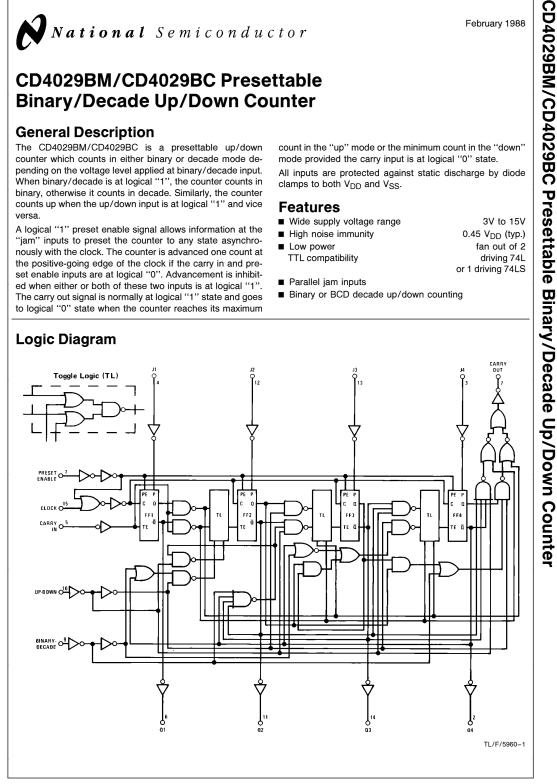


CD4029BM/CD4029BC Presettable **Binary/Decade Up/Down Counter**

General Description

The CD4029BM/CD4029BC is a presettable up/down counter which counts in either binary or decade mode depending on the voltage level applied at binary/decade input. When binary/decade is at logical "1", the counter counts in binary, otherwise it counts in decade. Similarly, the counter counts up when the up/down input is at logical "1" and vice versa.


A logical "1" preset enable signal allows information at the "jam" inputs to preset the counter to any state asynchronously with the clock. The counter is advanced one count at the positive-going edge of the clock if the carry in and preset enable inputs are at logical "0". Advancement is inhibited when either or both of these two inputs is at logical "1". The carry out signal is normally at logical "1" state and goes to logical "0" state when the counter reaches its maximum

count in the "up" mode or the minimum count in the "down" mode provided the carry input is at logical "0" state. All inputs are protected against static discharge by diode clamps to both V_{DD} and V_{SS} .

Features

Wide supply voltage range	3V to 15V
High noise immunity	0.45 V _{DD} (typ.)
Low power	fan out of 2
TTL compatibility	driving 74L
	or 1 driving 74LS
Parallel jam inputs	

■ Binary or BCD decade up/down counting

© 1995 National Semiconductor Corporation TL/F/5960 RRD-B30M105/Printed in U. S. A.

February 1988

Absolute Maximum Ratings (Notes 1 and 2)

If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications. DC Supply Voltage (V_{DD}) -0.5V to +18 V_{DC}

DC Supply Voltage (V _{DD})	-0.5V to $+18$ V _{DC}
Input Voltage (V _{IN})	$-0.5V$ to $V_{\mbox{DD}}$ $+$ 0.5 $V_{\mbox{DC}}$
Storage Temperature Range (T_S)	-65°C to +150°C
Power Dissipation (P _D)	
Dual-In-Line	700 mW
Small Outline	500 mW
Lead Temperature (T _L)	
(Soldering, 10 seconds)	260°C

Recommended Operating

DC Electrical Characteristics CD4029BM (Note 2)

	Parameter	Conditions	Conditions -55°C			+ 25°C		+ 125°C		Units
	i arameter	Conditions	Min	Max	Min	Тур	Max	Min	Max	
I _{DD}	Quiescent Device Current	$ \begin{array}{l} V_{DD} = 5V \\ V_{DD} = 10V \\ V_{DD} = 15V \end{array} $		5 10 20			5 10 20	5	150 300 600	μΑ μΑ μΑ
V _{OL}	Low Level Output Voltage			0.05 0.05 0.05		0 0 0	0.05 0.05 0.05		0.05 0.05 0.05	V V V
V _{OH}	High Level Output Voltage		4.95 9.95 14.95		4.95 9.95 14.95	5 10 15		4.95 9.95 14.95		V V V
V _{IL}	Low Level Input Voltage	$\begin{array}{l} V_{DD} = 5V, V_O = 0.5V \text{ or } 4.5V \\ V_{DD} = 10V, V_O = 1V \text{ or } 9V \\ V_{DD} = 15V, V_O = 1.5V \text{ or } 13.5V \end{array}$		1.5 3.0 4.0			1.5 3.0 4.0		1.5 3.0 4.0	V V V
V _{IH}	High Level Input Voltage	$\begin{array}{l} V_{DD} = 5V, V_O = 0.5V \text{ or } 4.5V \\ V_{DD} = 10V, V_O = 1V \text{ or } 9V \\ V_{DD} = 15V, V_O = 1.5V \text{ or } 13.5V \end{array}$	3.5 7.0 11.0		3.5 7.0 11.0			3.5 7.0 11.0		V V V
I _{OL}	Low Level Output Current (Note 3)	$V_{DD} = 5V, V_{O} = 0.4V$ $V_{DD} = 10V, V_{O} = 0.5V$ $V_{DD} = 15V, V_{O} = 1.5V$	0.64 1.6 4.2		0.51 1.3 3.4	0.88 2.25 8.8		0.36 0.9 2.4		mA mA mA
I _{ОН}	High Level Output Current (Note 3)	$V_{DD} = 5V, V_{O} = 4.6V$ $V_{DD} = 10V, V_{O} = 9.5V$ $V_{DD} = 15V, V_{O} = 13.5V$	-0.64 -1.6 -4.2		-0.51 -1.3 -3.4	-0.88 -2.25 -8.8		-0.36 -0.9 -2.4		mA mA mA
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$ $V_{DD} = 15V, V_{IN} = 15V$		-0.1 0.1		-10 ⁻⁵ 10 ⁻⁵	-0.1 0.1		-1.0 1.0	μΑ μΑ

DC Electrical Characteristics CD4029BC (Note 2)

Symbol	Parameter	Conditions	-40°C		+ 25°C			+ 85°C		Units
Symbol	Falameter	conditions	Min	Max	Min	Тур	Max	Min	Max	Onits
I _{DD}	Quiescent Device Current	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$		20 40 80			20 40 80		150 300 600	μΑ μΑ μΑ
V _{OL}	Low Level Output Voltage	$\begin{split} I_O &< 1 \; \mu A \\ V_{DD} &= 5 V \\ V_{DD} &= 10 V \\ V_{DD} &= 15 V \end{split}$		0.05 0.05 0.05		0 0 0	0.05 0.05 0.05		0.05 0.05 0.05	V V V
V _{OH}	High Level Output Voltage	$\begin{split} I_O &< 1 \; \mu A \\ V_{DD} &= 5 V \\ V_{DD} &= 10 V \\ V_{DD} &= 15 V \end{split}$	4.95 9.95 14.95		4.95 9.95 14.95	5 10 15		4.95 9.95 14.95		V V V

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: $V_{SS}\,=\,$ 0V unless otherwise specified.

Note 3: I_{OH} and I_{OL} are tested one output at a time.

Symbol Parameter	Conditions	-40°C		+ 25°C			+ 85°C		Units	
eyniser	rarameter		Min	Max	Min	Тур	Max	Min	Max	onno
V _{IL}	Low Level Input Voltage	$\begin{array}{l} V_{DD} = 5V, V_O = 0.5V \text{ or } 4.5V \\ V_{DD} = 10V, V_O = 1V \text{ or } 9V \\ V_{DD} = 15V, V_O = 1.5V \text{ or } 13.5V \end{array}$		1.5 3.0 4.0			1.5 3.0 4.0		1.5 3.0 4.0	V V V
V _{IH}	High Level Input Voltage	$\begin{array}{l} V_{DD} = 5V, V_O = 0.5V \text{ or } 4.5V \\ V_{DD} = 10V, V_O = 1V \text{ or } 9V \\ V_{DD} = 15V, V_O = 1.5V \text{ or } 13.5V \end{array}$	3.5 7.0 11.0		3.5 7.0 11.0			3.5 7.0 11.0		V V V
I _{OL}	Low Level Output Current (Note 3)		0.52 1.3 3.6		0.44 1.1 3.0	0.88 2.25 8.8		0.36 0.9 2.4		mA mA mA
I _{OH}	High Level Output Current (Note 3)		-0.52 -1.3 -3.6		-0.44 -1.1 -3.0	-0.88 -2.25 -8.8		-0.36 -0.9 -2.4		mA mA mA
I _{IN}	Input Current	$\begin{array}{l} V_{DD}=15V, V_{IN}=0V\\ V_{DD}=15V, V_{IN}=15V \end{array}$		-0.3 0.3		$^{-10^{-5}}_{10^{-5}}$	-0.3 0.3		-1.0 1.0	μΑ μΑ

AC Electrical Characteristics*

 T_A = 25°C, C_L = 50 pF, R_L = 200k, Input t_{rCL} = t_{fCL} = 20 ns, unless otherwise specified

Symbol	Parameter	Conditions	Min	Тур	Max	Units
CLOCKED OP	ERATION					
t _{PHL} or t _{PLH}	Propagation Delay Time to Q Outputs	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$		200 85 70	400 170 140	ns ns ns
t _{PHL} or t _{PLH}	Propagation Delay Time to Carry Output	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$		320 135 110	640 270 220	ns ns ns
t _{PHL} or t _{PLH}	Propagation Delay Time to Carry Output	$\begin{array}{l} C_L = 15 \ \text{pF} \\ V_{DD} = 5 \text{V} \\ V_{DD} = 10 \text{V} \\ V_{DD} = 15 \text{V} \end{array}$		285 120 95	570 240 190	ns ns ns
t_{THL} or t_{TLH}	Transition Time/Q or Carry Output	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$		100 50 40	200 100 80	ns ns ns
t_{WH} or t_{WL}	Minimum Clock Pulse Width	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$		160 70 55	320 135 110	ns ns ns
t_{rCL} or t_{fCL}	Maximum Clock Rise and Fall Time	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$	15 10 5			μs μs μs
t _{SU}	Minimum Set-Up Time	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$		180 70 55	360 140 110	ns ns ns
f _{CL}	Maximum Clock Frequency	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$	1.5 3.7 4.5	3.1 7.4 9		MHz MHz MHz
C _{IN}	Average Input Capacitance	Any Input		5	7.5	pF
C _{PD}	Power Dissipation Capacitance	Per Package (Note 4)		65		pF

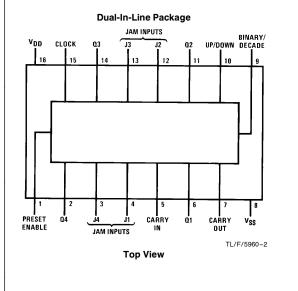
Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: $V_{SS}\,=\,$ 0V unless otherwise specified.

Note 3: $I_{\mbox{OH}}$ and $I_{\mbox{OL}}$ are tested one output at a time.

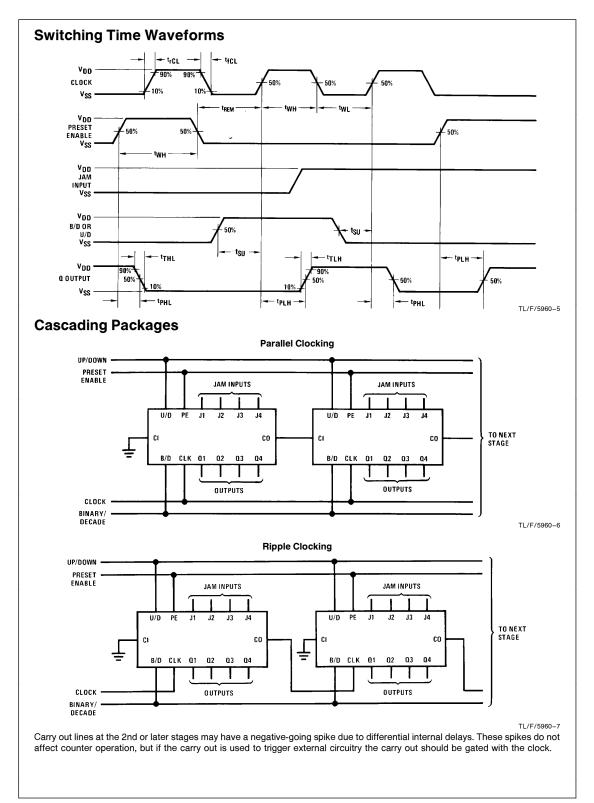
Symbol	Parameter	Conditions	Min	Тур	Max	Units
PRESET ENABL	LE OPERATION					
t _{PHL} or t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		285	570	ns
	to Q output	$V_{DD} = 10V$		115	230	ns
		$V_{DD} = 15V$		95	195	ns
t _{PHL} or t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		400	800	ns
	to Carry Output	$V_{DD} = 10V$		165	330	ns
		$V_{DD} = 15V$		135	260	ns
t _{WH}	Minimum Preset Enable	$V_{DD} = 5V$		80	160	ns
	Pulse Width	$V_{DD} = 10V$		30	60	ns
		$V_{DD} = 15V$		25	50	ns
t _{REM}	Minimum Preset Enable	$V_{DD} = 5V$		150	300	ns
	Removal Time	$V_{DD} = 10V$		60	120	ns
		$V_{DD} = 15V$		50	100	ns
CARRY INPUT	OPERATION					
t _{PHL} or t _{PLH}	Propagation Delay Time	$V_{DD} = 5V$		265	530	ns
	to Carry Output	$V_{DD} = 10V$		110	220	ns
		$V_{DD} = 15V$		90	180	ns
t _{PHL} , t _{PLH}	Propagation Delay Time	$C_L = 15 pF$				
	to Carry Output	$V_{DD} = 5V$		200	400	ns
		$V_{DD} = 10V$		85	170	ns
		V _{DD} = 15V		70	140	ns

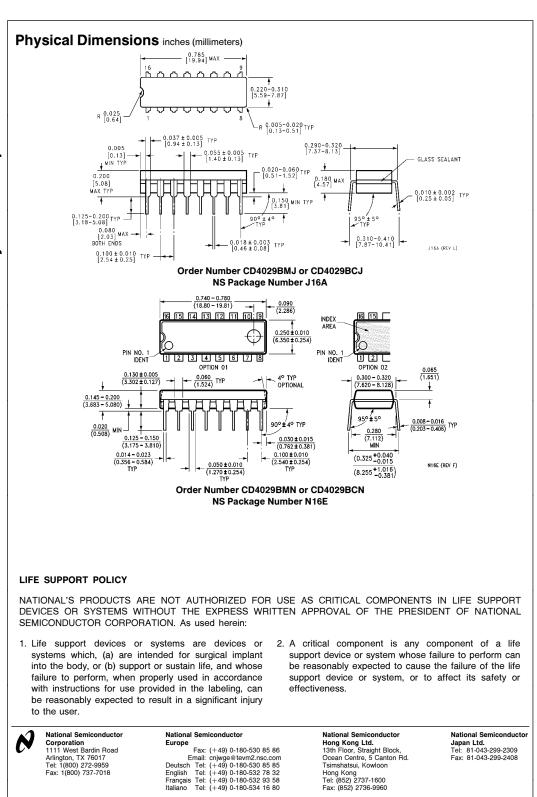
*AC Parameters are guaranteed by DC correlated testing.


Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.

Note 2: $V_{\mbox{SS}}$ = 0V unless otherwise specified.


Note 3: $I_{\mbox{OH}}$ and $I_{\mbox{OL}}$ are tested one output at a time.


Note 4: C_{PD} determines the no load AC power consumption of any CMOS device. For complete explanation, see 54C/74C Family Characteristics application note, AN-90.


Connection Diagram

Order Number CD4029B

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.