
INTEGRATED CIRCUITS

Product specification File under Integrated Circuits, IC01 January 1992

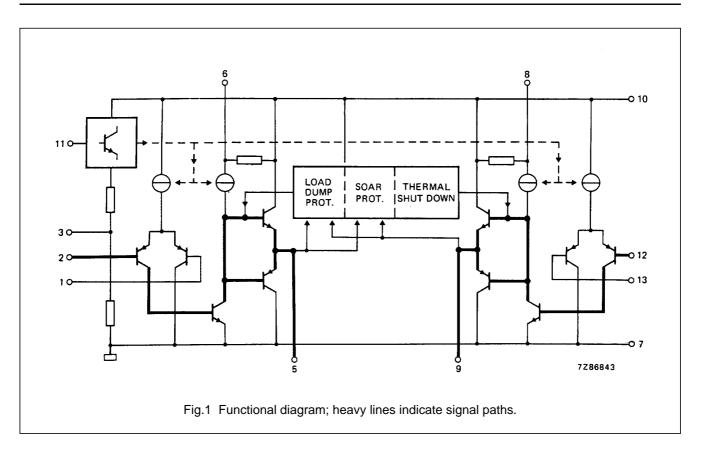
Product specification

24 W BTL or 2 x 12 W stereo car radio power amplifier

GENERAL DESCRIPTION

The TDA1510AQ is a class-B integrated output amplifier encapsulated in a 13-lead single in-line (SIL) plastic power package. Developed primarily for car radio application, the device can also be used to drive low impedance loads (down to 1,6 Ω). With a supply voltage (V_P) of 14,4 V, an output power of 24 W can be delivered into a 4 Ω Bridge Tied Load (BTL), or when used as a stereo amplifier, 2 × 12 W into 2 Ω or 2 × 7 W into 4 Ω .

Features

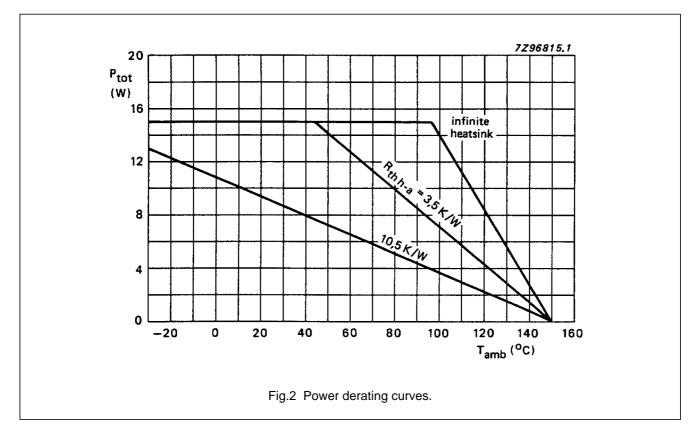

- Flexibility stereo as well as mono BTL
- Low offset voltage at the output (important for BTL)
- · Load dump protection
- A.C. short-circuit-safe to ground
- Low number, small sized external components
- Internal limiting of bandwidth for high frequencies
- High output power
- Large useable gain variation
- Good ripple rejection
- Thermal protection
- Low stand-by current possibility
- High reliability.

QUICK REFERENCE DATA

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage range:						
operating		VP	6,0	14,4	18,0	V
non-operating		VP	-	-	28,0	V
non-operating, load						
dump protection		VP	-	-	45,0	V
Repetitive peak output						
current		I _{ORM}	-	-	4,0	A
Total quiescent current		I _{tot}	-	75	120	mA
Stand-by current		I _{sb}	-	-	2	mA
Switch-on current		I _{so}	0,15	0,35	0,80	mA
Input impedance	pins 1, 2,					
	12 and 13	Z _I	1	-	-	MΩ
Storage temperature range		T _{stg}	-65	-	+ 150	°C
Crystal temperature		T _c	-	_	150	°C

PACKAGE OUTLINE

TDA1510AQ: 13-lead SIL-bent-to-DIL; plastic power (SOT 141C); SOT141-6; 1996 Aug 01.


Product specification

TDA1510AQ

RATINGS

Limiting values in accordance with the Absolute Maximum System (IEC 134)

PARAMETER	CONDITIONS	SYMBOL	MIN.	MAX.	UNIT
Supply voltage:					
operating	pin 10	V _P	-	18	V
non-operating		V _P	-	28	V
non-operating,					
load dump protection	during 50 ms	V _P	-	45	V
Peak output current		I _{OM}	-	6	A
Total power dissipation	see Fig.2	P _{tot}			
Storage temperature range		T _{stg}	-65	+ 150	°C
Crystal temperature		T _c	-	+ 150	°C

HEATSINK DESIGN EXAMPLE

The derating of the encapsulation requires the following external heatsink (for sine-wave drive):

 $(R_{th j-mb}) = 3.5 \text{ K/W}$

24 W BTL (4 Ω) or 2 × 12 W stereo (2 Ω); maximum sine-wave dissipation = 12 W;

 $T_{amb} = 65 \ ^{\circ}C \ (maximum):$

$$R_{th \ h-a} = \frac{150 - 65}{12} - 3.5 = 3.5 \ \text{K/W}$$

 2×7 W stereo (4 Ω); maximum sine-wave dissipation = 6 W; T_{amb} = 65 °C (maximum):

$$\mathsf{R}_{\mathsf{th h-a}} = \frac{150 - 65}{12} - 3,5 = 10,5 \; \mathsf{K/W}$$

D.C. CHARACTERISTICS

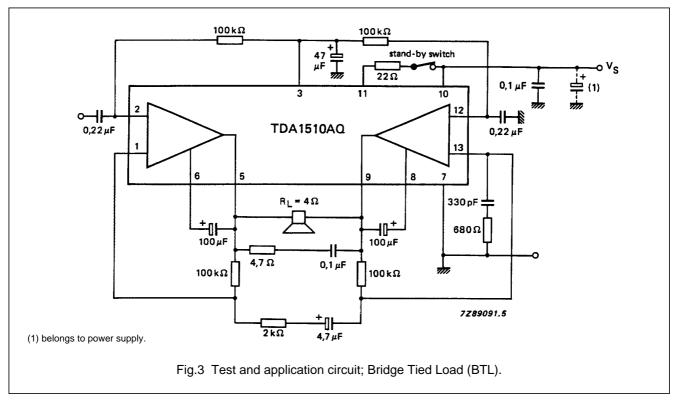
PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Supply voltage range		V _P	6,0	14,4	18,0	V
Repetitive peak output current		I _{ORM}	-	-	4,0	А
Total quiescent current		I _{tot}	-	75	120	mA
Stand-by current		I _{sb}	-	-	2	mA
Switch-on current	V ₁₁ ≤ V ₁₀ ; note 1	I _{so}	0,15	0,35	0,80	mA

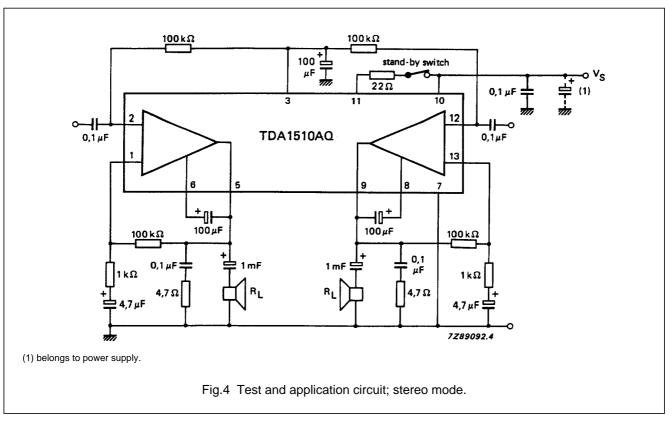
TDA1510AQ

A.C. CHARACTERISTICS

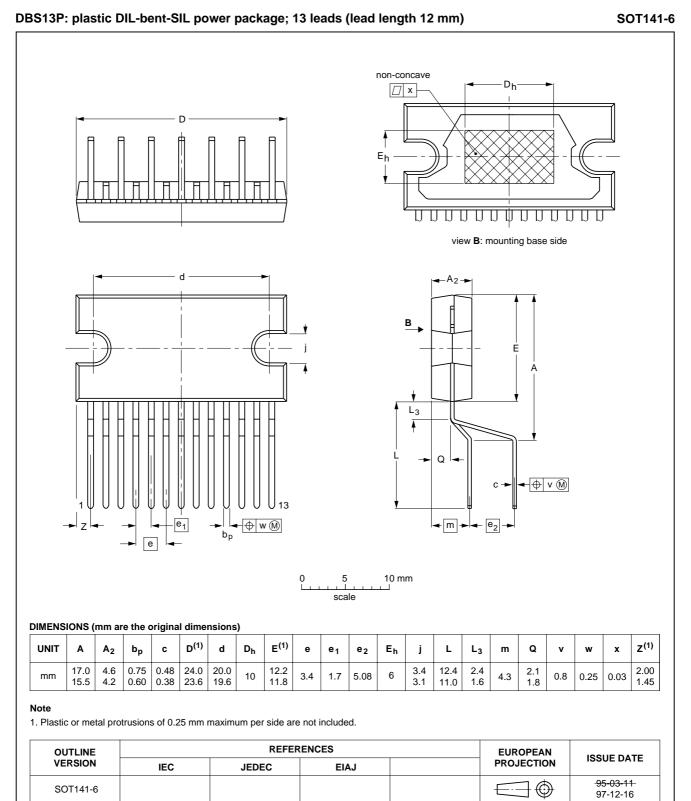
 T_{amb} = 25 °C; V_P = 14,4 V; f = 1 kHz; unless otherwise specified

PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Bridge Tied Load application (BTL)						
Output power						
with bootstrap	note 6;					
	$R_L = 4 \Omega$					
	V _P = 13,2 V					
	d _{tot} = 0,5%	Po	_	15,0	_	w
	d _{tot} = 10%	Po	_	20,0	_	W
	V _P = 14,4 V					
	d _{tot} = 0,5%	Po	15,5	18,0	_	W
	d _{tot} = 10%	Po	20,0	24,0	_	W
Open loop voltage gain		Go	-	75	-	dB
Closed loop voltage gain	note 2	G _c	39,5	40,0	40,5	dB
Frequency response	at –3 dB; note 3	f _r	-	20 to > 20 k	-	Hz
Input impedance	note 4	Z _i	1	-	-	MΩ
Noise output voltage						
(r.m.s. value)	f = 20 Hz to					
	20 kHz					
	$R_{S} = 0 \Omega$	V _{n (rms)}	-	0,2	-	mV
	R _S = 10 Ω	V _{n (rms)}	-	0,35	0,8	mV
	R _S = 10 kΩ;					
	according to					
	IEC 179 curve A	V _{n (rms)}	-	0,25	-	mV
Supply voltage ripple rejection	f = 100 Hz; note 5	SVRR	42	50	-	dB
D.C. output offset voltage between channels		ΔV ₅₋₉	_	2	50	mV
Power bandwidth	–1 dB;					
	d _{tot} = 0,5%	В	-	30 to > 40 k	-	Hz


PARAMETER	CONDITIONS	SYMBOL	MIN.	TYP.	MAX.	UNIT
Stereo application						
Output power; with bootstrap	note 6;					
	$R_L = 4 \Omega$					
	V _P = 13,2 V					
	$d_{tot} = 0.5\%$	Po	_	4,5	_	W
	$d_{tot} = 10\%$	Po	_	6,0	_	W
	V _P = 14,4 V					
	d _{tot} = 0,5%	Po	4,5	5,5	_	W
	d _{tot} = 10%	Po	6,0	7,0	-	W
	$R_L = 2 \Omega$					
	V _P = 13,2 V					
	d _{tot} = 0,5%	Po	_	7,5	_	W
	d _{tot} = 10%	Po	_	10,0	_	W
	V _P = 14,4 V					
	d _{tot} = 0,5%	Po	7,75	9,0	-	W
	$d_{tot} = 10\%$	Po	10,0	12,0	_	W
Output power; without bootstrap	notes 6, 8 and 9					
	$R_L = 4 \Omega$					
	V _P = 14,4 V					
	d _{tot} = 10%	Po	-	6	-	W
Frequency response	notes 3 and 6					
	–3 dB	f _r	-	40 to > 20 k	-	Hz
Supply voltage ripple rejection	note 5					
	f = 1 kHz	SVRR	-	50	-	dB
Channel separation	$R_{S} = 10 \text{ k}\Omega;$					
	f = 1 kHz	α	40	50	-	dB
Closed loop voltage gain	note 7	G _c	39,5	40,0	40,5	dB
Noise output voltage						
(r.m.s. value)	f = 20 Hz to 20 kHz;					
	R _S = 0 Ω	V _{n (rms)}	-	0,15	-	mV
	$R_S = 10 \ k\Omega$	V _{n (rms)}	-	0,25	-	mV
	R _S = 10 kΩ;					
	according to					
	IEC179 curve A	V _{n (rms)}	-	0,2	-	mV


Notes to the characteristics

- 1. If $V_{11} > V_{10}$ then I_{11} must be < 10 mA.
- 2. Closed loop voltage gain can be chosen between 32 and 56 dB (BTL), and is determined by external components.
- 3. Frequency response externally fixed.
- 4. The input impedance in the test circuit (Fig.3) is typ. 100 k Ω .
- 5. Supply voltage ripple rejection measured with a source impedance of 0 Ω (maximum ripple amplitude 2 V).
- 6. Output power is measured directly at the output pins of the IC.
- 7. Closed loop voltage gain can be chosen between 26 and 50 dB (stereo), and is determined by external components.
- 8. A resistor of 56 k Ω between pins 3 and 7 is required for symmetrical clipping.
- 9. Without bootstrap the 100 μ F capacitor between pins 5 and 6 and the 100 μ F capacitor between pins 8 and 9 can be omitted. Pins 6 and 8 connected to pin 10.


TDA1510AQ

APPLICATION INFORMATION

PACKAGE OUTLINE

Product specification

24 W BTL or 2 x 12 W stereo car radio power amplifier

SOLDERING

Introduction

There is no soldering method that is ideal for all IC packages. Wave soldering is often preferred when through-hole and surface mounted components are mixed on one printed-circuit board. However, wave soldering is not always suitable for surface mounted ICs, or for printed-circuits with high population densities. In these situations reflow soldering is often used.

This text gives a very brief insight to a complex technology. A more in-depth account of soldering ICs can be found in our *"IC Package Databook"* (order code 9398 652 90011).

Soldering by dipping or by wave

The maximum permissible temperature of the solder is 260 °C; solder at this temperature must not be in contact with the joint for more than 5 seconds. The total contact time of successive solder waves must not exceed 5 seconds.

The device may be mounted up to the seating plane, but the temperature of the plastic body must not exceed the specified maximum storage temperature ($T_{stg max}$). If the printed-circuit board has been pre-heated, forced cooling may be necessary immediately after soldering to keep the temperature within the permissible limit.

Repairing soldered joints

Apply a low voltage soldering iron (less than 24 V) to the lead(s) of the package, below the seating plane or not more than 2 mm above it. If the temperature of the soldering iron bit is less than $300 \,^{\circ}$ C it may remain in contact for up to 10 seconds. If the bit temperature is between 300 and 400 °C, contact may be up to 5 seconds.

DEFINITIONS

Data sheet status	
Objective specification	This data sheet contains target or goal specifications for product development.
Preliminary specification	This data sheet contains preliminary data; supplementary data may be published later.
Product specification	This data sheet contains final product specifications.
Limiting values	

Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation of the device at these or at any other conditions above those given in the Characteristics sections of the specification is not implied. Exposure to limiting values for extended periods may affect device reliability.

Application information

Where application information is given, it is advisory and does not form part of the specification.

LIFE SUPPORT APPLICATIONS

These products are not designed for use in life support appliances, devices, or systems where malfunction of these products can reasonably be expected to result in personal injury. Philips customers using or selling these products for use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such improper use or sale.