



 1998 Microchip Technology Inc. DS40160A/5_005-page 1

Microchip Technology Incorporated, has been granted a nonexclusive, worldwide license to reproduce, publish and distribute all submitted materials, in
either original or edited form. The author has affirmed that this work is an original, unpublished work and that he/she owns all rights to such work. All
property rights, such as patents, copyrights and trademarks remain with author.

APPLICATION OPERATION:

My application uses a PIC12C508 to produce realistic
sounding mouse-like coos that all mice are sure to find
seductive. The entire circuit should be imbedded in, or
at least placed, near a baited mouse-trap for best
effect.

The heart of the circuit is a pseudo-random number
generator that determines both the time between
squeaks, and the number of chirps in each squeak. In
operation, the watchdog timer is used to wake the
mouse up at a constant half-second rate. If the ran-
domly determined, one to sixteen periods have passed,
the mouse will emit a squeak. Squeaks consist of from
one to four chirps, and each chirp is a tone that sweeps
from about 5KHz to 10KHZ, in about 30mSec.

The circuit operates on two AAA dry cells, and drives a
standard piezoelectric buzzer through a 4.7K resistor
via a two pin push-pull output. No other components
are required.

Block Diagram:

Operation is straight-forward, as described above.

Flow Chart:

Operation is straight-forward, as described above.

Graphical hardware representation:

This is probably described easier than I can draw it:

• The heart of the circuit is an 8-pin PIC12C508.
• Two AAA dry cells are connected in series to form

a 3V supply, then connected with the positive lead
to pin 1 of the PIC12C508, and the negative one
to pin 8.

• Unused pins 2, 3, 4, and 5 are all connected to
pin 1.

• Pin 7 has a 4.7K resistor connected to it with the
other side of the resistor connected to either one
of the wires on a piezoelectric buzzer. The other
buzzer wire goes to pin 6.

• The value of the 4.7K resistor is not critical. It
should be at least 1K to limit the current into the
buzzer, and increased from there, to limit the
volume to a pleasing level (depends on the
efficiency of the buzzer).

Author: Jim Nagy
Ontario, Canada
email: nagy@wwdc.com

A Better Mouse Trap

Consumer Appliance, Widget, Gadget

Consumer Appliance, Widget, Gadget

DS40160A/5_005-page 2



 1998 Microchip Technology Inc.

APPENDIX A: SOURCE CODE

;
; MouseTrap
; =========
; by Jim Nagy, Sept. 1997
;
; A solid state mouse (the four legged kind) simulator, using the PIC12C508.
;
; This circuit produces realistic-sounding mouse-like coos that all mice
; are sure to find seductive. The circuit should be installed near
; a baited mouse-trap for best effect.
;
; This circuit is powered by a 3V source, and directly drives a
; piezoelectric buzzer. Circuit connections are as follows:
; A piezoelectric buzzer is connected through a series 4.7K

; resistor to pins 6&7 (GP0&1)
; +3V is connected to pin 1, gnd to pin 8
; pins 2,3,4, and 5 should be tied to either pin 1 or 8
;
; ***

; Program equates
TMin EQU D'16' ; Mouse chirps are frequency sweeps from about 5-10KHz
TMax EQU D'32' ; the freq. is approx 166000/T

; Standard Equates
W EQU 0
F EQU 1

GPWUF EQU 7
PA0 EQU 5
TO EQU 4
PD EQU 3
Z EQU 2
Zero EQU 2
DC EQU 1
C EQU 0
Carry EQU 0

MCLRDisabled EQU 0
MCLREnabled EQU H'10'
CodeProtect EQU 0
NoCodeProtect EQU H'08'
WDTDisabled EQU 0
WDTEnabled EQU H'04'
IntRCOsc EQU H'02'
ExtRCOsc EQU H'03'
XTOsc EQU H'01'
LPOsc EQU 0

; '508 Registers
INDF EQU H'00'
TMR0 EQU H'01'
PCL EQU H'02'
STATUS EQU H'03'
FSR EQU H'04'
OSCCAL EQU H'05'
GPIO EQU H'06'

; program variables
LByte EQU H'07' ; random number variables
HByte EQU H'08' ; numbers are generated as 2bytes+carry
CBit EQU H'09'

Consumer Appliance, Widget, Gadget



 1998 Microchip Technology Inc. DS40160A/5_005-page 3

RNum EQU H'07' ; Generated random number...same as 'LByte'

WDTimes EQU H'0A' ; Mouse only chirps after 'WDTimes' wakeups
Count EQU H'0A' ; Dual use reg - only used during a chirp

ChirpCnt EQU H'0B' ; # of chirps in the squeak
CycleCnt EQU H'0C' ; counts cycles during a chirp
DelayCnt EQU H'0D' ; delay counter for waveform generation

; ***
; Setting the ID words...

ORG H'0200'
ID0 Data.WH'0000'
ID1 Data.WH'0000'
ID2 Data.WH'0003'
ID3 Data.WH'0008'

; ***
; and the Fuses...

ORG H'0FFF'
CONFIG Data.W MCLRDisabled + NoCodeProtect + WDTEnabled + IntRCOsc

; ***
; PIC starts here on power up...
; ***

ORG H'00'

MOVWFOSCCAL ; store the factory osc. calibration value

; subroutines must be in the low page, so jump to higher memory...
BTFSCSTATUS,TO ; check if we're here from WDT timeout
GOTOInit ; no, do a full reset
BTFSCSTATUS,PD ; was a timeout, but was it a wakeup call
GOTOInit ; no - it was a code error
GOTOMain ; yes, was a wakeup

; ***
; Chirp
; Each mouse squeak consists of a series of 1 to 4 chirps.
; Each chirp lasts about 30mS, and consists of 12 cycles at each
; frequency from a min set by TMax, to the maximum freq, set by TMin:

ChirpMOVLWTMax ; get the initial waveform period
MOVWF Count ; and save it

ch1 MOVLW D'12' ; 12 cycles at each frequency
MOVWF CycleCnt

ch2 MOVF Count,W ; load the count(delay) value
BSF GPIO,0 ; and produce one cycle
CALL DelayLoop
BCF GPIO,0
MOVF Count,W
BSF GPIO,1
CALL DelayLoop
BCF GPIO,1
DECFSZ CycleCnt,F ; keep repeating
GOTO ch2

DECF Count,F ; reduce count to increase frequency
MOVLW TMin
SUBWF Count,W ; compare to the min period value
BTFSC STATUS,Carry; C is clear if Count<TMin

Consumer Appliance, Widget, Gadget

DS40160A/5_005-page 4



 1998 Microchip Technology Inc.

GOTO ch1
RETLW 0

; ***
; DelayLoop
; A simple delay routine...

DelayLoop
MOVWF DelayCnt ; save the count value

d1 DECFSZ DelayCnt,F ; count down,
GOTO d1 ; and loop,
RETLW 0 ; 'til we're done

; ***
; Random
; Generates a 'random' byte in RNum.
; Maintains a 2 byte shift register (LByte and HByte) that has an input
; provided by the XNOR of the inverse of the 13th bit and the carry out
; bit. Generates one bit at a time, so calls itself 8 times to form a byte.

Random MOVFHByte,F ; have to catch the special case where all
BTFSS STATUS,Zero ; 16 bits are 0
GOTO r1
MOVF LByte,F
BTFSS STATUS,Zero
GOTO r1
MOVF TMR0,W ; both bytes are zero, seed with the low byte
MOVWF LByte ; with the timer contents
BTFSS STATUS,Zero ; but even the timer might read zero
GOTO r1
DECF LByte,F ; so then, just seed with FF

r1 CALL RLoop ; 7 calls and a fall-through gives 8 calls...
CALL RLoop
CALL RLoop
CALL RLoop
CALL RLoop
CALL RLoop
CALL RLoop

RLoopMOVF CBit,F ; the XNOR is based on the carry and 13th bits
BTFSS STATUS,Zero ; check the 'carry bit'
GOTO CarryWas1

CarryWas0
BTFSC HByte,4 ; C=0, so check bit 13
INCF CBit,F ; if it's 1, we'll rotate in a 1
GOTO SetCarry

CarryWas1
CLRF CBit ; assume the new carry will be 0
BTFSS HByte,4 ; which it will be if bit13 is 1
INCF CBit,F ; else set CBit to 1 (b13=0)

SetCarry
CLRW ; start with W=0
ADDWF CBit,F ; adding 0 to anything forces C=0
BTFSS STATUS,Zero ; if CBit=0, go on
SUBWF CBit,F ; else, set C=1

RotateRLF LByte,F ; rotate the new bit into the shift reg
RLF HByte,F
CLRF CBit ; then set CBit to the current value of C

Consumer Appliance, Widget, Gadget



 1998 Microchip Technology Inc. DS40160A/5_005-page 5

BTFSC STATUS,Carry
INCF CBit,F
RETLW 0

; ***
; Wait
; Provides a 50mS delay - careful it uses Count reg!

Wait MOVLW D'65'
MOVWF Count ; loop counter

s1 MOVLW H'FF'
CALL DelayLoop ; delay 0.77mS
DECFSZ Count,F ; and repeat
GOTO s1
RETLW 0

; ***
; Power On jumps to here...either Init, or Main
; ***

Init CLRF WDTimes ; force a single chirp this time
CLRF ChirpCnt
INCF ChirpCnt,F

Main CLRF GPIO ; Init the port - WDT always clears it
MOVLW B'00111100' ; GP0 and GP1 are outputs, others are inputs
TRIS GPIO

CLRWDT ; Set up the timers...
MOVLW B'11001101' ; int clock to TMR0, WDT uses /32 (0.5s wakeup)
OPTION ; no pullups, and no wakeup on change

MOVF WDTimes,F ; check if WD has timed out enough times
BTFSC STATUS,Zero
GOTO Squeak ; counted down to zero - ready for a squeak
DECF WDTimes,F ; else count this time,
SLEEP ; and wait

m1 CALL Wait ; A squeak is chirpcnt chirps
Squeak CALL Chirp ; with pauses in between

DECFSZ ChirpCnt,F
GOTO m1

CLRWDT ; been busy... make sure we won't be interrupted
CALL Random ; let's get another random byte

MOVF RNum,W ; and determine the next ChirpCount...
ANDLW B'00000011' ; only use the last 2 bits for the count
MOVWF ChirpCnt ; but we can't have zero squeaks,
INCF ChirpCnt,F ; so add 1

SWAPF RNum,W ; now calculate the wakeup delay...
ANDLW B'00001111' ; only use the last 4 bits (0-8 sec delay)
MOVWF WDTimes
SLEEP ; that's all folks

END

Consumer Appliance, Widget, Gadget

DS40160A/5_005-page 6



 1998 Microchip Technology Inc.

NOTES:

