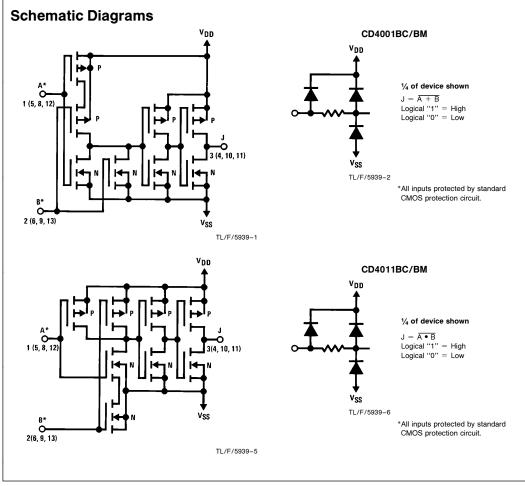


CD4001BM/CD4001BC Quad 2-Input NOR Buffered B Series Gate CD4011BM/CD4011BC Quad 2-Input NAND Buffered B Series Gate


General Description

These quad gates are monolithic complementary MOS (CMOS) integrated circuits constructed with N- and P-channel enhancement mode transistors. They have equal source and sink current capabilities and conform to standard B series output drive. The devices also have buffered outputs which improve transfer characteristics by providing very high gain.

Features ■ Low power TTL compatibility

- TTL Fan out of 2 driving 74L y or 1 driving 74LS
- 5V-10V-15V parametric ratings
- Symmetrical output characteristics
- Maximum input leakage 1 µA at 15V over full temperature range

All inputs are protected against static discharge with diodes to $V_{\mbox{DD}}$ and $V_{\mbox{SS}}.$

©1995 National Semiconductor Corporation TL/F/5939

RRD-B30M105/Printed in U. S. A.

March 1988

CD4001BM/CD4001BC CD4011BM/CD4011BC

Quad

2-Input NOR Buffered B Series Gate

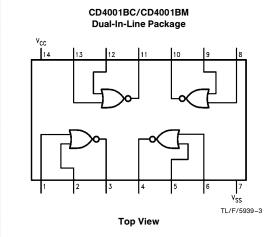
Absolute Maximum Ratings (Notes 1 and 2) If Military/Aerospace specified devices are required, please contact the National Semiconductor Sales Office/Distributors for availability and specifications.

Voltage at any Pin -0.5V to V_{DD} +0.5V

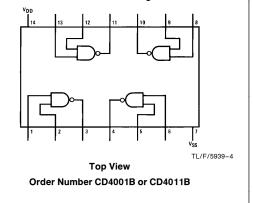
700 mW
500 mW
$-0.5~V_{DC}$ to $+18~V_{DC}$
-65°C to +150°C
260°C

Operating Conditions

Operating Range (V_{DD}) Operating Temperature Range CD4001BM, CD4011BM CD4001BC, CD4011BC


3 V_{DC} to 15 V_{DC}

-55°C to +125°C -40°C to +85°C


DC Electrical Characteristics CD4001BM, CD4011BM (Note 2)

Symbol	Parameter	Conditions	−55°C		+ 25°C			+ 125°C		Units
oymbol			Min	Max	Min	Тур	Max	Min	Max	onito
I _{DD}	Quiescent Device Current	$ \begin{array}{l} V_{DD}=5V, V_{IN}=V_{DD} \text{ or } V_{SS} \\ V_{DD}=10V, V_{IN}=V_{DD} \text{ or } V_{SS} \\ V_{DD}=15V, V_{IN}=V_{DD} \text{ or } V_{SS} \end{array} $		0.25 0.50 1.0		0.004 0.005 0.006	0.25 0.50 1.0		7.5 15 30	μΑ μΑ μΑ
V _{OL}	Low Level Output Voltage	$\left. \begin{array}{l} V_{DD} = 5V \\ V_{DD} = 10V \\ V_{DD} = 15V \end{array} \right\} \left I_O \right < 1 \; \mu A$		0.05 0.05 0.05		0 0 0	0.05 0.05 0.05		0.05 0.05 0.05	V V V
V _{OH}	High Level Output Voltage	$\left. \begin{array}{l} V_{DD}=5V\\ V_{DD}=10V\\ V_{DD}=15V \end{array} \right\} \left I_O \right < 1 \; \mu A \label{eq:VDD}$	4.95 9.95 14.95		4.95 9.95 14.95	5 10 15		4.95 9.95 14.95		V V V
VIL	Low Level Input Voltage	$V_{DD} = 5V, V_O = 4.5V$ $V_{DD} = 10V, V_O = 9.0V$ $V_{DD} = 15V, V_O = 13.5V$		1.5 3.0 4.0		2 4 6	1.5 3.0 4.0		1.5 3.0 4.0	V V V
V _{IH}	High Level Input Voltage	$V_{DD} = 5V, V_O = 0.5V$ $V_{DD} = 10V, V_O = 1.0V$ $V_{DD} = 15V, V_O = 1.5V$	3.5 7.0 11.0		3.5 7.0 11.0	3 6 9		3.5 7.0 11.0		V V V
I _{OL}	Low Level Output Current (Note 3)		0.64 1.6 4.2		0.51 1.3 3.4	0.88 2.25 8.8		0.36 0.9 2.4		mA mA mA
I _{OH}	High Level Output Current (Note 3)		-0.64 -1.6 -4.2		-0.51 -1.3 -3.4	-0.88 -2.25 -8.8		-0.36 -0.9 -2.4		mA mA mA
I _{IN}	Input Current	$\begin{array}{l} V_{DD}=15V,V_{IN}=0V\\ V_{DD}=15V,V_{IN}=15V \end{array}$		-0.10 0.10		-10 ⁻⁵ 10 ⁻⁵	-0.10 0.10		- 1.0 1.0	μΑ μΑ

Connection Diagrams

CD4011BC/CD4011BM Dual-In-Line Package

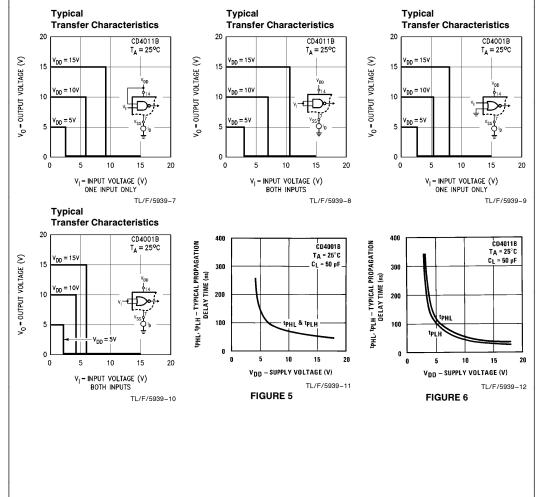
Symbol	Parameter	Conditions	-40°C		+ 25°C			+ 85°C		Units
			Min	Max	Min	Тур	Max	Min	Max	Units
I _{DD}	Quiescent Device Current			1 2 4		0.004 0.005 0.006	1 2 4		7.5 15 30	μΑ μΑ μΑ
V _{OL}	Low Level Output Voltage	$\left. \begin{array}{l} V_{DD}=5V\\ V_{DD}=10V\\ V_{DD}=15V \end{array} \right\} \hspace{0.2cm} \left I_{O} \right < 1 \; \mu A \end{array} \right. \label{eq:VDD}$		0.05 0.05 0.05		0 0 0	0.05 0.05 0.05		0.05 0.05 0.05	V V V
V _{OH}	High Level Output Voltage	$\left. \begin{array}{l} V_{DD} = 5V \\ V_{DD} = 10V \\ V_{DD} = 15V \end{array} \right\} \hspace{0.2cm} \left I_{O} \right < 1 \; \mu A \\ \end{array} \right. \label{eq:VDD}$	4.95 9.95 14.95		4.95 9.95 14.95	5 10 15		4.95 9.95 14.95		V V V
V _{IL}	Low Level Input Voltage	$\begin{split} V_{DD} &= 5V, V_O = 4.5V \\ V_{DD} &= 10V, V_O = 9.0V \\ V_{DD} &= 15V, V_O = 13.5V \end{split}$		1.5 3.0 4.0		2 4 6	1.5 3.0 4.0		1.5 3.0 4.0	V V V
V _{IH}	High Level Input Voltage	$\begin{split} V_{DD} &= 5V, V_O = 0.5V \\ V_{DD} &= 10V, V_O = 1.0V \\ V_{DD} &= 15V, V_O = 1.5V \end{split}$	3.5 7.0 11.0		3.5 7.0 11.0	3 6 9		3.5 7.0 11.0		V V V
I _{OL}	Low Level Output Current (Note 3)		0.52 1.3 3.6		0.44 1.1 3.0	0.88 2.25 8.8		0.36 0.9 2.4		mA mA mA
I _{OH}	High Level Output Current (Note 3)	$\begin{split} V_{DD} &= 5V, V_O = 4.6V \\ V_{DD} &= 10V, V_O = 9.5V \\ V_{DD} &= 15V, V_O = 13.5V \end{split}$	-0.52 -1.3 -3.6		-0.44 -1.1 -3.0	-0.88 -2.25 -8.8		-0.36 -0.9 -2.4		mA mA mA
I _{IN}	Input Current	$V_{DD} = 15V, V_{IN} = 0V$ $V_{DD} = 15V, V_{IN} = 15V$		-0.30 0.30		-10 ⁻⁵ 10 ⁻⁵	-0.30 0.30		- 1.0 1.0	μΑ μΑ

AC Electrical Characteristics^{*} CD4001BC, CD4001BM $T_A = 25^{\circ}$ C, Input t_f; t_f = 20 ns. C_L = 50 pF, R_L = 200k. Typical temperature coefficient is 0.3%/°C.

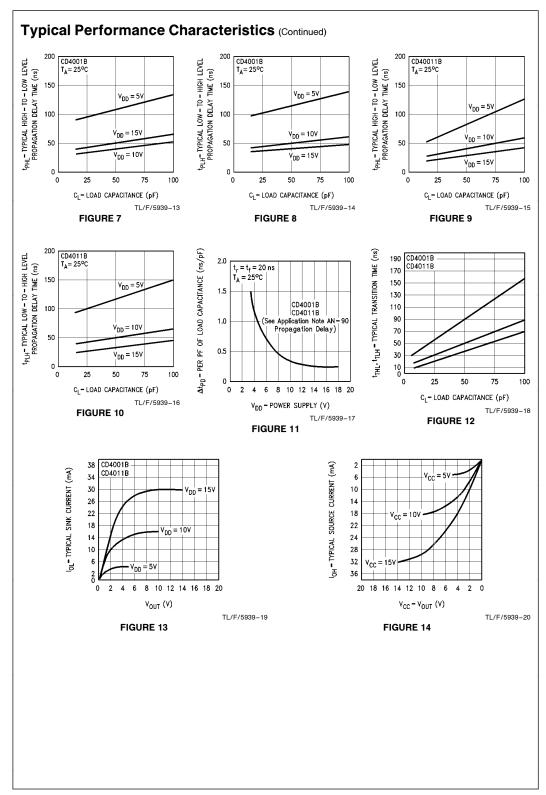
Symbol	Parameter	Conditions	Тур	Max	Units
t _{PHL}	Propagation Delay Time,	$V_{DD} = 5V$	120	250	ns
	High-to-Low Level	$V_{DD} = 10V$	50	100	ns
		$V_{DD} = 15V$	35	70	ns
t _{PLH}	Propagation Delay Time,	$V_{DD} = 5V$	110	250	ns
	Low-to-High Level	$V_{DD} = 10V$	50	100	ns
		$V_{DD} = 15V$	35	70	ns
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$	90	200	ns
		$V_{DD} = 10V$	50	100	ns
		$V_{DD} = 15V$	40	80	ns
C _{IN}	Average Input Capacitance	Any Input	5	7.5	pF
C _{PD}	Power Dissipation Capacity	Any Gate	14		pF

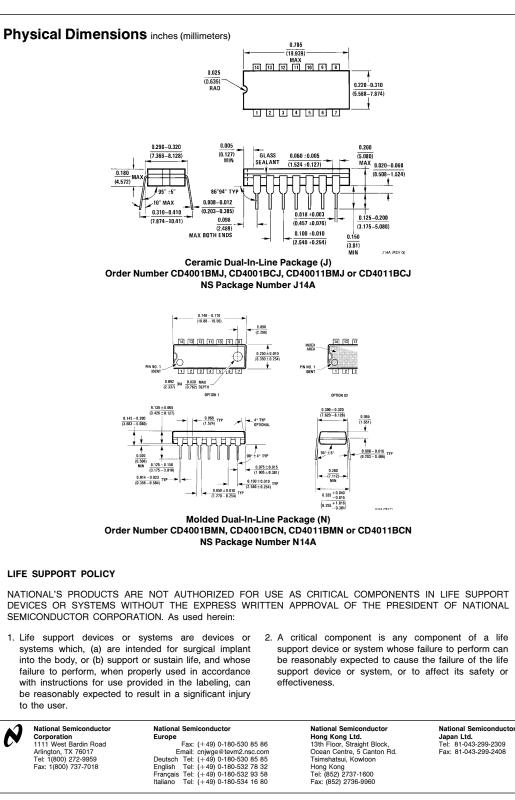
*AC Parameters are guaranteed by DC correlated testing.

Note 1: "Absolute Maximum Ratings" are those values beyond which the safety of the device cannot be guaranteed. Except for "Operating Temperature Range" they are not meant to imply that the devices should be operated at these limits. The table of "Electrical Characteristics" provides conditions for actual device operation.


Note 2: All voltages measured with respect to V_{SS} unless otherwise specified.

Note 3: I_{OL} and I_{OH} are tested one output at a time.


C Electrical Characteristics [*] CD4011BC, CD4011BM $_{A} = 25^{\circ}$ C, Input t _f ; t _f = 20 ns. C _L = 50 pF, R _L = 200k. Typical Temperature Coefficient is 0.3%/°C.						
Symbol	Parameter	Conditions	Тур	Max	Units	
t _{PHL}	Propagation Delay, High-to-Low Level	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$	120 50 35	250 100 70	ns ns ns	
t _{PLH}	Propagation Delay, Low-to-High Level	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$	85 40 30	250 100 70	ns ns ns	
t _{THL} , t _{TLH}	Transition Time	$V_{DD} = 5V$ $V_{DD} = 10V$ $V_{DD} = 15V$	90 50 40	200 100 80	ns ns ns	
C _{IN}	Average Input Capacitance	Any Input	5	7.5	pF	
C _{PD}	Power Dissipation Capacity	Any Gate	14		pF	


*AC Parameters are guaranteed by DC correlated testing.

4

National does not assume any responsibility for use of any circuitry described, no circuit patent licenses are implied and National reserves the right at any time without notice to change said circuitry and specifications.