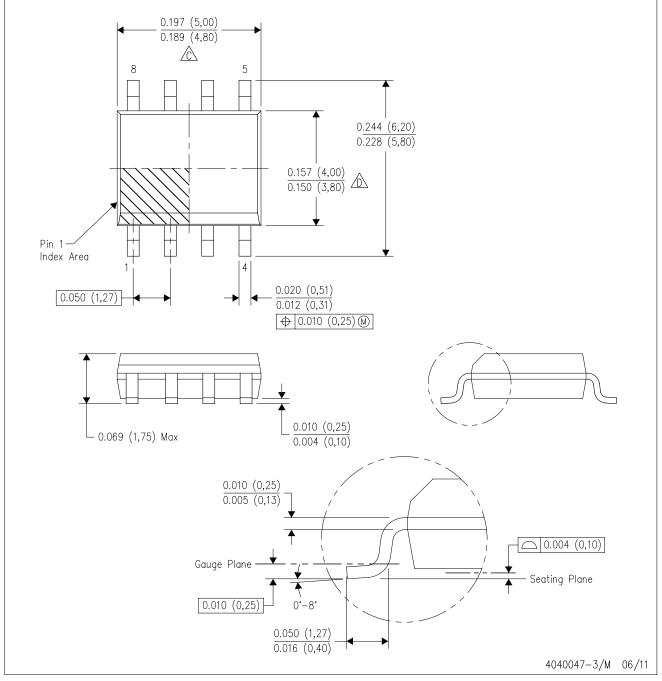
PLASTIC DUAL-IN-LINE PACKAGE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- C. Falls within JEDEC MS-001 variation BA.

PW (R-PDSO-G28)

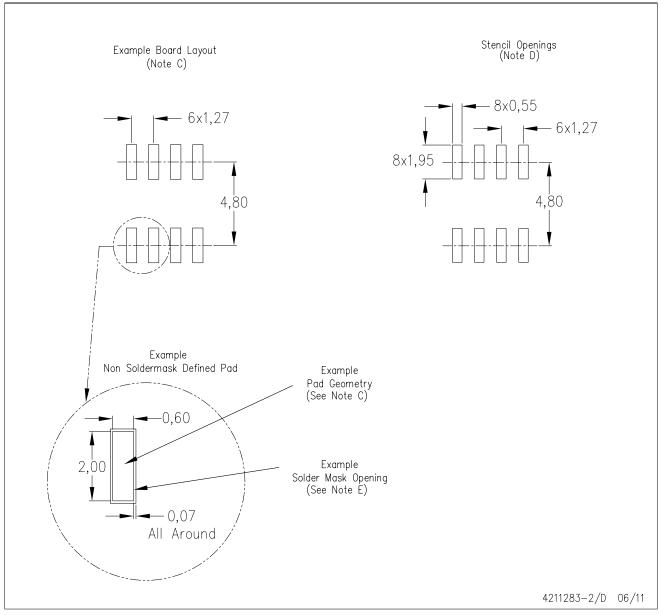
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

D (R-PDSO-G8)

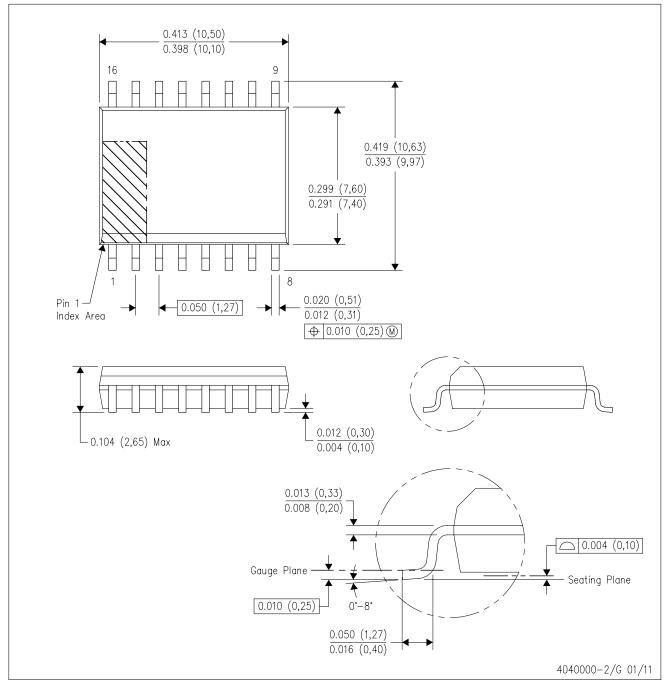
PLASTIC SMALL OUTLINE



- A. All linear dimensions are in inches (millimeters).
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0.006 (0,15) each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0.017 (0,43) each side.
- E. Reference JEDEC MS-012 variation AA.

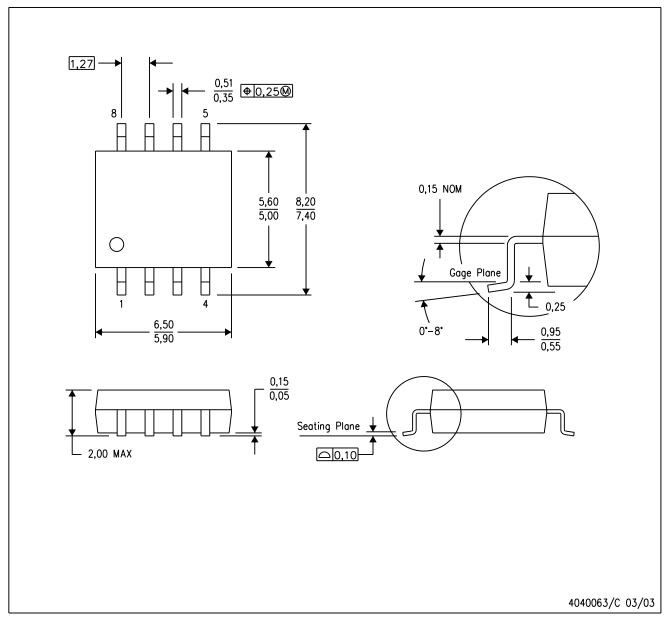
D (R-PDSO-G8)

PLASTIC SMALL OUTLINE



- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

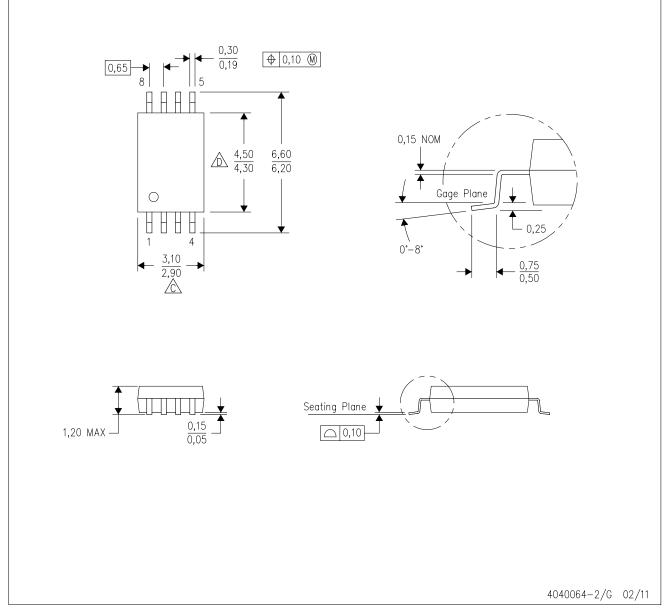
DW (R-PDSO-G16)


PLASTIC SMALL OUTLINE

NOTES: A. All linear dimensions are in inches (millimeters). Dimensioning and tolerancing per ASME Y14.5M-1994.

- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion not to exceed 0.006 (0,15).
- D. Falls within JEDEC MS-013 variation AA.

NOTES: A. All linear dimensions are in millimeters.


B. This drawing is subject to change without notice.

C. Body dimensions do not include mold flash or protrusion, not to exceed 0,15.

PW (R-PDSO-G8)

PLASTIC SMALL OUTLINE

- A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M—1994.
- B. This drawing is subject to change without notice.
- Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.
- Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.
- E. Falls within JEDEC MO-153

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Applications

Audio www.ti.com/audio Communications and Telecom www.ti.com/communications **Amplifiers** amplifier.ti.com Computers and Peripherals www.ti.com/computers dataconverter.ti.com Consumer Electronics www.ti.com/consumer-apps **Data Converters DLP® Products** www.dlp.com **Energy and Lighting** www.ti.com/energy DSP dsp.ti.com Industrial www.ti.com/industrial Clocks and Timers www.ti.com/clocks Medical www.ti.com/medical Interface interface.ti.com Security www.ti.com/security

Logic Space, Avionics and Defense <u>www.ti.com/space-avionics-defense</u>

Power Mgmt power.ti.com Transportation and Automotive www.ti.com/automotive
Microcontrollers microcontroller.ti.com Video and Imaging www.ti.com/video

RFID <u>www.ti-rfid.com</u>
OMAP Mobile Processors www.ti.com/omap

Wireless Connectivity <u>www.ti.com/wirelessconnectivity</u>

TI E2E Community Home Page <u>e2e.ti.com</u>

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated