
 2003 Microchip Technology Inc. DS40051C

PICkit™ 1 FLASH

Starter Kit

User’s Guide

Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the

intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our

knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data

Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not

mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our

products. Attempts to break microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts

allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device

applications and the like is intended through suggestion only

and may be superseded by updates. It is your responsibility to

ensure that your application meets with your specifications.

No representation or warranty is given and no liability is

assumed by Microchip Technology Incorporated with respect

to the accuracy or use of such information, or infringement of

patents or other intellectual property rights arising from such

use or otherwise. Use of Microchip’s products as critical com-

ponents in life support systems is not authorized except with

express written approval by Microchip. No licenses are con-

veyed, implicitly or otherwise, under any intellectual property

rights.
DS40051C - page ii
Trademarks

The Microchip name and logo, the Microchip logo, KEELOQ,

MPLAB, PIC, PICmicro, PICSTART, PRO MATE and

PowerSmart are registered trademarks of Microchip

Technology Incorporated in the U.S.A. and other countries.

FilterLab, microID, MXDEV, MXLAB, PICMASTER, SEEVAL

and The Embedded Control Solutions Company are

registered trademarks of Microchip Technology Incorporated

in the U.S.A.

Accuron, Application Maestro, dsPIC, dsPICDEM,

dsPICDEM.net, ECONOMONITOR, FanSense, FlexROM,

fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC,

microPort, Migratable Memory, MPASM, MPLIB, MPLINK,

MPSIM, PICC, PICkit, PICDEM, PICDEM.net, PowerCal,

PowerInfo, PowerMate, PowerTool, rfLAB, rfPIC, Select

Mode, SmartSensor, SmartShunt, SmartTel and Total

Endurance are trademarks of Microchip Technology

Incorporated in the U.S.A. and other countries.

Serialized Quick Turn Programming (SQTP) is a service mark

of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their

respective companies.

© 2003, Microchip Technology Incorporated, Printed in the

U.S.A., All Rights Reserved.

 Printed on recycled paper.
 2003 Microchip Technology Inc.

Microchip received QS-9000 quality system
certification for its worldwide headquarters,
design and wafer fabrication facilities in
Chandler and Tempe, Arizona in July 1999
and Mountain View, California in March 2002.
The Company’s quality system processes and
procedures are QS-9000 compliant for its
PICmicro® 8-bit MCUs, KEELOQ® code hopping
devices, Serial EEPROMs, microperipherals,
non-volatile memory and analog products. In
addition, Microchip’s quality system for the
design and manufacture of development
systems is ISO 9001 certified.

Table of Contents

PICkit™ 1

FLASH STARTER KIT

USER’S GUIDE
Preface...1

Chapter 1. Using the PICkit™ 1 FLASH Starter Kit
1.1 Introduction ... 5
1.2 Highlights .. 5
1.3 PICkit 1 FLASH Starter Kit Contents .. 5
1.4 Running the PICkit 1 FLASH Starter Kit Default Demonstration 5
1.5 HEX Files .. 5
1.6 Using the PICkit 1 FLASH Starter Kit Programming Interface 6

Chapter 2. Tutorial Projects
2.1 Introduction ... 13
2.2 Highlights .. 13
2.3 Tutorial 1 – Switch Debouncing .. 13
2.4 Tutorial 2 – Introduction to State Machines 20
2.5 Tutorial 3 – Interrupts .. 27
2.6 Tutorial 4 – Analog-to-Digital Converters and Comparators 31
2.7 Tutorial 5 – Program Memory Look-up Routines 34
2.8 Tutorial 6 – Data EE Look-up Routines .. 37
2.9 Tutorial 7 – Frequency Counting with Timer1 Gate 40

Chapter 3. Working with the Tutorial Software
3.1 Introduction ... 47
3.2 Highlights .. 47
3.3 Using the Tutorial Source Code .. 47
3.4 Loading a Project in MPLAB ... 48

Chapter 4. PICkit™ 1 FLASH Starter Kit Hardware
4.1 Introduction ... 51
4.2 Highlights .. 51
4.3 In-Circuit Serial Programming™ (ICSP) Techniques 51
4.4 Programming Hardware .. 51
4.5 USB Communications Protocol .. 53

Chapter 5. Troubleshooting
5.1 Introduction ... 55
5.2 FAQS .. 55

Appendix A. Hardware Schematics
A.1 Introduction ... 59
A.2 Highlights .. 59

Worldwide Sales and Service..68
=OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK apQMMRN`Jé~ÖÉ=ááá

PICkit™ 1 FLASH Starter Kit User’s Guide
NOTES:
apQMMRN`Jé~ÖÉ=áî =OMMP=jáÅêçÅÜáé=qÉÅÜåçäçÖó=fåÅK

PICkit™ 1

FLASH STARTER KIT

USER’S GUIDE
Preface
INTRODUCTION

This chapter contains general information about this user’s guide and customer support

that will be useful prior to using the PICkit™ 1 FLASH Starter Kit.

HIGHLIGHTS

Items discussed in this chapter are:

• About this Guide

• Warranty Registration

• Recommended Reading

• Troubleshooting

• Microchip On-Line Support

• Customer Change Notification Service

• Customer Support

ABOUT THIS GUIDE

This document describes how to use the PICkit 1 FLASH Starter Kit. The manual layout

is as follows:

• Chapter 1: Using the PICkit 1 FLASH Starter Kit – An overview of the PICkit 1

FLASH Starter Kit and instructions on how to use it.

• Chapter 2: Tutorial Projects – Tutorials that describe the different concepts in

controlling the PIC microcontroller.

• Chapter 3: Loading Projects in MPLAB IDE – A quick overview on how to load

a project in MPLAB IDE.

• Chapter 4: PICkit 1 FLASH Starter Kit Hardware – Instructions on Programming

the PICkit 1 FLASH Starter Kit Hardware.

• Chapter 5: Troubleshooting – Provides resolutions for solving common

problems with the PICkit 1 FLASH Starter Kit.

• Appendix A: Hardware Schematics – Illustrates the PICkit 1 hardware

schematic diagrams.

• Glossary – A glossary of terms used in this guide.

• Index – Cross-reference listing of terms, features and sections of this document.

• Worldwide Sales and Service – A listing of Microchip sales and service locations

and telephone numbers worldwide.
 2003 Microchip Technology Inc. apQMMRN`-page 1

PICkit™ 1 FLASH Starter Kit User’s Guide
Conventions Used in This Guide

This manual uses the following documentation conventions:

Documentation Updates

All documentation becomes dated, and this user’s guide is no exception. Since the

PICkit 1 FLASH Starter Kit User’s Guide and other Microchip tools are constantly

evolving to meet customer needs, some PICkit 1 FLASH Starter Kit actual dialogs

and/or tool descriptions may differ from those in this document. Please refer to our web

site to obtain the latest documentation available.

Documentation Numbering Conventions

Documents are numbered with a “DS” number. The number is located on the bottom of

each page, in front of the page number. The numbering convention for the DS Number

is: DSXXXXXA,

where:

Table: Documentation Conventions

Description Represents Examples

Code (Courier font):

Plain characters Sample code

Filenames and paths

#define START
c:\autoexec.bat

Angle brackets: < > Variables <label>, <exp>

Square brackets [] Optional arguments MPASMWIN [main.asm]

Curly brackets and pipe

character: { | }

Choice of mutually exclusive

arguments; An OR selection

errorlevel {0|1}

Lower case characters

in quotes

Type of data "filename"

Ellipses... Used to imply (but not show)

additional text that is not relevant to

the example

list

["list_option...,
"list_option"]

0xnnn A hexadecimal number where n is a

hexadecimal digit

0xFFFF, 0x007A

Italic characters A variable argument; it can be either a

type of data (in lower case characters)

or a specific example (in upper case

characters).

char isascii (char,
ch);

Interface (Arial font):

Underlined, italic text

with right arrow

A menu selection from the menu bar File > Save

Bold characters A window or dialog button to click OK, Cancel

Characters in angle

brackets < >

A key on the keyboard <Tab>, <Ctrl-C>

Documents (Arial font):

Italic characters Referenced books MPLAB IDE User’s Guide

XXXXX = The document number.

A = The revision level of the document.
apQMMRN`-page 2  2003 Microchip Technology Inc.

Preface
WARRANTY REGISTRATION

Please complete the enclosed Warranty Registration Card and mail it promptly.

Sending in your Warranty Registration Card entitles you to receive new product

updates. Interim software releases are available at the Microchip web site.

RECOMMENDED READING

This user’s guide describes how to use the PICkit 1 FLASH Starter Kit. Other useful

documents are listed below:

PIC12F629/675 Data Sheet (DS41190)

Consult this document for information regarding the PIC12F629/675 8-pin FLASH

based 8-bit CMOS Microcontroller device specifications.

PIC16F630/676 Data Sheet (DS40039)

Consult this document for information regarding the PIC16F630/676 14-pin FLASH

based 8-bit CMOS Microcontroller device specifications.

MPLAB IDE User’s Guide (DS51025)

Consult this document for more information pertaining to the installation and features

of the MPLAB Integrated Development Environment (IDE) Software.

To obtain these documents, contact the nearest Microchip sales location (see back

page). These documents are also available on the Microchip web site at:

www.microchip.com.

Microsoft® Windows® Manuals

This manual assumes that users are familiar with the Microsoft Windows operating

system. Many excellent references exist for this software program, and should be

consulted for general operation of Windows.

TROUBLESHOOTING

See Chapter 5 for information on common problems.

MICROCHIP ON-LINE SUPPORT

Microchip provides on-line support on the Microchip web site at:

http://www.microchip.com

A file transfer site is also available by using an FTP service connecting to:

ftp://ftp.microchip.com

The web site and file transfer site provide a variety of services. Users may

download files for the latest development tools, data sheets, application notes,

user' guides, articles and sample programs. A variety of Microchip specific business

information is also available, including listings of Microchip sales offices and

distributors. Other information available on the web site includes:

• Latest Microchip press releases

• Technical support section with FAQs

• Design tips

• Device errata

• Job postings

• Microchip consultant program member listing

• Links to other useful web sites related to Microchip products

• Conferences for products, development systems, technical information and more

• Listing of seminars and events
 2003 Microchip Technology Inc. apQMMRN`-page 3

PICkit™ 1 FLASH Starter Kit User’s Guide
CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip started the customer notification service to help customers stay current on

Microchip products with the least amount of effort. Once you subscribe, you will receive

email notification whenever we change, update, revise or have errata related to your

specified product family or development tool of interest.

Go to the Microchip web site (www.microchip.com) and click on Customer Change

Notification. Follow the instructions to register.

The Development Systems product group categories are:

• Compilers

• Emulators

• In-Circuit Debuggers

• MPLAB IDE

• Programmers

Here is a description of these categories:

Compilers – The latest information on Microchip C compilers and other language

tools. These include the MPLAB C17, MPLAB C18 and MPLAB C30 C Compilers;

MPASM and MPLAB ASM30 assemblers; MPLINK and MPLAB LINK30 linkers; and

MPLIB and MPLAB LIB30 librarians.

Emulators – The latest information on Microchip in-circuit emulators. This includes the

MPLAB ICE 2000 and MPLAB ICE 4000.

In-Circuit Debuggers – The latest information on Microchip in-circuit debuggers.

These include the MPLAB ICD and MPLAB ICD 2.

MPLAB – The latest information on Microchip MPLAB IDE, the Windows Integrated

Development Environment for development systems tools. This list is focused on the

MPLAB IDE, MPLAB SIM simulator, MPLAB IDE Project Manager and general editing

and debugging features.

Programmers – The latest information on Microchip device programmers. These

include the PRO MATE® II device programmer and PICSTART® Plus development

programmer.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

• Distributors

• Local Sales Office

• Field Application Engineers (FAEs)

• Corporate Applications Engineers (CAEs)

• Systems Information and Upgrade Hot Line

Customers should call their distributor or field application engineer (FAE) for support.

Local sales offices are also available to help customers. See the last page of this

document for a listing of sales offices and locations.

Corporate applications engineers (CAEs) may be contacted at (480) 792-7627.

Systems Information and Upgrade Line

The Systems Information and Upgrade Information Line provides system users with a

listing of the latest versions of all of Microchip’s development systems software

products. Plus, this line provides information on how customers can receive the most

current upgrade kits. The Information Line Numbers are:

1-800-755-2345 for U.S. and most of Canada.

1-480-792-7302 for the rest of the world.
apQMMRN`-page 4  2003 Microchip Technology Inc.

PICkit™ 1

FLASH STARTER KIT

USER’S GUIDE
Chapter 1. Using the PICkit™ 1 FLASH Starter Kit
1.1 INTRODUCTION

The PICkit 1 FLASH Starter Kit serves as a development and evaluation tool for the

8/14-pin FLASH PIC® microcontroller devices.

1.2 HIGHLIGHTS

This chapter discusses:

• The PICkit 1 FLASH Starter Kit Contents

• Running the PICkit 1 FLASH Starter Kit Default Demonstration

• Pre-loaded HEX files

• Using the PICkit 1 FLASH Starter Kit Programming Software

1.3 PICkit 1 FLASH STARTER KIT CONTENTS

The PICkit 1 FLASH Starter Kit contains the following items:

1. The PICkit 1 FLASH Starter Kit Printed Circuit Board (PCB)

2. USB cable

3. PICkit 1 FLASH Starter Kit CD-ROM

4. MPLAB® IDE CD-ROM

5. Microchip Tips n’ Tricks booklet

6. PICkit 1 FLASH Starter Kit USB Installation for Windows® 98 Second Edition

Use the Quick Start Guide to install the PICkit 1 FLASH Starter Kit and MPLAB IDE

software.

1.4 RUNNING THE PICkit 1 FLASH STARTER KIT DEFAULT DEMONSTRATION

Connect the PICkit 1 FLASH Starter Kit board to the PC’s USB port using the USB

cable. The pre-loaded demonstration program is displayed on the board.

The demo program will blink the eight red lights in succession. Press the button

(labeled SW1) on the board and the sequence of the lights will change. If the variable

resistor (labeled RP1) is turned, the light sequence will blink at a different rate.

1.5 HEX FILES

The PICkit 1 FLASH Starter Kit CD-ROM includes tutorial HEX files and source code

to use in conjunction with the program tutorials in Chapter 2. The HEX files are a binary

form of instructions executed on the PIC microcontroller. They are generated when the

source files are built in MPLAB IDE.
 2003 Microchip Technology Inc. apQMMRN`-page 5

PICkit™ 1 FLASH Starter Kit User’s Guide
1.6 USING THE PICkit 1 FLASH STARTER KIT PROGRAMMING INTERFACE

Execute the software by selecting Start > Programs > PICkit(tm) 1 FLASH Starter Kit.

The programming interface appears, as shown in Figure 1-1.

FIGURE 1-1: PICkit 1 FLASH STARTER KIT PROGRAMMING INTERFACE

Notice that the Device Power check box is selected. This is a default function indicating

the device power is turned on.

Note: To turn the device power off, deselect the check box.
apQMMRN`-page 6  2003 Microchip Technology Inc.

Using the PICkit™ 1 FLASH Starter Kit
1.6.1 Download Project from MPLAB

To download a compiled program to the PICkit 1 FLASH Starter Kit, select

File > Import HEX, as shown in Figure 1-2. Browse for the HEX file and click Open.

FIGURE 1-2: IMPORT HEX FILE

The code is displayed in the Program Memory and EEDATA Memory windows. (For

more information on Program and EEDATA memory, see Tutorial 5, Chapter 2.7 and

Tutorial 6, Chapter 2.8.)

After the HEX file is imported, write the program to the device by clicking the

Write Device button. The existing program will be erased and replaced with the new

one. The status of the program write is displayed in the status bar located at the bottom

of the interface window.

If the write is successful, the status bar turns green and displays “write successful”, as

shown in Figure 1-3.

FIGURE 1-3: WRITE SUCCESSFUL STATUS BAR

If the write fails, the status bar turns red and displays “checksum verify failed”, as

shown in Figure 1-4. This error indicates the data was corrupted during the

programming sequence. If this error is displayed, write the program to the device again.

If this error continues, see Chapter 5 for troubleshooting.

FIGURE 1-4: WRITE ERROR STATUS BAR
 2003 Microchip Technology Inc. apQMMRN`-page 7

PICkit™ 1 FLASH Starter Kit User’s Guide
1.6.2 Automatic File Reload

Prior to each write, the time stamp is compared to the version on the disk. If the version

on the disk is newer, it is reloaded. This occurs only when a HEX file has been read

from the disk.

In the normal mode of operation, the HEX file is updated with every build in MPLAB

IDE. This ensures that the latest version built by MPLAB IDE will be written to the

device.

1.6.3 Verify Program Code

This function verifies the program written to the device against a HEX file. It compares

all areas of memory including Program, EEDATA and Configuration.

To verify the code, import the HEX file and click Verify. If the code is the same, the

status bar turns green and displays “Verified successfully”, as shown in Figure 1-5.

FIGURE 1-5: CODE VERIFY STATUS BAR

If a discrepancy is found, the status bar turns red and displays the error “Verify Failed...

Error in program memory.”, as shown in Figure 1-6.

FIGURE 1-6: CODE ERROR STATUS BAR

1.6.4 Read Device

To view the code written to the device, click Read Device. The code is displayed in the

Program and EEDATA Memory windows for your review.
apQMMRN`-page 8  2003 Microchip Technology Inc.

Using the PICkit™ 1 FLASH Starter Kit
1.6.5 Code Protect

This function enables the code protection features of the device. To protect the code,

complete the following steps:

1. Import the HEX file.

2. Select Tools > Code Protect Device, as shown in Figure 1-7.

3. Click Write Device.

FIGURE 1-7: CODE PROTECT

1.6.6 Erase

The Erase function erases code from the device. However, this function is not normally

needed since the Write Device function performs an erase prior to writing code to the

device.

To erase the device using the Erase function, click the Erase button, or select

Programmer > Erase from the toolbar menu, as shown in Figure 1-8.

FIGURE 1-8: DEVICE ERASE

Note: If the device is read after it has been code protected, the Program and

EEDATA Memory windows will display all zeros.
 2003 Microchip Technology Inc. apQMMRN`-page 9

PICkit™ 1 FLASH Starter Kit User’s Guide
1.6.6.1 FULL ERASE

Unlike the Erase function, the Full Erase allows the user to erase not only the device,

but the OSCCAL and Bandgap Calibration as well. Performing a full erase is not

recommended or needed in the normal course of events. Only use this function if the

OSCCAL or Bandgap data has been corrupted.

To perform a full erase, select Programmer > Full Erase (OSCCAL & BG erased) from

the toolbar menu, as shown in Figure 1-8.

Once the full erase is complete, regenerate the OSCCAL and reset the Bandgap

Calibration Value bits.

To regenerate the OSCCAL, select Programmer > Regenerate OSCCAL from the

toolbar menu, as shown in Figure 1-9.

FIGURE 1-9: REGENERATE OSCCAL

To set the Bandgap Calibration Value, select Programmer > Set Bandgap Calibration

Value from the toolbar menu, as shown in Figure 1-10.

FIGURE 1-10: REGENERATE BANDGAP CALIBRATION VALUE

Note: The Regenerate OSCCAL function runs a program on the device to

recalculate the oscillator calibration value. See Tutorial 7, Chapter 2.9,

for more details.
apQMMRN`-page 10  2003 Microchip Technology Inc.

Using the PICkit™ 1 FLASH Starter Kit
The Write Bandgap Calibration Value window will appear as shown in Figure 1-11.

Select a bit value from the list and click OK.

FIGURE 1-11: SELECT BANDGAP BIT VALUE

The Bandgap bit value will appear in the Device Configuration box, as shown in

Figure 1-12.

FIGURE 1-12: DEVICE CONFIGURATION

For more information on the OSCCAL and Bandgap Calibration, see the

PIC12F629/675 (DS41190) and PIC16F630/676 (DS40039) Data Sheets located on

the CD or the Microchip web site (www.microchip.com).

1.6.7 2.5 kHz OSC

The 2.5 kHz OSC is a square wave signal that, when selected, is input to pin 3 of the

Evaluation Socket. See Figure A-1 in the Appendix.

This function is used by Tutorial 7, Section 2.9, and for OSCCAL regeneration.

FIGURE 1-13: BOARD CONTROLS
 2003 Microchip Technology Inc. apQMMRN`-page 11

PICkit™ 1 FLASH Starter Kit User’s Guide
NOTES:
apQMMRN`-page 12  2003 Microchip Technology Inc.

PICkit™ 1

FLASH STARTER KIT

USER’S GUIDE
Chapter 2. Tutorial Projects
2.1 INTRODUCTION

The tutorials in this chapter describe the different concepts in controlling the PIC®

microcontroller. Each tutorial includes instructions for running a program demo that

illustrates each of the concepts listed below in Section 2.2. It is necessary to follow the

tutorials in the listed sequential order, for each tutorial builds upon the previous one.

(The HEX files and source code for the tutorials can be found on the CD.)

2.2 HIGHLIGHTS

The following tutorials are discussed in this chapter:

Tutorial 1 – Switch Debouncing

Tutorial 2 – State Machines

Tutorial 3 – Interrupts

Tutorial 4 – Analog-to-Digital Converters and Comparators

Tutorial 5 – Data Tables in Program Memory

Tutorial 6 – Using EEPROM Memory

Tutorial 7 – Frequency Counting with Timer1 Gate

2.3 TUTORIAL 1 – SWITCH DEBOUNCING

Mechanical switches play an important and extensive role in practically every

computer, microprocessor and microcontroller application. Mechanical switches are

inexpensive, simple and reliable. In addition, switches can be very noisy. The apparent

noise is caused by the closing and opening action that seldom results in a clean

electrical transition. The connection makes and breaks several, perhaps even

hundreds, of times before the final switch state settles.

The problem is known as switch bounce. Some of the intermittent activity is due to the

switch contacts actually bouncing off each other. Imagine slapping two billiard balls

together. The hard non-resilient material doesn't absorb the kinetic energy of motion.

Instead, the energy dissipates over time and friction in the bouncing action against the

forces push the billiard balls together. Hard metal switch contacts react in much the

same way. Also, switch contacts are not perfectly smooth. As the contacts move

against each other, the imperfections and impurities on the surfaces cause the

electrical connection to be interrupted. The result is switch bounce.

The consequences of uncorrected switch bounce can range from being just annoying

to catastrophic. For example, imagine advancing the TV channel, but instead of getting

the next channel, the selection skips one or two. This is a situation a designer should

strive to avoid.

Switch bounce has been a problem even before the earliest computers. The classic

solution involved filtering, such as through a resistor-capacitor circuit, or through

re-settable shift registers (see Figure 2-1 and Figure 2-2). These methods are still

effective but they involve additional cost in material, installation and board real estate.

Why suffer the additional expense when software is free and program memory is

abundant.
 2003 Microchip Technology Inc. apQMMRN`-page 13

PICkit™ 1 FLASH Starter Kit User’s Guide
FIGURE 2-1: FILTERING DEBOUNCE SOLUTION

FIGURE 2-2: SHIFT REGISTER DEBOUNCE SOLUTION

+V

R1

R2

Filtered
Switch
Output

SW

C1

+V

R1

Filtered
Switch
Output

SW

Debounce

Clock

D

CLK
CLR

Qn
apQMMRN`-page 14  2003 Microchip Technology Inc.

Tutorial Projects
2.3.1 Design

Switch bounce is intermittent contact and release of the switch contacts. Two

parameters characterize switch bounce: bounce period and bounce duration.

Bounce period is the random length of time the contacts remain open, or closed, while

the bounce is occurring. Bounce periods can vary anywhere from a few nanoseconds

to a few milliseconds.

Bounce duration is the time from the leading edge of the first bounce period to the

trailing edge of the last bounce period. The difficulty is bounce duration is

indeterminate.

Bounce abatement design starts by making assumptions based on empirical data.

The first assumption is bounce period will be absolutely less than 10 milliseconds.

Experience dictates this is a good assumption, however, bench and field-testing are still

essential to ensure the switch selected for the application does not have a longer

bounce period. The second assumption is the total bounce duration is indeterminate.

A good design should work regardless of how long the switch bounces provided that it

eventually does stop bouncing.

2.3.1.1 BRUTE FORCE DEBOUNCE

Consider a simple push button application. In this case, some event should occur when

a button is pushed. Ideally the invoked event will occur immediately, and only once for

each button push. The system should be also ready to respond to a repeat button push

as soon as possible after the button is released. This presents an apparent dilemma.

How is the difference between switch bounce and repeated button pushes determined?

Recall the assumption that the bounce period is less than 10 milliseconds. If the switch

input level is stable for longer than 10 milliseconds, then bouncing has stopped and the

input level represents the pushed or released switch state. The Brute Force method

only cares about a button-push event because this is what invokes the action. It

recognizes the switch release state as the stable state and everything else is

considered unstable. When the switch becomes unstable, the action is invoked

permitting nothing to happen until the switch returns to the released stable state.

The flowchart in Figure 2-3 outlines the software actions necessary to implement the

Brute Force debounce method. Notice that the debounce loop is looking for a stable

released state for 10 milliseconds before returning to the top of the main loop. Any

instability, including a stable button pushed state, resets the debounce 10 millisecond

timer.
 2003 Microchip Technology Inc. apQMMRN`-page 15

PICkit™ 1 FLASH Starter Kit User’s Guide
FIGURE 2-3: BRUTE FORCE SWITCH DEBOUNCE

Switch

Closed?

Initialize

Switch

Closed?

Debounce

Toggle

LED

Set Timer

Count For

10 ms

Decrement

Timer

Counter

Timeout?

Yes

No

NoYes

Yes

No
apQMMRN`-page 16  2003 Microchip Technology Inc.

Tutorial Projects
2.3.1.2 SWITCH FILTER DEBOUNCE

There are situations when both stable switch states must be recognized. It is

undesirable for immediate action to occur if the switch intermittently leaves either the

pushed or released state. A door open or closed sensor switch is a good example of

this. If the door is closed and gets bumped, then the door-open action, such as an

alarm, should not occur because the door is still closed.

The Switch Filter debounce method delays the response to a changed switch state.

Delay time can even be extended to several times the bounce period. Switch Filter

debounce incorporates a saturating up/down counter. (A saturating counter is one that

stops counting when the maximum, or minimum, number is reached.) The counter

counts up when the switch is closed, and counts down when the switch is open. The

appropriate action is invoked when the counter reaches either the full up or down count.

Hysteresis is built into the count length. Switch release or contact action is invoked only

upon the first occurrence of counter saturation. The counter must saturate at the

opposite state before the previous state can be re-invoked. During switch bounce, the

counter intermittently counts up and down. The counter will progress up when the

average closed to open period favors contact, and down when the average period

favors release. The faster the switch settles in the closed or open state, the faster the

counter will reach the corresponding saturated condition.

Switch Filtering assumes, when the switch is mostly closed or open, the bouncing will

favor the closed or open levels respectively. It is possible for the counter to saturate

before the switch has stopped bouncing. It is unlikely that the counter will change

saturation state unless the count is too short, or the switch is headed in that direction.

Figure 2-4 outlines the software actions necessary to implement the Switch Filtering

debounce method.
 2003 Microchip Technology Inc. apQMMRN`-page 17

PICkit™ 1 FLASH Starter Kit User’s Guide
FIGURE 2-4: TIME AVERAGED SWITCH FILTER DEBOUNCE

Switch

Filter

Switch

State?

FilterCount<

MaxCount?

Increment

FilterCount

Decrement

FilterCount

Turn LED1 On

Turn LED0 Off

FilterCount>

MinCount?

FilterCount>=

MaxCount?

FilterCount<=

MinCount?

Turn LED0 On

Turn LED1 Off

Timer0

Overflow?

Closed Open

Yes

NoNo

No No

Yes Yes

Yes

No

Yes
apQMMRN`-page 18  2003 Microchip Technology Inc.

Tutorial Projects
2.3.2 Applications

Reliable, robust software requires debouncing of all mechanical switches. This

includes push buttons of all types, limit switches of all types and even X*Y matrix

keyboards. Matrix keyboards offer a new challenge to debouncing. Keyboards are not

a single line input level but a pattern on several inputs. One pattern represents all keys

released, or the stable state. All other patterns represent keys pressed, or the unstable

states. Reliable keyboards can be designed by debouncing to only the stable state, but

allowing new actions to occur immediately upon a change from one unstable state to

another. The solution is left to the interested student.

2.3.3 Running the Demos

There are three switch debounce demos: Debounce, SwchFltr and DbncFltr. The file

name suffix denotes the source code language for each demo. The suffix “.asm”

denotes assembly language. The suffix “.c” denotes C language. Use the Intel 32-bit

HEX file output as the input file to the PICkit 1 FLASH Starter Kit demo board. Intel HEX

files are denoted by the “.hex” file suffix.

2.3.3.1 DEBOUNCE DEMO

Debounce is the Brute Force debounce demo. Each button push in this demo causes

LED D0 to toggle on or off.

Perform the following steps to run the Debounce demo:

1. Connect the USB cable to the USB PC port and to the PICkit 1 FLASH Starter

Kit demo board.

2. Execute the PICkit 1 FLASH Starter Kit programming software.

3. From the toolbar menu, select File -> Import Hex. Browse to locate the HEX file

named “Debounce.hex”. Select this file and click the Open button.

4. Click the Write Device button. The status of the program write is displayed in the

status bar located at the bottom of the interface window.

5. To run the demo, push the SW1 switch on the board and observe that LED D0

toggles as expected.

2.3.3.2 SWCHFLTR DEMO

SwchFltr is an abbreviation for the Switch Filter debounce demo. In this demo, LED D1

lights up when SW1 is pushed. When SW1 is released, LED D0 lights up.

Repeat steps 1 through 5 above and load the SwchFltr.hex file to run this demo.

2.3.3.3 DBNCFLTR DEMO

DbncFltr is an abbreviation for Debounce Filter. This demo is a combination of the

Debounce and Switch Filter demos. DbncFltr also demonstrates timed expansion of

switch functions. This demo initializes in the Switch Filter mode. Holding the button

down for more than 1 second, while in the Switch Filter mode, causes the demo to

change to the Brute Force method. LED D0 will light as an indication of the change.

Holding the button down for more than 1 second, while in the Brute Force mode,

causes the demo to change to the Switch Filter method. LED D1 will light as an

indication of the change.

Repeat steps 1 through 5 above and load the DbncFltr.hex file to run this demo.

Note: The Program Memory window displays the program code.
 2003 Microchip Technology Inc. apQMMRN`-page 19

PICkit™ 1 FLASH Starter Kit User’s Guide
2.4 TUTORIAL 2 – INTRODUCTION TO STATE MACHINES

State Machines are an integral part of software programming. State machines make

code more efficient, easier to debug and help organize the program flow. State

machines are not limited to just firmware, they can be used to streamline any system.

However, this document limits the scope of state machines to microcontroller

firmware.

2.4.1 Design

2.4.1.1 WHAT IS A STATE MACHINE

A Finite State Machine (FSM) is based on the idea of there being finite number of

states for a given system. For instance, when an application turns an LED on and off,

two states exist; one state is when the LED is on and the other is when it is off. The

example firmware that this document refers to turns on eight LEDs sequentially. Only

one LED is on at a time, therefore eight states exist. Each state consists of one LED

being turned on while all the rest are off.

State machines require a State Variable (SV). The SV is essentially a pointer that

keeps track of the state that the microcontroller is in, and directs the program flow to

the corresponding software module. The SV can be modified in the software modules

(or states) themselves or by an outside function. The example firmware uses an

outside function which detects a button press to advance through the states.

2.4.1.2 BENEFITS OF STATE MACHINES

The introduction briefly mentioned some advantages of state machines. These

advantages are worth studying in greater detail because they are what make

programming with state machines so rewarding and beneficial to firmware developers.

The first advantage is using state machines inherently promotes good firmware design

techniques. When beginning to implement an application, think about what states are

necessary to make the application work. List all the pieces, or states, of an application

and then explore how they tie to one another. This will help prevent developing bugs

in the code. This line of thinking also leads to the development of a very useful

engineering tool – the flow chart. The following paragraph covers state machine

development in greater detail.

State machines have one characteristic that cause them to be very beneficial. They

always return to one spot (or jump station) in the code at which the program flow is

channeled, by the state variable, to the corresponding software module. This provides

several advantages. First, this characteristic makes calling repetitive tasks on a

regular basis quite simple. Clearing the watchdog timer, checking for I/O button

presses or communicating with a host that requires periodic communication are

examples of repetitive tasks. The alternative to using state machines is to use looping

code. In order for looping code to handle repetitive tasks, the functions that handle

these tasks must be distributed throughout the code in each of the loops. This is not

only highly inefficient but also confusing to understand. Figure 2-5 shows a block

diagram of what the example code would look like if a state machine where not used.

Compared to Figure 2-6, which shows a block diagram of state machine based code,

it is clear that using a state machine cuts down on code space and the likelihood of

missing a repetitive task call.
apQMMRN`-page 20  2003 Microchip Technology Inc.

Tutorial Projects
FIGURE 2-5: STATE MACHINE NOT USED

ButtonPress()?

YesNo

Initialize Routine

Clear WDT

Turn only
LED0 on

ButtonPress()?

Yes
No

Clear WDT

Turn only
LED1 on

ButtonPress()?

Yes
No

Clear WDT

Turn only
LED2 on

ButtonPress()?

Yes
No

Clear WDT

Turn only
LED3 on

ButtonPress()?

YesNo

Clear WDT

Turn only
LED4 on

ButtonPress()?
Yes

No

Clear WDT

Turn only
LED5 on

ButtonPress()?
YesNo

Clear WDT

Turn only
LED6 on

ButtonPress()?
YesNo

Clear WDT

Turn only
LED7 on
 2003 Microchip Technology Inc. apQMMRN`-page 21

PICkit™ 1 FLASH Starter Kit User’s Guide
FIGURE 2-6: STATE MACHINE BASED CODE

ButtonPress()?(1)

Yes

No

Initialize Routine

Clear WDT

Increment
State Variable

Turn only
LED0 on

Turn only
LED2 on

Turn only
LED3 on

Turn only
LED1 on

Turn only
LED4 on

Turn only
LED6 on

Turn only
LED7 on

Turn only
LED5 on

State Variable

=0 1 2

3
4

5

6 7

Note 1: ButtonPress() detects when Switch 1 is pressed. This function also implements a
debounce routine not shown. See Section 2.4.2 “Implementation” for details.
apQMMRN`-page 22  2003 Microchip Technology Inc.

Tutorial Projects
The fact that the state machine based firmware always returns to the same point in the

code also makes the firmware easier to debug. When a bug is encountered, set a

break point at the jump station. Then, step through the program state by state until the

bug is found. An example of a bug would be the SV being modified incorrectly in one

of the states. If this happens, the wrong state will be called the next time the program

flow returns to the jump station. However, because the SV is being monitored, it will be

very easy to see when an unintentional change is made to the SV and in which state

the SV was incorrectly modified.

Another benefit of state machines is firmware that incorporates state machines

naturally promotes modular code. Modular code has its own list of benefits:

1. Upgrades and special features can be easily added to the code in later revisions

or as a product evolves.

2. Modules can be cut and pasted into other applications quickly and easily.

3. Other developers will be able to understand the code in order to support it. The

jump station, if commented well, can be an index to each of the software

modules.

2.4.2 Implementation

2.4.2.1 GENERAL THOUGHT PROCESS

When implementing a FSM, first brainstorm all the states needed to complete a

particular application. Once this is done, identify the first state. Next, the following

question should be answered: “What needs to happen to exit this state, and what

state will it exit to?” Usually there is more than one answer to this question. Depending

on what happens while in a particular state, the state machine may advance a state,

decrement a state or skip several states entirely. As mentioned before, it is generally a

good idea to visually construct the state machine in the form of a flowchart. Finally,

create a software module for each of the states and tie them together according to the

flowchart just created.

Note: MPLAB IDE contains a built-in simulator. See the MPLAB IDE v6.xx Quick

Start Guide available on the MPLAB IDE CD-ROM included with the

PICkit 1 FLASH Starter Kit
 2003 Microchip Technology Inc. apQMMRN`-page 23

PICkit™ 1 FLASH Starter Kit User’s Guide
2.4.2.2 TRANSLATING STATE MACHINES INTO ASSEMBLY AND C

Implementing a state machine in C is quite simple to visualize. C based state

machines rely on the “switch” statement. The following example code shows a

“switch” statement being used as a state machine.

EXAMPLE 2-1: SWITCH STATEMENT

Creating a state machine in assembly is a little more difficult. In assembly, the

program flow is directed to the appropriate software module for a given state by

incrementing the Program Counter by the state variable. Incrementing the Program

Counter is comprised of incrementing PCL and PCLATH (when PCL overflows.) If a

provision of increment PCLATH is not included, then there is a risk of jumping to the

wrong spot in the program if PCL overflows. Immediately following the increment

routine is a list of “goto” statements that direct the program flow to one of the states.
This method is called a “computed goto”. The following example code shows how to
use a computed goto for a state machine.

switch (STATE) {
case (State0):

// turn LED0 on
break;

case (State1):
// turn LED1 on
break;

case (State2);
// turn LED2 on
break;

... and so on
default:

STATE = State0 // if for some reason a undefined
state occurs,
// re-initialize the state machine

}

apQMMRN`-page 24  2003 Microchip Technology Inc.

Tutorial Projects
EXAMPLE 2-2: COMPUTED GOTO

Initialize
clrf STATE ;initialize state machine
. . .

Main
call StateMachine
. . .
goto Main

StateMachine
movlw high StateTable ;set high order byte of program
movwf PCLATH ; counter appropriately
movf STATE, W ;mask state variable to keep
andlw 03h ; things under control
addlw low StateTable ;add state variable to ROM address
btfsc STATUS C ; beginning State Table
incf PCLATH, F ;overflows? yes, increment PCLATH
movwf PCL ;move computed goto value into PC

StateTable
goto State0
goto State1
goto State2
goto State3

State0
. . .
incf STATE, F ;goto the next state
return

State1
. . .
return
 2003 Microchip Technology Inc. apQMMRN`-page 25

PICkit™ 1 FLASH Starter Kit User’s Guide
2.4.3 Implementing this Demo

The flowchart for this demo is shown in Figure 2-6. However, the flowchart does not

show the debounce routine implemented in ButtonPress(). The debounce routine
is based on the Brute Force Debounce (described in Tutorial 1, Section 2.3) with one

slight modification, the debounce routine is implemented as a state machine. The

Debounce state machine differs from the LED state machine where the states

themselves modify the state variable. Implementing the debounce routine as a state

machine is easier to understand than implementing it as looping code.

2.4.3.1 APPLICATIONS

As mentioned earlier in Section 2.4.1.2, state machines are useful in nearly every

application. The LED library, in subsequent tutorials, utilizes state machines to light

the LED similarly to the state machine implemented in this tutorial. State machines are

useful for bit banging any number of communication protocols, receiving RF

transmissions, controlling the speed of a motor – the list goes on and on.

Understanding the states necessary to make the application work is a good way to

begin implementing an application.

2.4.3.2 RUNNING THE DEMO

1. Program the state.hex code into the PIC12F629 PIC microcontroller using the

PICkit 1 FLASH Starter Kit board and programming interface.

2. If the part is programmed successfully, The D0 LED will light up. Press the SW1

switch, located on the board, to sequence through the state machine. The D1

LED will light up, then the D2 and so on.

2.4.3.3 FILES REQUIRED FOR PROGRAM MODIFICATION

Assembly

• state.asm

HI-TECH C

• state.c

• state.h
apQMMRN`-page 26  2003 Microchip Technology Inc.

Tutorial Projects
2.5 TUTORIAL 3 – INTERRUPTS

This program demonstrates how to use the Timer0 and pin change interrupts onboard

the PIC12F6XX. In addition, the program illustrates how the PIC12F6XX is multiplexing

the LED's fast enough to give the visual representation that the LED's are all on at the

same time when in fact the LED's are lit individually. Finally, this program uses the

interrupt on-pin change to detect and debounce a button push which changes the rate

at which the LED's are flashed.

This tutorial covers the following topics:

• How to flash LED's on the PICkit 1 FLASH Starter Kit board

• How to use Timer0 and pin change interrupts on the PIC12F6XX

• How to turn a source code file into a library file for easy reuse

• Useful applications that can use the concepts presented in this tutorial

• Files needed to customize the source code for the application

2.5.1 Design

One of the challenges of using an 8-pin PIC microcontroller is having enough pins for

a robust application. The PICkit 1 FLASH Starter Kit utilizes design tips and tricks to get

the most out of the 8/14-pin PIC microcontroller devices. In particular, a 12-LED array

is implemented on the PICkit 1 FLASH Starter Kit by using only 4 pins. In this tutorial,

only 8 LED's are implemented. See Table 2-1 for LED multiplexing. Also, see “TIP #2

Input/Output Multiplexing”, in the Microchip Tips 'n Tricks booklet for more details on

LED multiplexing.

TABLE 2-1: LED MULTIPLEXING TRUTH TABLE

2.5.2 Implementation

The tutorial utilizes interrupts to make the LED operation transparent to the main

program. The main program writes the value 0xFF to the LEDREGISTER. This flashes

8 LED's on the PICkit 1 FLASH Starter Kit board. In order to flash 4 LED's, for example,

write 0x0F into the LEDREGISTER. The interrupt service routine uses a Timer0

interrupt for updating the LED array. A GP3 pin change interrupt detects a button push.

The Timer0 prescaler is adjusted and changes the amount of time it takes for a Timer0

interrupt to happen. This gives the visual representation that the LED's are all on at the

same time, or sequencing.

This tutorial introduces the intlib library. The intlib library contains the core functions for

flashing the LEDs and debouncing the GP3 push button. The intlib library contains the

functions Display and Debounce. The library also contains the general purpose

register, LEDREGISTER, to flash LEDs. See Section 2.9.5, “Modifying the Source

Code”, for more information on the required files needed to build this project in MPLAB.

Also, see the source code files for additional comments on the implementation. For a

high-level flowchart, see Figure 2-10.

PIN D0 D1 D2 D3 D4 D5 D6 D7 D8 D9 D10 D11

GP4 HI LOW HI LOW Z Z Z Z Z Z HI LOW

GP5 LOW HI Z Z HI LOW Z Z HI LOW Z Z

GP2 Z Z LOW HI LOW HI HI LOW Z Z Z Z

GP1 Z Z Z Z Z Z LOW HI LOW HI LOW HI

Legend: HI => Logic 1, LOW => Logic 0 and Z => TRISIO = 1
 2003 Microchip Technology Inc. apQMMRN`-page 27

PICkit™ 1 FLASH Starter Kit User’s Guide
2.5.3 Applications

This program is useful in the following applications:

1. Displaying an 8-bit value onto the LED array. See Section 2.6, Tutorial 4, on

using the analog-to-digital converter for reading an analog potentiometer and

displaying its value on the LED array.

2. Detecting a button push immediately.

3. Flashing LED Patterns – See Section 2.7, Tutorial 5, and Section 2.8,

Tutorial 6, for displaying different LED patterns stored in data tables.

2.5.4 Running The Demo

1. Program the ledint.hex code to the PIC12F6XX.

2. After the HEX file is programmed to the device, the LED array displays all 8

LED's that appear to be on. To change the rate at which the LED's are flashed,

push the SW1 button.

2.5.5 Modifying The Source Code

2.5.5.1 FILES REQUIRED FOR PROGRAM MODIFICATION

Assembly Source Code

• ledint.asm – Main file that contains the main program and interrupt routine

• ledint.h – Header file that defines the external program variables and routines

• intlib675.o or intlib629.o – Library file that contains the Display and Debounce

routines for the PIC12F675 or PIC12F629 respectively

• 12f629.lkr or 12f675.lkr – Linker Script for PIC12F629 and PIC12F675

respectively

(Linker Script located in C:\Program Files\MPLAB IDE\MCHIP_TOOLS)

FIGURE 2-7: MPLAB PROJECT SETUP – ASSEMBLY
apQMMRN`-page 28  2003 Microchip Technology Inc.

Tutorial Projects
C Source Code

• ledint.c – Main file that contains the main program and interrupt routine

• ledint.h – Header file

• intlib675.obj or intlib629.obj – Library file that contains the Display and Debounce

functions for the PIC12F675 or PIC12F629 respectively

FIGURE 2-8: MPLAB PROJECT SETUP – C

2.5.5.2 FILES REQUIRED FOR LIBRARY MODIFICATION

Assembly Source Code

• intlib.asm – Contains core Display and Debounce routines

(When assembled, a intlib.o file will be created)

C Source Code

• intlib.c – Contains core Display and Debounce routines

(When compiled, a intlib.obj file will be created)

• intlib.h – Header file

FIGURE 2-9: MPLAB PROJECT SETUP – LIBRARY MODIFICATIONS
 2003 Microchip Technology Inc. apQMMRN`-page 29

PICkit™ 1 FLASH Starter Kit User’s Guide
FIGURE 2-10: HIGH LEVEL FLOWCHART

Initialize
PIC12F6XX

Load

END
Main()

START
Main()

START
Isr()

Timer0
Overflow
Interrupt?

GP3-Pin
Change
Interrupt?

 Yes

 Yes

 No

Update
LED Array

Is Button
Pushed?

 No
 No

 Yes

Change
Flashing

END
Isr()

LEDREGISTER
apQMMRN`-page 30  2003 Microchip Technology Inc.

Tutorial Projects
2.6 TUTORIAL 4 – ANALOG-TO-DIGITAL CONVERTERS AND COMPARATORS

This tutorial is broken up into two programs which demonstrate how to use the

analog-to-digital converter, the comparator and the internal voltage reference. The first

program set is comp.asm (written in assembly) and comp.c (written in C). This program

shows the very basic implementation of using the comparator with the internal voltage

reference. The second program set is atod.asm (written in assembly) and atod.c

(written in C). This program uses the LED display library to show the value of the

analog-to-digital (A-D) converter.

2.6.1 Comparator Tutorial

For this tutorial, the comparator is configured as a dedicated comparator driving the

GP2 pin directly. With <CM2:CM0> = 101, the comparator has multiplexed inputs.

GP0/CIN+ is selected as the input to the VIN- by setting CIS = 1, thus making the analog

potentiometer the one input. The internal voltage reference is used as the other input

to the comparator on VIN+. The module compares the potentiometer voltage with the

reference, and the logic is setup (CINV = 1) such that the output is high when the input

voltage is higher than the reference. LED3 is driven directly by the comparator and is

lit when the output of the module is high. To light D3, you must configure RA4 (GPIO4)

and RA2 (GPIO2) as digital outputs via the TRIS register, RA4 is set low and RA2 is

driven directly by the comparator without additional software overhead. The remaining

I/O's are configured as high impedance inputs.

The internal voltage reference is essentially a variable resistor based voltage divider

between VDD and VSS. Use the low range mode (VRR = 1) and set the internal

reference to be 0.5 VDD by selecting <VR3:VR0> = 1100, thus CVREF = VDD*(12/24).

By stepping through the different voltage reference settings, a basic-low resolution

analog-to-digital converter can be implemented.

The comparator module has seven different modes. Three of the modes can drive an

output pin directly. The software can monitor the output directly or create an interrupt

on change. Bits CMIE and PEIE must be set to enable the comparator interrupt which

can be used to wake the device from SLEEP.

Figure 2-11 shows the project setup for the assembly and C projects.

FIGURE 2-11: ASSEMBLY AND C PROJECT SETUP

Note: The schematics, as shown in Appendix A, display the 14-pin device pinout.

This is compatible with 8-pin devices.
 2003 Microchip Technology Inc. apQMMRN`-page 31

PICkit™ 1 FLASH Starter Kit User’s Guide
2.6.2 Analog-to-Digital Converter Tutorial

This tutorial uses the PIC12F675 and demonstrates an interrupt based analog-to-

digital conversion. TMR0 is set up with a prescaler of 4, thus creating an interrupt

roughly every 1 ms. With every TMR0 interrupt, either the LED display routine is

serviced (see Tutorial 3, Section 2.5) or the A/D routine is serviced depending on the

flag that toggles with every interrupt. Noise is generated on VDD when the LED's are

updated. Therefore, to reduce noise in the A/D process, either a new A/D conversion

is done or the display is updated, but not simultaneously. The A/D interrupt source is

not used because the service interval (2 ms) is much longer than the conversion period

of 22 µs. The A/D module requires at least 4 µs for the sample capacitor to charge

between acquisitions, but the program allows for about 2 ms. The result of the A/D is

10 bits, even though only the eight most significant bits are displayed on the LED's.

The result is left justified (ADFM = 0) and the most significant byte is written to the

LEDREGISTER to be displayed. The ANSEL register specifies which of the general

purpose I/O pins are to be configured as analog inputs to the A/D module. In this case,

the potentiometer's output serves as the input to AN0.

Figure 2-12 shows the source code files for the assembly and C projects respectively.

FIGURE 2-12: ASSEMBLY AND C SOURCE CODE FILES
apQMMRN`-page 32  2003 Microchip Technology Inc.

Tutorial Projects
FIGURE 2-13: ANALOG-TO-DIGITAL CONVERSION

START
lsr()

Timer0
Overflow
Interrupt?

Is A/D Service

Flag Set?

Read

A/D Register

Update LEDs

END
lsr()

Toggle A/D

Service Flag

Yes

Yes
No

No
 2003 Microchip Technology Inc. apQMMRN`-page 33

PICkit™ 1 FLASH Starter Kit User’s Guide
2.7 TUTORIAL 5 – PROGRAM MEMORY LOOK-UP ROUTINES

There is often a need to store constants or strings in a PIC microcontroller. Storing this

information in program memory is the best solution as long as this data never needs to

change and program memory is available. Program memory is non-volatile, therefore,

it will maintain information regardless of VDD voltage levels or PIC microcontroller reset.

This tutorial demonstrates how to retrieve data from Program Memory. It covers the

following topics:

• What a program memory look-up table is

• How a program memory look-up table is implemented

• Why a program memory look-up table is useful

2.7.1 Design

Constants stored in program memory are accessed via look-up tables. A look-up table

is similar to a computed goto (see Tutorial 2, Section 2.4) only instead of a list of goto
statements after incrementing the program counter, there is a list of retlw instructions.
Each retlw instruction is followed by one byte of the information. Example 2-3 shows
a look-up table for the string “Microchip” written in assembly language.

EXAMPLE 2-3: LOOK-UP TABLE WRITTEN IN ASSEMBLY

For this tutorial, constants corresponding to a sequence of LEDs are stored in a

program memory look-up table. For instance, the first constant stored is 5F. This

corresponds to the binary number “01011111”. Each bit corresponds to an LED,
therefore, LEDs D0, D1, D2, D3, D4 and D6 will be lit when this constant is accessed.

After each look-up table, the value is displayed on the LEDs in the same fashion as

discussed in Tutorial 3, Section 2.5, using the Timer0 interrupt. The appearance of

more than one LED being lit at a time is possible because the LEDs are multiplexed

fast enough that the human eye can not detect the LEDs being turned on and off. When

SW1 is pressed, an interrupt-on-change is generated to increment the lookup to the

next location. Figure 2-14 shows the flowchart for this example.

LookupProgramMemory
movlw high StartTable
movwf PCLATH
movlw low StartTable
addwf index, w
btfsc STATUS, C
incf PCLATH, f
movwf PCL

StartTable
retlw "M"
retlw "i"
retlw "c"
retlw "r"
retlw "o"
retlw "c"
retlw "h"
retlw "i"
retlw "p"
apQMMRN`-page 34  2003 Microchip Technology Inc.

Tutorial Projects
FIGURE 2-14: PROGRAM MEMORY LOOK-UP TABLE PROCESS

2.7.2 Applications

The lookup routines presented herein are useful in applications that require the

following:

1. Retrieving calibration values.

2. Retrieving serial numbers.

3. Retrieving LED sequences.

4. Retrieving constants or strings in general that will not change over the lifetime of

the PIC microcontroller.

Initialize
PIC12F6XX

Load

END
Main()

START
Main()

START
Isr()

Timer0
Overflow
Interrupt?

GP3-Pin
Change
Interrupt?

 Yes

 Yes

 No

Update
LED Array

Is Button
Pushed?

 No No

 Yes

END
Isr()

LEDREGISTER

Retrieve Data

from Program
memory update

LEDs
 2003 Microchip Technology Inc. apQMMRN`-page 35

PICkit™ 1 FLASH Starter Kit User’s Guide
2.7.3 Running The Demo

1. Program the pglookup.hex code to the PIC microcontroller.

2. After the HEX file is programmed to the device, the LED array should show the

first look-up value in the 8 LEDs. To increment to the next look-up value, press

SW1. See Table 2-2.

TABLE 2-2: DATA TABLE

Instruction Byte

retlw 0x5F

retlw 0x06

retlw 0x3B

retlw 0x2F

retlw 0x66

retlw 0x6D

retlw 0x7D

retlw 0x07
apQMMRN`-page 36  2003 Microchip Technology Inc.

Tutorial Projects
2.8 TUTORIAL 6 – DATA EE LOOK-UP ROUTINES

2.8.1 Introduction

Tutorial 5 discussed storing and retrieving constants from program memory. The

benefit of storing information in non-volatile program memory is when power is cycled

to the microcontroller, the information is not lost. However, the main disadvantage is

information stored in program memory can not change. RAM, on the other hand, offers

the versatility of change but is volatile (it is cleared when power is cycled to the

microcontroller.) Data EEPROM solves this problem by providing non-volatile

readable/writable memory. An added benefit of Data EEPROM is a developer can free

up valuable RAM by using data memory to store rarely accessed variables. This tutorial

covers the following topics:

• How to implement Data EEPROM look-up routines

• Why Data EEPROM look-up routines are useful

2.8.2 Design

The PIC12F629/675 (DS41190) and PIC16F630/676 (DS40039) data sheets provide

detailed instructions on how to access data memory. See the data sheets for timing

specifications and limitations to the data memory. The data sheets are located on this

CD and the Microchip web site (www.microchip.com).

The steps for reading the Data EEPROM are as follows:

1. Write the data memory location to the EEADR register.

2. Set EEPROM control bit RD (EECON1<0>).

All data memory locations can be accessed using a single routine when an index

variable is utilized. Example 2-4 shows how to use an index variable to read the Data

Memory.

EXAMPLE 2-4: INDEX VARIABLE

As discussed in Tutorial 5, the returned value corresponds to an LED sequence. This

value is displayed using the Timer0 interrupt. The LEDs are multiplexed fast enough to

appear as though more than one LED is on at the same time. When SW1 is pressed,

an Interrupt-on-change is generated and the next LED sequence is read from the data

memory. Figure 2-15 shows the flowchart for this tutorial.

LookupDEE
movf index,w ; move data memory address pointer
banksel EEADR ; to EEADR
movwf EEADR
bsf EECON1,RD ; read data
movf EEDATA,w ; return with LED sequence in w
return
 2003 Microchip Technology Inc. apQMMRN`-page 37

PICkit™ 1 FLASH Starter Kit User’s Guide
FIGURE 2-15: DATA EE LOOK-UP ROUTINES

2.8.3 Applications

The look-up routines presented herein are useful in applications that require the

following:

1. Storing and retrieving calibration values.

2. Maintaining current identification information.

3. Data logging information.

4. In general, for any applications that require non-volatile variable memory.

Initialize
PIC12F6XX

Load

END
Main()

START
Main()

START
Isr()

Timer0
Overflow
Interrupt?

GP3-Pin
Change
Interrupt?

 Yes

 Yes

 No

Update
LED Array

Is Button
Pushed?

 No No

 Yes

END
Isr()

LEDREGISTER

Retrieve Data

from data
memory update

LEDs
apQMMRN`-page 38  2003 Microchip Technology Inc.

Tutorial Projects
2.8.4 Running The Demo

1. Program the dtlookup.HEX file into the PIC microcontroller.

2. After the HEX file is programmed into the device, the LED array should show the

first look-up value in the 8 LED's. To increment to the next look-up value, press

SW1. See Table 2-3.

TABLE 2-3: DATA TABLE

Instruction Byte

org 2100h

DE 0x5F

DE 0x06

DE 0x3B

DE 0x2F

DE 0x66

DE 0x6D

DE 0x7D

DE 0x07
 2003 Microchip Technology Inc. apQMMRN`-page 39

PICkit™ 1 FLASH Starter Kit User’s Guide
2.9 TUTORIAL 7 – FREQUENCY COUNTING WITH TIMER1 GATE

This program introduces the concept of auto-calibration of the PIC12F6XX internal RC

oscillator using a known reference frequency. The PIC12F6XX has an internal RC

oscillator capable of being calibrated to ±1%.

This tutorial covers the following:

• How to set up and use the Timer1Gate peripheral

• How to calibrate the PIC12F6XX internal RC oscillator

• Useful applications that use the concepts presented in this tutorial

• Files needed to customize source code for the application

2.9.1 Design

This program takes advantage of the TIMER1 Gate Peripheral onboard the

PIC12F6XX for auto-calibration of the PIC12F6XX device. A 2.5 kHz reference signal

is connected to pin GP4/Timer1Gate input on the PIC12F6XX device.

The PIC12F6XX internal RC oscillator has the capability to run at 4 MHz ±1%.

Using Timer1Gate is advantageous because it can eliminate busy waiting on the PIC

microcontroller. Using Timer1Gate allows the hardware to manage capturing of the

reference signal low-edge pulse width while allowing the PIC12F6XX to process other

events for a given amount of time. The time will depend on the period of the signal

being measured. In this case, there is a 2.5 kHz reference signal. This allows 400 µs

to go and process something else before we would need to read TIMER1 for a

measurement.

2.9.2 Implementation

In this program, GP0 is used to output a test signal. If the PIC12F6XX internal RC

oscillator is calibrated, the test signal will be a 5 kHz square wave. In addition, the

program uses the GP3 push button input to select calibration mode. To turn on the

2.5 kHz fixed frequency source, select the box from the Board Controls area in the

PICkit 1 FLASH Starter Kit control panel. See Figure 2-19 through Figure 2-22 for

program flowcharts.

2.9.3 Applications

This program could be useful in the following applications:

1. High volume production environment.

2. Battery applications could use on-board calibration to recalibrate the internal RC

oscillator as the battery voltage drops.

3. Applications that are exposed to a varying voltage and temperature ranges could

have intelligent on-board recalibration.
apQMMRN`-page 40  2003 Microchip Technology Inc.

Tutorial Projects
2.9.4 Running The Demo

1. Program the autocal.hex code to the PIC12F6XX PIC microcontroller.

2. Once the device is programmed, LED D6 turns on indicating test mode.

3. Check the device calibration by connecting an oscilloscope probe or frequency

counter to GP0 and compare the measurement to 5 kHz.

4. To calibrate the device, select the 2.5 kHz Osc checkbox and turn on the 2.5 kHz

reference signal (in the Board Controls frame), as shown in Figure 2-16. Press

the SW1 button on the PICkit 1 FLASH Starter Kit board. LED D7 will turn on

when the button is pushed, this indicates calibration mode.

5. View the test signal output on GP0 using the oscilloscope, or frequency counter,

and compare the measurements to the previous one before performing a

calibration. The measurement will be within 1% of 5 kHz.

FIGURE 2-16: PICkit 1 FLASH STARTER KIT PROGRAMMING INTERFACE
 2003 Microchip Technology Inc. apQMMRN`-page 41

PICkit™ 1 FLASH Starter Kit User’s Guide
2.9.5 Modifying The Source Code

2.9.5.1 REQUIRED FILES FOR PROGRAM MODIFICATION

Assembly Code

• autocal.asm – This is the only file needed to build the project

FIGURE 2-17: MPLAB PROJECT SETUP – ASSEMBLY

C Code

• autocal.c – This is the main file which contains the main program, interrupt routine

and functions

• autocal.h – Header File

• delay.obj – HI-TECH PICC™ Lite supplied delay function

(Source code is located in C:\Picclite\samples\delay)

FIGURE 2-18: MPLAB PROJECT SETUP – C
apQMMRN`-page 42  2003 Microchip Technology Inc.

Tutorial Projects
FIGURE 2-19: MAIN FLOW

FIGURE 2-20: TEST FLOW

START

MAIN()

Retrieve Factory

Calibration Value

Is Calibrate

Button

Pressed?

Call

CALIBRATE()

CALL

TEST()

Yes

No

Is Calibration

Button Pushed?

Has a

Calibration

Been
Performed?

Output 5 kHz 50%

Square Wave

END

TEST()

START

TEST()

Update OSCCAL

Register with

EEPROM

Calibration Value

Yes

No

No

Yes
 2003 Microchip Technology Inc. apQMMRN`-page 43

PICkit™ 1 FLASH Starter Kit User’s Guide
FIGURE 2-21: CALIBRATE FLOW

START
CALIBRATE()

Update EEPROM

Flag and Calibration Value

END

CALIBRATE()

 Yes

 No

Reset

Calibration Counter

Decrement

Calibration Counter

Is Calibration Counter

= 0?

Measure 200 µs

PW

Check If The Measured

PW Is Within The

Specified Tolerance

(See Figure 2-22)

PW = Pulse Width
apQMMRN`-page 44  2003 Microchip Technology Inc.

Tutorial Projects
FIGURE 2-22: CHECKPW(W) FLOW

 Yes Yes

 No

 No

Adjust OSCCAL Down

Adjust OSCCAL Up

 Yes

 No

 No

 Yes

Is The Measured PW

= 200 µs?

Is The Measured PW

< 200 µs

Is The Measured PW

Within The Tolerance?

Is The Measured PW

Within The Tolerance?

START

CHECKPW(W)

END

CHECKPW(W)

PW = Pulse Width
 2003 Microchip Technology Inc. apQMMRN`-page 45

PICkit™ 1 FLASH Starter Kit User’s Guide
NOTES:
apQMMRN`-page 46  2003 Microchip Technology Inc.

PICkit™ 1

FLASH STARTER KIT

USER’S GUIDE
Chapter 3. Working with the Tutorial Software
3.1 INTRODUCTION

This chapter covers information needed to work with the tutorial software presented in

Chapter 2.

3.2 HIGHLIGHTS

• Using the Tutorial Source Code

• Loading a Project

3.3 USING THE TUTORIAL SOURCE CODE

The source code files for each tutorial are provided on the CD-ROM. In order to use the

tutorial code you will have to:

1. Create a new MPLAB project.

2. Configure the project for the PIC12F675.

3. Add the code to the project.

4. Compile the software.

Details for each of these steps can be found on the MPLAB IDE v6.xx Quick Start Guide

available on the MPLAB IDE CD-ROM included with the PICkit 1 FLASH Starter Kit.

MPLAB is the integrated development environment supplied by Microchip Technology

Inc. for developing software for PIC microcontroller. MPLAB is used to:

• Create source code using the built-in editor.

• Assemble, compile and link source code using various language tools. An

assembler, linker and librarian come with MPLAB IDE. Supported C compilers are

available from Microchip. Third party compilers may be supported also. Check the

release notes or readme files for details.

• Debug the executable logic by watching program flow with the built-in simulator, or

in real time with the MPLAB ICE 2000 emulator or MPLAB ICD 2 in-circuit

debugger. Third party emulators may also be supported. Check the release notes

or readme files for details.

• Make timing measurements with the simulator or emulator.

• View variables in watch windows.

• Additional information concerning the capabilities and the use of MPLAB is

available on the MPLAB CD-ROM.
 2003 Microchip Technology Inc. apQMMRN`-page 47

PICkit™ 1 FLASH Starter Kit User’s Guide
3.4 LOADING A PROJECT IN MPLAB

Loading a project in MPLAB IDE is accomplished with the following steps:

1. Launch MPLAB IDE.

2. Select Project > Open, as shown in Figure 3-1.

3. Browse and locate the project.

4. Click OPEN.

FIGURE 3-1: OPEN PROJECT

3.4.1 Compiling the Project

After loading a project, it is necessary to compile it. Select Project > Make, as shown

in Figure 3-2.

A window will appear and show the progress. If there are no errors, the program can

be simulated or downloaded into the PICkit 1 FLASH Starter Kit software. (See

Chapter 2 for instructions on downloading the program).

FIGURE 3-2: COMPILE PROJECT
apQMMRN`-page 48  2003 Microchip Technology Inc.

Working with the Tutorial Software
3.4.2 Simulating the Project

In order to simulate the program to see what the PIC microcontroller is actually doing

with each instruction, select the MPLAB IDE Simulator debugger. Select Debugger >

Select Tool > MPLAB SIM, as shown in Figure 3-3.

FIGURE 3-3: MPLAB SIMULATION

Once MPLAB SIM is selected, five buttons will appear on the right end of the menu

toolbar, as shown in Figure 3-4.

FIGURE 3-4: SIMULATION TOOLBAR

These buttons allow the user to:

1. Run code:

2. Pause code:

3. Single Step code through functions:

4. Single Step code, but run through the functions:

5. Reset code:

To view the code in single steps, press the single step button, the code window will

show the instruction that will be executed next, as shown in Figure 3-5.

FIGURE 3-5: CODE WINDOW
 2003 Microchip Technology Inc. apQMMRN`-page 49

PICkit™ 1 FLASH Starter Kit User’s Guide
In the View toolbar menu there are options to view the special function registers,

program memory and other useful information, as shown in Figure 3-6.

FIGURE 3-6: VIEW MENU OPTIONS

To learn more about using MPLAB IDE, please refer to the MPLAB IDE User’s Guide

found on the MPLAB IDE CD-ROM, included in the PICkit 1 FLASH Starter Kit.
apQMMRN`-page 50  2003 Microchip Technology Inc.

PICkit™ 1

FLASH STARTER KIT

USER’S GUIDE
Chapter 4. PICkit™ 1 FLASH Starter Kit Hardware
4.1 INTRODUCTION

The PICkit 1 FLASH Starter Kit hardware was designed to be a low-cost introductory

programmer and evaluation kit. The requirements of the hardware are as follows:

• Support the 8/14-pin FLASH PIC microcontrollers

• Program the 8/14-pin FLASH PIC microcontrollers

• Operate from a USB cable

4.2 HIGHLIGHTS

This chapter discusses:

• ICSP™ Techniques

• Programming Hardware

• USB Communications Protocol

4.3 IN-CIRCUIT SERIAL PROGRAMMING™ (ICSP) TECHNIQUES

ICSP allows an engineer to design a circuit that will be built and then programmed later.

The procedure is described in the programming specifications (DS41173 and

DS41191). These documents can be found on the Microchip web site

(http:\\www.microchip.com). ICSP requires a 12-13V power supply, control of the VDD

supply and two I/O pins to clock in the commands and data.

4.4 PROGRAMMING HARDWARE

The programmer portion of the PICkit 1 FLASH Starter Kit circuit is shown in Figure 4-1.

Additional circuitry is present to connect to the USB and drive the evaluation LED’s.

Most of the circuitry in the figure is used to generate the +13V required for VPP. This is

generated by using the CCP of the PIC16C745 to pulse Q2 on and off. By pulsing Q2,

L1 generates a burst of charge that is steered into the capacitor C4 by the diode D13.

Each burst of charge adds to the voltage already in the capacitor. The size of the burst

of charge is proportional to the on time of the PWM signal from CCP. The resistors R10

and R11 form a voltage divider that drops the 13V VPP to a 4.5V feedback signal that

is measured by AN1. Software running in the PIC16C745 periodically samples AN1

and computes a new PWM value. The PWM value is updated just over 500 times every

second. This ensures good voltage regulation of the 13V and leaves enough CPU time

to perform the programming task. The rest of the circuit is used to switch the VPP

voltage to the VPP pin. Transistor Q4 is the switch for the VPP voltage and Q3 is the

driver for Q4. Transistor Q1 turns VDD on and off allowing the target device to be reset.

The programming I/O signals are generated by “bit-banging” RC6:7 of the PIC16C745

which drives the GPIO0:1 lines used by the PIC12F629/675.
 2003 Microchip Technology Inc. apQMMRN`-page 51

PICkit™ 1 FLASH Starter Kit User’s Guide
FIGURE 4-1: PROGRAMMING HARDWARE
apQMMRN`-page 52  2003 Microchip Technology Inc.

PICkit™ 1 FLASH Starter Kit Hardware
4.5 USB COMMUNICATIONS PROTOCOL

The USB protocol used by the PICkit 1 FLASH Starter Kit is a very simple

command/response type protocol. Multiple commands can be put together to fill the 8

bytes of a USB packet. If a command cannot fill the 8 bytes and it is not desired to use

a second command to fill the packet, the packet should be padded with ‘Z’ to indicate

no operation.

4.5.1 Commands

• ‘W’ <word> – Write Program Memory. Loads the write latch, sends the write

command and increments to the next address.

• ‘C’ <word> – Configuration memory write mode. Word parameter ignored. Use ‘W’

to write to configuration memory.

• ‘D’ <byte> – Write EE Data memory. Data is passed as the byte.

• ‘E’ – Bulk Erase Program Memory

• ‘e’ – Bulk Erase Data Memory

• ‘I’ <word> – Increment Address N times. N is passed as word.

• ‘P’ – Enter programming mode. Turns VPP and VDD on.

• ‘p’ – Exit Programming Mode. Turns VDD and VPP off.

• ‘R’ – Read Program Memory. ‘R’ always returns 4 words. If the end of PGM

memory is reached, it pads with 0’s. It is the responsibility of the host software to

determine if padding occurred by keeping track of the program counter.

• ‘r’ – Read EE Data Memory. ‘r’ always returns 8 bytes. If the end of Data memory

is reached, it pads with 0’s. It is the responsibility of the host software to determine

if padding occurred by keeping track of the program counter.

• ‘S’ <program memory length, data memory length> – Calculates Program

Memory Checksum and Data Memory Checksum. The checksum is calculated on

the first Np words of the program memory and the first Nd bytes of the data

memory. Np and Nd are both words passed as the length parameter. The return

value is 3 bytes in length: the first word is the Program Memory checksum, and

the last byte is the Data Memory Checksum.

• ‘V’ <byte> – Power and special feature control. The byte following command is

used to control. VDD power to the target and to enable/disable a 2.5 kHz 50%

square wave.

• ‘v’ – Return version information. The following bytes are returned:

<Major><Minor><Dot>.

• ‘Z’ – No operation. Use to pad packets to 8 bytes.

Source code files are located on the PICkit 1 FLASH Starter Kit CD.

Note: Word values are sent low byte first.
 2003 Microchip Technology Inc. apQMMRN`-page 53

PICkit™ 1 FLASH Starter Kit User’s Guide
NOTES:
apQMMRN`-page 54  2003 Microchip Technology Inc.

PICkit™ 1

FLASH STARTER KIT

USER’S GUIDE
Chapter 5. Troubleshooting
5.1 INTRODUCTION

This chapter describes common problems associated with using the PICkit 1 FLASH

Starter Kit, and steps on how to resolve them.

5.2 FAQS

5.2.1 Program Does Not Work

Question:

My program does not work. What should I check?

Answer:

1. Are the configuration bits set in the source file? PICkit 1 FLASH Starter Kit

depends on having the configuration bits set in the HEX file. The assembler uses

the _CONFIG directive. When using the PICkit 1 FLASH Starter Kit’s on-board

evaluation socket, configure the internal oscillator. The internal oscillator also

frees up two more pins for general I/O use.

The assembler directive to select the internal oscillator, with all other functions off,

might look like this:

_CONFIG (_INTRC_OSC_NOCLKOUT & _WDT_OFF &_BODEN_OFF&_CP_OFF
&_CPD_OFF)

The following code shows how to set the configuration bits in Hi-Tech C:

_CONFIG(UNPROTECT & BOREN & MCLRDIS & PWRTEN & WDTDIS & INTIO);

2. Are the pins multiplexed with other functions? If so, does the program initialize

the control registers to select the function desired? A common problem occurs

on PORTA where the analog inputs to the ADC is multiplexed with digital

functions. The pins default to analog input. For digital output, write to the ANSEL

register and make the pins digital I/O.

5.2.2 Device Will Not Program

Question:

The device will not program. All writes end with a “checksum verified failed” error

message.

Answer:

1. Are the code protect bits set in the source code file? Currently, the device can

only be code protected by selecting the Tools > Code Protect Device option in

the PICkit 1 User’s Interface.

2. The part may be damaged. Go to Microchip’s web site (www.microchip.com) to

request a new part.
 2003 Microchip Technology Inc. apQMMRN`-page 55

PICkit™ 1 FLASH Starter Kit User’s Guide
5.2.3 Device Is Not Recognized

Question:

Receiving message “Insert Device”, but there is a part in the socket.

Answer:

1. Verify the device in the socket is a PIC12F629, PIC12F675, PIC16F630 or

PIC16F676.=líÜÉê=ÇÉîáÅÉë=ã~ó=ÄÉ=êÉéçêíÉÇ=~ë=“fåëÉêí=aÉîáÅÉ”.

2. Check for additional circuits attached to pins GP0 and GP1.

3. Check to see if the SW1 switch is pressed.

5.2.4 Current Limit Exceeded

Question:

Receiving error message “USB Hub Current Limit Exceeded” from Microsoft Windows

2000.

Answer:

Check for shorts on the circuit board.

FIGURE 5-1: USB HUB CURRENT LIMIT EXCEEDED
apQMMRN`-page 56  2003 Microchip Technology Inc.

Troubleshooting
5.2.5 Windows Driver

Question:

After plugging the PICkit 1 into the USB port, Windows 98 SE asks for a driver. Where

is the driver?

Answer:

PICkit 1 uses the drivers included with Windows. When Windows 98 SE prompts for a

driver, select “Search for the best driver for your device.” Then select the check box

next to “Microsoft Windows Update” and click Next. Windows will automatically install

the appropriate driver. Do not use the ICD 2 USB driver.

5.2.6 Editing Device Memory

Question:

When using the PICkit 1 User’s Interface to edit the actual contents of the memory. It

will not allow date selection. Why not?

Answer:

The PICkit 1 User’s Interface was developed to program a device. It was not intended

to edit the contents of a device. mäÉ~ëÉ=ìëÉ=jmi^_=íç=ÉÇáí=íÜÉ=ÅçåíÉåíë=çÑ=íÜÉ=ÇÉîáÅÉK=

qÜÉ=Ç~í~=áå=íÜÉ=ïáåÇçï=Å~å=ÄÉ=ëÉäÉÅíÉÇ=íç=Åìí=~åÇ=é~ëíÉ=íÜÉ=Ç~íÉ=áåíç=~åçíÜÉê=ÉÇáíçê=

Ñçê=ìëÉ=áå=çíÜÉê=~ééäáÅ~íáçåëK=

5.2.7 No Source Code

Question:

After moving the tutorial data files to a different location on the hard drive, the MPLAB

simulator behaves ëíê~åÖÉäóK=tÜÉå=ëíÉééáåÖ=íÜêçìÖÜ=íÜÉ=ÅçÇÉI=~=éêçÖê~ã=ãÉãçêó=

ïáåÇçï=áë=Çáëéä~óÉÇ=ïáíÜçìí=íÜÉ=ëçìêÅÉ=ÅçÇÉK=tÜ~í=áë=ïêçåÖ\=

Answer:

The MPLAB version 6.13, and earlier, simulator does not support source level

debugging when the path to the ëçìêÅÉ=ÅçÇÉ=áë=[=SQ=ÅÜ~ê~ÅíÉêë=äçåÖK=jçîáåÖ=íÜÉ=Ç~í~=

ÑáäÉë=íç=~=äçÅ~íáçå=ïáíÜ=~=ëÜçêíÉê=é~íÜ=å~ãÉ=ïáää=Ñáñ=íÜÉ=éêçÄäÉãK=qÜáë=ïáää=ÄÉ=ÑáñÉÇ=áå=~=

ÑìíìêÉ=îÉêëáçå=çÑ=íÜÉ=jmi^_=ëçÑíï~êÉK

5.2.8 HI-TECH PICC LITE

Question:

Why does the default demonstration code not work correctly after compiling with the

HI-TECH PICC LITE Compiler?

Answer:

Download the latest HI-TECH PICC LITE C Compiler from the HI-TECH web site

www.htsoft.com.
 2003 Microchip Technology Inc. apQMMRN`-page 57

PICkit™ 1 FLASH Starter Kit User’s Guide
NOTES:
apQMMRN`-page 58  2003 Microchip Technology Inc.

PICkit™ 1

FLASH STARTER KIT

USER’S GUIDE
Appendix A. Hardware Schematics
A.1 INTRODUCTION

This appendix contains the PICkit™ 1 hardware schematic diagrams.

A.2 HIGHLIGHTS

The diagrams in this appendix are:

• PICkit 1 Board Diagram

• LED Layout

• VPP Supply

• USB Control

• Prototype 1

• Prototype 2
 2003 Microchip Technology Inc. apQMMRN`-page 59

PICkit™ 1 FLASH Starter Kit User’s Guide
FIGURE A-1: PICkit™ 1 BOARD DIAGRAM
apQMMRN`-page 60  2003 Microchip Technology Inc.

Hardware Schematics
FIGURE A-2: LED LAYOUT
 2003 Microchip Technology Inc. apQMMRN`-page 61

PICkit™ 1 FLASH Starter Kit User’s Guide
FIGURE A-3: VPP SUPPLY
apQMMRN`-page 62  2003 Microchip Technology Inc.

Hardware Schematics
FIGURE A-4: USB CONTROL
 2003 Microchip Technology Inc. apQMMRN`-page 63

PICkit™ 1 FLASH Starter Kit User’s Guide
FIGURE A-5: PROTOTYPE 1
apQMMRN`-page 64  2003 Microchip Technology Inc.

Hardware Schematics
FIGURE A-6: PROTOTYPE 2
 2003 Microchip Technology Inc. apQMMRN`-page 65

PICkit™ 1 FLASH Starter Kit User’s Guide
NOTES:
apQMMRN`-page 66  2003 Microchip Technology Inc.

Hardware Schematics
NOTES:
 2003 Microchip Technology Inc. apQMMRN`-page 67

DS40051C-page 68  2003 Microchip Technology Inc.

AMERICAS

Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200 Fax: 480-792-7277
Technical Support: 480-792-7627
Web Address: http://www.microchip.com

Rocky Mountain
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7966 Fax: 480-792-4338

Atlanta
3780 Mansell Road, Suite 130
Alpharetta, GA 30022
Tel: 770-640-0034 Fax: 770-640-0307

Boston
2 Lan Drive, Suite 120
Westford, MA 01886
Tel: 978-692-3848 Fax: 978-692-3821

Chicago
333 Pierce Road, Suite 180
Itasca, IL 60143
Tel: 630-285-0071 Fax: 630-285-0075

Dallas
4570 Westgrove Drive, Suite 160
Addison, TX 75001
Tel: 972-818-7423 Fax: 972-818-2924

Detroit
Tri-Atria Office Building
32255 Northwestern Highway, Suite 190
Farmington Hills, MI 48334
Tel: 248-538-2250 Fax: 248-538-2260

Kokomo
2767 S. Albright Road
Kokomo, Indiana 46902
Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles
18201 Von Karman, Suite 1090
Irvine, CA 92612
Tel: 949-263-1888 Fax: 949-263-1338

San Jose
Microchip Technology Inc.
2107 North First Street, Suite 590
San Jose, CA 95131
Tel: 408-436-7950 Fax: 408-436-7955

Toronto
6285 Northam Drive, Suite 108
Mississauga, Ontario L4V 1X5, Canada
Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia
Microchip Technology Australia Pty Ltd
Marketing Support Division
Suite 22, 41 Rawson Street
Epping 2121, NSW
Australia
Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing
Microchip Technology Consulting (Shanghai)
Co., Ltd., Beijing Liaison Office
Unit 915
Bei Hai Wan Tai Bldg.
No. 6 Chaoyangmen Beidajie
Beijing, 100027, No. China
Tel: 86-10-85282100 Fax: 86-10-85282104

China - Chengdu
Microchip Technology Consulting (Shanghai)
Co., Ltd., Chengdu Liaison Office
Rm. 2401-2402, 24th Floor,
Ming Xing Financial Tower
No. 88 TIDU Street
Chengdu 610016, China
Tel: 86-28-86766200 Fax: 86-28-86766599

China - Fuzhou
Microchip Technology Consulting (Shanghai)
Co., Ltd., Fuzhou Liaison Office
Unit 28F, World Trade Plaza
No. 71 Wusi Road
Fuzhou 350001, China
Tel: 86-591-7503506 Fax: 86-591-7503521

China - Hong Kong SAR
Microchip Technology Hongkong Ltd.
Unit 901-6, Tower 2, Metroplaza
223 Hing Fong Road
Kwai Fong, N.T., Hong Kong
Tel: 852-2401-1200 Fax: 852-2401-3431

China - Shanghai
Microchip Technology Consulting (Shanghai)
Co., Ltd.
Room 701, Bldg. B
Far East International Plaza
No. 317 Xian Xia Road
Shanghai, 200051
Tel: 86-21-6275-5700 Fax: 86-21-6275-5060

China - Shenzhen
Microchip Technology Consulting (Shanghai)
Co., Ltd., Shenzhen Liaison Office
Rm. 1812, 18/F, Building A, United Plaza
No. 5022 Binhe Road, Futian District
Shenzhen 518033, China
Tel: 86-755-82901380 Fax: 86-755-82966626

China - Qingdao
Rm. B505A, Fullhope Plaza,
No. 12 Hong Kong Central Rd.
Qingdao 266071, China
Tel: 86-532-5027355 Fax: 86-532-5027205

India
Microchip Technology Inc.
India Liaison Office
Marketing Support Division
Divyasree Chambers
1 Floor, Wing A (A3/A4)
No. 11, O’Shaugnessey Road
Bangalore, 560 025, India
Tel: 91-80-2290061 Fax: 91-80-2290062

Japan
Microchip Technology Japan K.K.
Benex S-1 6F
3-18-20, Shinyokohama
Kohoku-Ku, Yokohama-shi
Kanagawa, 222-0033, Japan
Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea
Microchip Technology Korea
168-1, Youngbo Bldg. 3 Floor
Samsung-Dong, Kangnam-Ku
Seoul, Korea 135-882
Tel: 82-2-554-7200 Fax: 82-2-558-5934

Singapore
Microchip Technology Singapore Pte Ltd.
200 Middle Road
#07-02 Prime Centre
Singapore, 188980
Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan
Microchip Technology (Barbados) Inc.,
Taiwan Branch
11F-3, No. 207
Tung Hua North Road
Taipei, 105, Taiwan
Tel: 886-2-2717-7175 Fax: 886-2-2545-0139

EUROPE
Austria
Microchip Technology Austria GmbH
Durisolstrasse 2
A-4600 Wels
Austria
Tel: 43-7242-2244-399
Fax: 43-7242-2244-393

Denmark
Microchip Technology Nordic ApS
Regus Business Centre
Lautrup hoj 1-3
Ballerup DK-2750 Denmark
Tel: 45 4420 9895 Fax: 45 4420 9910

France
Microchip Technology SARL
Parc d’Activite du Moulin de Massy
43 Rue du Saule Trapu
Batiment A - ler Etage
91300 Massy, France
Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany
Microchip Technology GmbH
Steinheilstrasse 10
D-85737 Ismaning, Germany
Tel: 49-089-627-144-100
Fax: 49-089-627-144-44

Italy
Microchip Technology SRL
Via Quasimodo, 12
20025 Legnano (MI)
Milan, Italy
Tel: 39-0331-742611 Fax: 39-0331-466781

United Kingdom
Microchip Ltd.
505 Eskdale Road
Winnersh Triangle
Wokingham
Berkshire, England RG41 5TU
Tel: 44 118 921 5869 Fax: 44-118 921-5820

02/12/03

WORLDWIDE SALES AND SERVICE

	Preface
	Chapter 1. Using the PICkit™ 1 FLASH Starter Kit
	1.1 Introduction
	1.2 Highlights
	1.3 PICkit 1 FLASH Starter Kit Contents
	1.4 Running the PICkit 1 FLASH Starter Kit Default Demonstration
	1.5 HEX Files
	1.6 Using the PICkit 1 FLASH Starter Kit Programming Interface
	1.6.1 Download Project from MPLAB
	1.6.2 Automatic File Reload
	1.6.3 Verify Program Code
	1.6.4 Read Device
	1.6.5 Code Protect
	1.6.6 Erase
	1.6.7 2.5 kHz OSC

	Chapter 2. Tutorial Projects
	2.1 Introduction
	2.2 Highlights
	2.3 Tutorial 1 – Switch Debouncing
	2.3.1 Design
	2.3.2 Applications
	2.3.3 Running the Demos

	2.4 Tutorial 2 – Introduction to State Machines
	2.4.1 Design
	2.4.2 Implementation
	2.4.3 Implementing this Demo

	2.5 Tutorial 3 – Interrupts
	2.5.1 Design
	2.5.2 Implementation
	2.5.3 Applications
	2.5.4 Running The Demo
	2.5.5 Modifying The Source Code

	2.6 Tutorial 4 – Analog-to-Digital Converters and Comparators
	2.6.1 Comparator Tutorial
	2.6.2 Analog-to-Digital Converter Tutorial

	2.7 Tutorial 5 – Program Memory Look-up Routines
	2.7.1 Design
	2.7.2 Applications
	2.7.3 Running The Demo

	2.8 Tutorial 6 – Data EE Look-up Routines
	2.8.1 Introduction
	2.8.2 Design
	2.8.3 Applications
	2.8.4 Running The Demo

	2.9 Tutorial 7 – Frequency Counting with Timer1 Gate
	2.9.1 Design
	2.9.2 Implementation
	2.9.3 Applications
	2.9.4 Running The Demo
	2.9.5 Modifying The Source Code

	Chapter 3. Working with the Tutorial Software
	3.1 Introduction
	3.2 Highlights
	3.3 Using the Tutorial Source Code
	3.4 Loading a Project in MPLAB
	3.4.1 Compiling the Project
	3.4.2 Simulating the Project

	Chapter 4. PICkit™ 1 FLASH Starter Kit Hardware
	4.1 Introduction
	4.2 Highlights
	4.3 In-Circuit Serial Programming™ (ICSP) Techniques
	4.4 Programming Hardware
	4.5 USB Communications Protocol
	4.5.1 Commands

	Chapter 5. Troubleshooting
	5.1 Introduction
	5.2 FAQs
	5.2.1 Program Does Not Work
	5.2.2 Device Will Not Program
	5.2.3 Device Is Not Recognized
	5.2.4 Current Limit Exceeded
	5.2.5 Windows Driver
	5.2.6 Editing Device Memory
	5.2.7 No Source Code
	5.2.8 HI-TECH PICC LITE

	Appendix A. Hardware Schematics
	A.1 Introduction
	A.2 Highlights

