International Rectifier

MBRS320TR

SCHOTTKY RECTIFIER

3 Amp

 $I_{F(AV)} = 3.0 Amp$ $V_R = 20 V$

Major Ratings and Characteristics

Characteristics	Value	Units
I _{F(AV)} Rectangular waveform	3.0	А
V _{RRM}	20	V
I _{FSM} @t _p =5μs sine	820	Α
V _F @3.0 Apk, T _J = 125°C	0.36	٧
T _J range	- 65 to 150	°C

Description/ Features

The MBRS320TR surface-mount Schottky rectifier has been designed for applications requiring low forward drop and small foot prints on PC boards. Typical applications are in disk drives, switching power supplies, converters, free-wheeling diodes, battery charging, and reverse battery protection.

- Small foot print, surface mountable
- Very low forward voltage drop
- High frequency operation
- Guard ring for enhanced ruggedness and long term reliability

Voltage Ratings

Part number	MBRS320	
V _R Max. DC Reverse Voltage (V)	20	
V _{RWM} Max. Working Peak Reverse Voltage (V)	20	

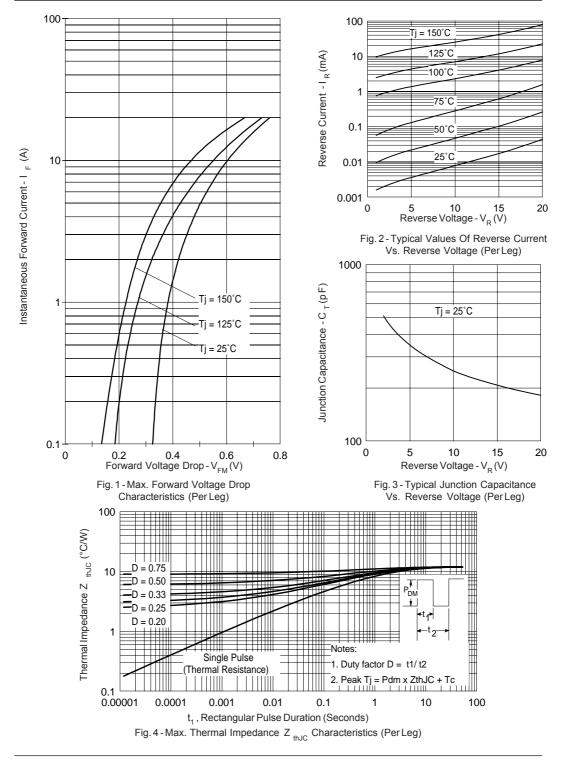
Absolute Maximum Ratings

	Parameters	Value	Units	Conditions	
I _{F(AV)}	Max. Average Forward Current	3.0	Α	50% duty cycle @ T _L = 136°C,	rectangular wave form
I _{FSM}	Max. Peak One Cycle Non-Repetitive	820		5μs Sine or 3μs Rect. pulse	Following any rated load condition and
	Surge Current	80		10ms Sine or 6ms Rect. pulse	with rated V _{RRM} applied
E _{AS}	Non Repetitive Avalanche Energy	4	mJ	$T_J = 25 ^{\circ}\text{C}, I_{AS} = 1.0\text{A}, L = 8\text{mH}$	
I _{AR}	Repetitive Avalanche Current	1.0	А	Current decaying linearly to zero in 1 µsec Frequency limited by T _J max. Va = 1.5 x Vr typical	

Electrical Specifications

	Parameters	Тур.	Max.	Units	Conditio	ns	
V _{FM}	Max. Forward Voltage Drop (1)	0.41	0.45	V	@ 3A	T = 25 °C	
		0.45	0.53	V	@ 6A	T _J = 25 °C	
		0.29	0.36	V	@ 3A	T = 125 °C	
		0.35	0.46	V	@ 6A	T _J = 125 °C	
I _{RM}	Max. Reverse Leakage Current (1)	0.04	0.5	mA	T _J = 25 °C		
		8.0	20	mA	T _J = 100 °C	V _R = rated V _R	
		23	35	mA	T _J = 125 °C		
C _T	Typical Junction Capacitance	360	-	pF	$V_R = 5V_{DC}$ (te	= 5V _{DC} (test signal range 100kHz to	
					1Mhz), @ 25°	C	
L _S	Typical Series Inductance	3.0	-	nH	Measured lead to lead 5mm from package body		
dv/dt	Max. Voltage Rate of Change	-	10000	V/ µs	(Rated V _R)		

⁽¹⁾ Pulse Width < 300µs, Duty Cycle < 2%


Thermal-Mechanical Specifications

	Parameters	Value	Units	Conditions
T _J	Max. Junction Temperature Range (*)	-65 to 150	°C	
T _{stg}	Max. Storage Temperature Range	-65 to 150	°C	
R _{thJL}	Max. Thermal Resistance Junction to Lead (**)	12	°C/W	DC operation
R _{thJA}	Max. Thermal Resistance Junction	46	°C/W	
	to Ambient			
Wt	Approximate Weight	0.24(0.008)	gr (oz)	
	Case Style	SMC		Similar DO-214AB
	Device Marking	IR32		

 $[\]frac{\text{(*)}}{\text{dTj}} < \frac{1}{\text{Rth(j-a)}} \quad \text{thermal runaway condition for a diode on its own heatsink}$

^(**) Mounted 1 inch square PCB

Bulletin PD-20645 rev. E 07/04

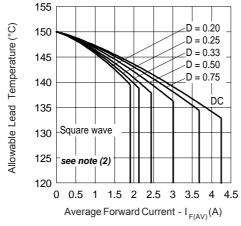


Fig. 5 - Maximum Average Forward Current Vs. Allowable Lead Temperature

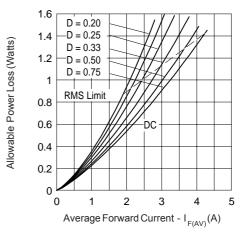
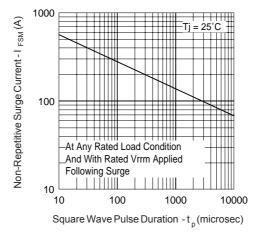
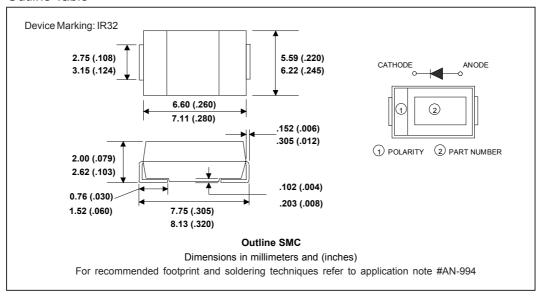
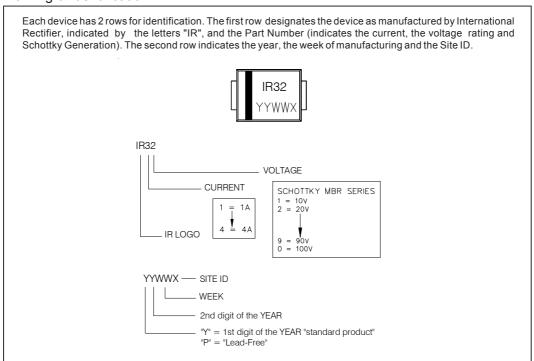
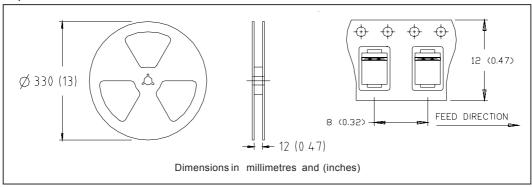


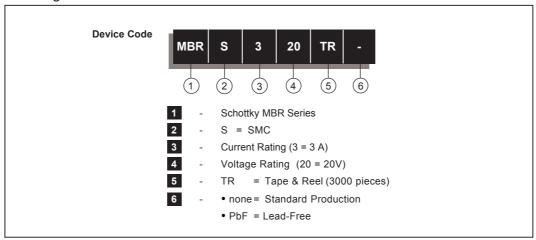
Fig. 6 - Maximum Average Forward Dissipation Vs. Average Forward Current


Fig. 7 - Maximum Peak Surge Forward Current Vs. Pulse Duration

(2) Formula used: $T_C = T_J - (Pd + Pd_{REV}) \times R_{thJC}$; $Pd = Forward Power Loss = I_{F(AV)} \times V_{FM} @ (I_{F(AV)} / D)$ (see Fig. 6); $Pd_{REV} = Inverse Power Loss = V_{R1} \times I_{R} (1 - D)$


Outline Table


Marking & Identification

Tape & Reel Information

Ordering Information Table

Data and specifications subject to change without notice.

This product has been designed for Industrial Level.

Qualification Standards can be found on IR's Web site.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7309
Visit us at www.irf.com for sales contact information. 07/04