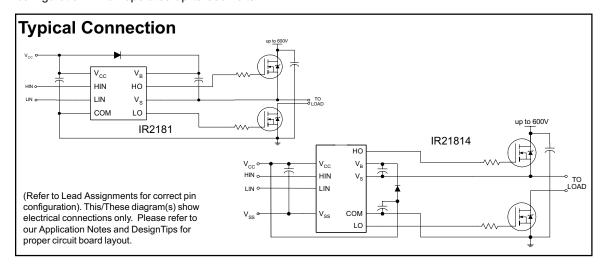

International TOR Rectifier

IR2181(4)(S) & (PbF)

HIGH AND LOW SIDE DRIVER

Features

- Floating channel designed for bootstrap operation Fully operational to +600V
 Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 10 to 20V
- Undervoltage lockout for both channels
- 3.3V and 5V input logic compatible
- Matched propagation delay for both channels
- Logic and power ground +/- 5V offset.
- Lower di/dt gate driver for better noise immunity
- Output source/sink current capability 1.4A/1.8A
- Also available LEAD-FREE (PbF)


IR2181/IR2183/IR2184 Feature Comparison

Description

The IR2181(4)(S) are high voltage, high speed power MOSFET and IGBT drivers with independent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable rugge-

Part	Input logic	Cross- conduction prevention logic	Dead-Time	Ground Pins	Ton/Toff
2181	HIN/LIN	no	none	COM	180/220 ns
21814	TIIIN/LIIN	110	TIONE	VSS/COM	100/220115
2183	HIN/LIN	yes	Internal 500ns	COM	180/220 ns
21834	TIIIV/LIIV	yes	Program 0.4 ~ 5 us	VSS/COM	100/220115
2184	IN/SD	Vec	Internal 500ns	COM	680/270 ns
21844	114/30	yes	Program 0.4 ~ 5 us	VSS/COM	000/2/0118

dized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 volts.

International

TOR Rectifier

Absolute Maximum Ratings

Absolute maximum ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units	
V _B	High side floating absolute voltage	-0.3	625		
Vs	High side floating supply offset voltage		V _B - 25	V _B + 0.3	
V _{HO}	High side floating output voltage		V _S - 0.3	V _B + 0.3	
V _{CC}	Low side and logic fixed supply voltage		-0.3	25] ,,
V _{LO}	Low side output voltage		-0.3	V _{CC} + 0.3	V
V _{IN}	Logic input voltage (HIN & LIN - IR2181/I	R21814)	V _{SS} - 0.3	V _{SS} + 10	
V _{SS}	Logic ground (IR21814 only)		V _{CC} - 25	V _{CC} + 0.3]
dV _S /dt	Allowable offset supply voltage transient	_	50	V/ns	
P _D	Package power dissipation @ T _A ≤ +25°C	(8-lead PDIP)	_	1.0	
		(8-lead SOIC)	_	0.625	
		(14-lead PDIP)	_	1.6	W
		(14-lead SOIC)	_	1.0	
Rth _{JA}	Thermal resistance, junction to ambient	(8-lead PDIP)	_	125	
		(8-lead SOIC)	_	200	°C/W
		(14-lead PDIP)	_	75	0,44
		(14-lead SOIC)	_	120	
TJ	Junction temperature		_	150	
T _S	Storage temperature		-50	150	°C
TL	Lead temperature (soldering, 10 seconds)	_	300	Ī	

Recommended Operating Conditions

The Input/Output logic timing diagram is shown in figure 1. For proper operation the device should be used within the recommended conditions. The V_S and V_{SS} offset rating are tested with all supplies biased at 15V differential.

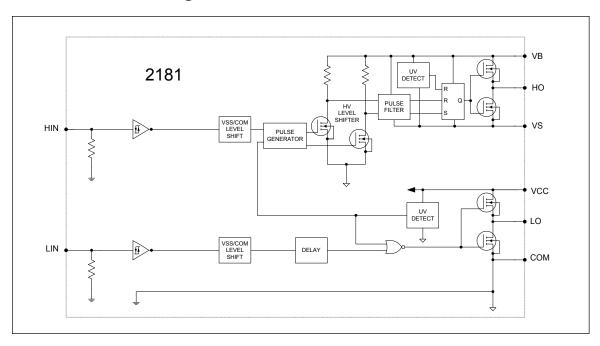
Symbol	Definition	Min.	Max.	Units
VB	High side floating supply absolute voltage	V _S + 10	V _S + 20	
Vs	High side floating supply offset voltage	Note 1	600	
V _{HO}	High side floating output voltage	Vs	V _B	
Vcc	Low side and logic fixed supply voltage	10	20	V
V _{LO}	Low side output voltage	0	V _{CC}	
V _{IN}	Logic input voltage (HIN & LIN - IR2181/IR21814)	Vss	V _{SS} + 5	
V _{SS}	Logic ground (IR21814/IR21824 only)	-5	5	
TA	Ambient temperature	-40	125	°C

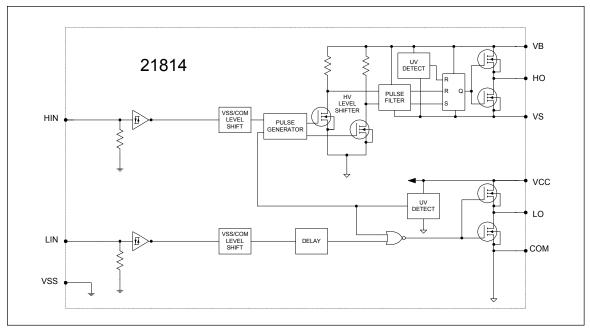
Note 1: Logic operational for V_S of -5 to +600V. Logic state held for V_S of -5V to -V_{BS}. (Please refer to the Design Tip DT97-3 for more details).

Note 2: HIN and LIN pins are internally clamped with a 5.2V zener diode.

Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC}, V_{BS}) = 15V, V_{SS} = COM, C_L = 1000 pF, T_A = 25°C.

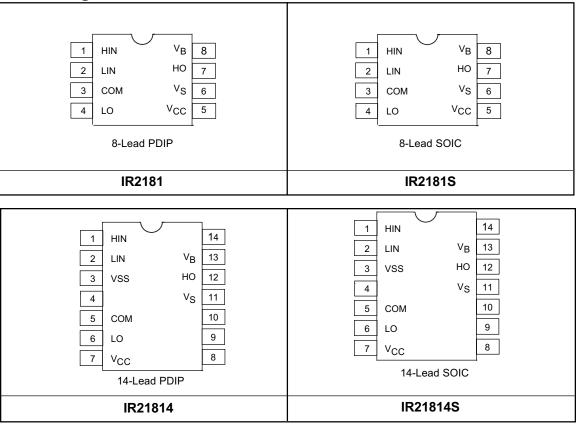

Symbol	Definition		Тур.	Max.	Units	Test Conditions
ton	Turn-on propagation delay	_	180	270		V _S = 0V
toff	Turn-off propagation delay	_	220	330		V _S = 0V or 600V
MT	Delay matching, HS & LS turn-on/off	_	0	35	nsec	
t _r	Turn-on rise time	_	40	60		V _S = 0V
tf	Turn-off fall time	_	20	35		V _S = 0V


Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS}) = 15V, V_{SS} = COM and T_A = 25°C unless otherwise specified. The V_{IL} , V_{IH} and I_{IN} parameters are referenced to V_{SS} /COM and are applicable to the respective input leads HIN and LIN. The V_O , I_O and Ron parameters are referenced to COM and are applicable to the respective output leads: HO and LO.

Symbol	Definition		Тур.	Max.	Units	Test Conditions
V _{IH}	Logic "1" input voltage (IR2181/IR21814)	2.7	_	_		V _{CC} = 10V to 20V
V _{IL}	Logic "0" input voltage (IR2181/IR21814)		_	0.8	V	V _{CC} = 10V to 20V
Voн	High level output voltage, V _{BIAS} - V _O	_	_	1.2		I _O = 0A
V _{OL}	Low level output voltage, VO	_	_	0.1		I _O = 0A
ILK	Offset supply leakage current	_	_	50		V _B = V _S = 600V
I _{QBS}	Quiescent V _{BS} supply current	20	60	150		V _{IN} = 0V or 5V
IQCC	Quiescent V _{CC} supply current	50	120	240	μA	V _{IN} = 0V or 5V
I _{IN+}	Logic "1" input bias current	_	25	60		V _{IN} = 5V
I _{IN-}	Logic "0" input bias current	_	_	1.0		V _{IN} = 0V
V _{CCUV+}	V _{CC} and V _{BS} supply undervoltage positive going	8.0	8.9	9.8		
V _{BSUV+}	threshold					
V _{CCUV} -	V _{CC} and V _{BS} supply undervoltage negative going	7.4	8.2	9.0	V	
V _{BSUV} -	threshold					
V _{CCUVH}	Hysteresis	0.3	0.7	_		
V _{BSUVH}						
I _{O+}	Output high short circuit pulsed current	1.4	1.9	_		V _O = 0V,
					Α	PW ≤ 10 µs
I _{O-}	Output low short circuit pulsed current	1.8	2.3	-		V _O = 15V,
						PW ≤ 10 µs

Functional Block Diagrams



Lead Definitions

Symbol	Description		
HIN	Logic input for high side gate driver output (HO), in phase (IR2181/IR21814)		
LIN	Logic input for low side gate driver output (LO), in phase (IR2181/IR21814)		
VSS	Logic Ground (IR21814 only)		
V _B	High side floating supply		
НО	High side gate drive output		
Vs	High side floating supply return		
Vcc	Low side and logic fixed supply		
LO	Low side gate drive output		
СОМ	Low side return		

Lead Assignments

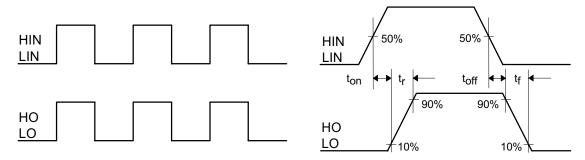


Figure 1. Input/Output Timing Diagram

Figure 2. Switching Time Waveform Definitions

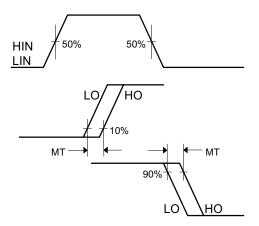


Figure 3. Delay Matching Waveform Definitions

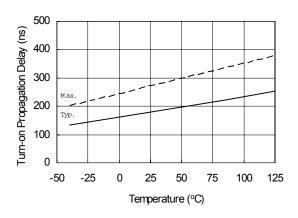


Figure 4A. Turn-on Propagation Delay vs. Temperature

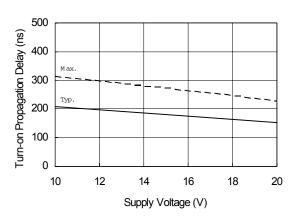


Figure 4B. Turn-on Propagation Delay vs. Supply Voltage

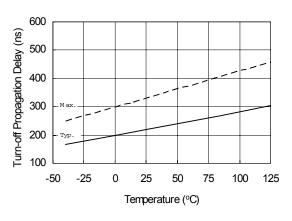


Figure 5A. Turn-off Propagation Delay vs. Temperature

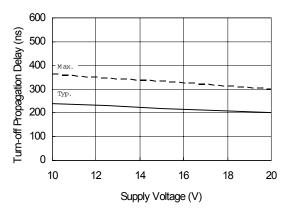


Figure 5B. Turn-off Propagation Delay vs. Supply Voltage

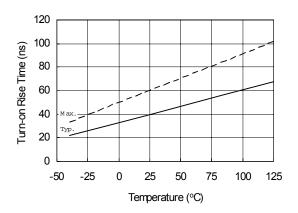


Figure 6A. Turn-on Rise Time vs. Temperature

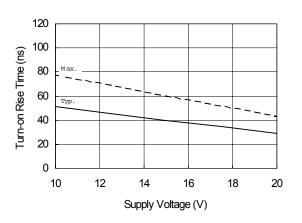


Figure 6B. Turn-on Rise Time vs. Supply Voltage

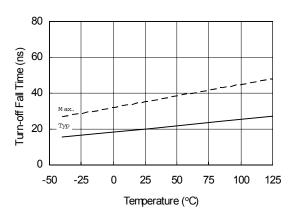


Figure 7A. Turn-off Fall Time vs. Temperature

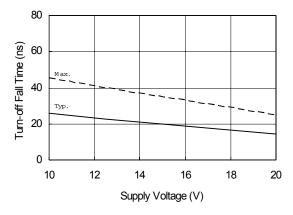


Figure 7B. Turn-off Fall Time vs. Supply Voltage

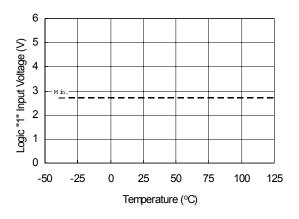


Figure 8A. Logic "1" Input Voltage vs. Temperature

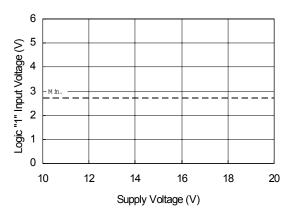


Figure 8B. Logic "1" Input Voltage vs. Supply Voltage

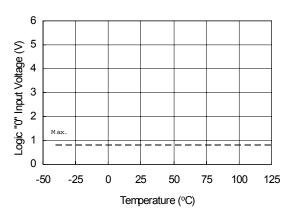


Figure 9A. Logic "0" Input Voltage vs. Temperature

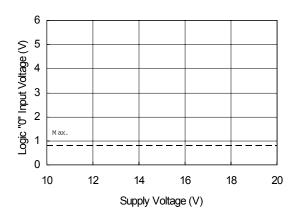


Figure 9B. Logic "0" Input Voltage vs. Supply Voltage

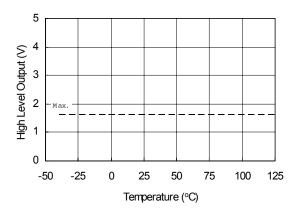


Figure 10A. High Level Output vs. Temperature

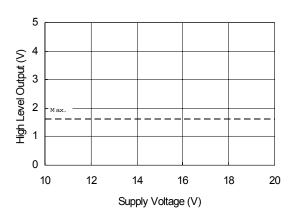


Figure 10B. High Level Output vs. Supply Voltage

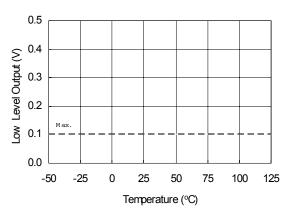


Figure 11A. Low Level Output vs. Temperature

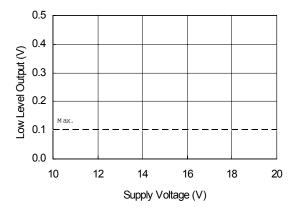


Figure 11B. Low Level Output vs. Supply Voltage

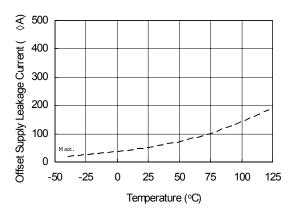


Figure 12A. Offset Supply Leakage Current vs. Temperature

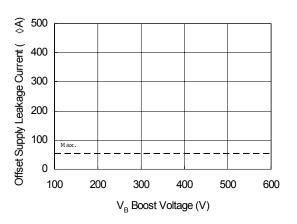


Figure 12B. Offset Supply Leakage Current vs. $V_{\rm B}$ Boost Voltage

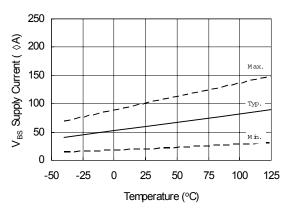


Figure 13A. V_{BS} Supply Current vs. Temperature

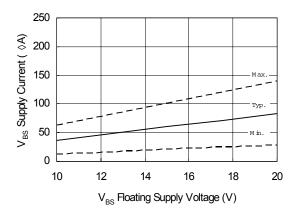


Figure 13B. $\rm V_{BS}$ Supply Current vs. $\rm V_{BS}$ Floating Supply Voltage

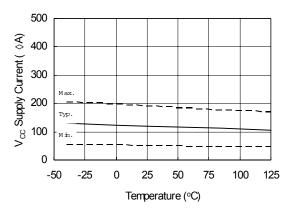


Figure 14A. $V_{\rm cc}$ Supply Current vs. $V_{\rm cc}$ Temperature

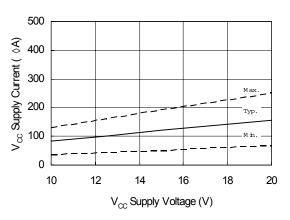


Figure 14B. $\rm V_{cc}$ Supply Current vs. $\rm V_{cc}$ Supply Voltage

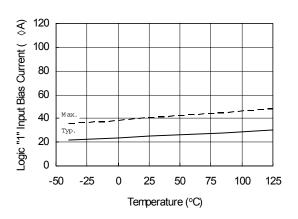


Figure 15A. Logic "1" Input Bias Current vs. Temperature

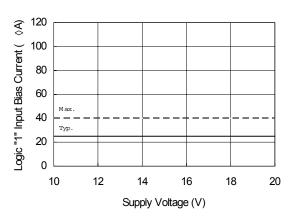


Figure 15B. Logic "1" Input Bias Current vs. Supply Voltage

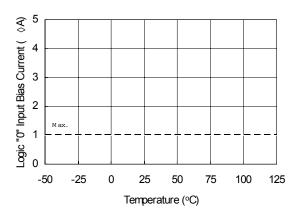


Figure 16A. Logic "0" Input Bias Current vs. Temperature

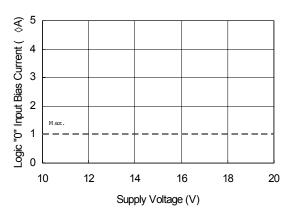


Figure 16B. Logic "0" Input Bias Current vs. Supply Voltage

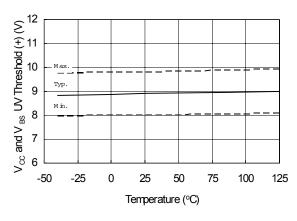


Figure 17. $V_{\rm CC}$ and $V_{\rm BS}$ Undervoltage Threshold (+) vs. Temperature

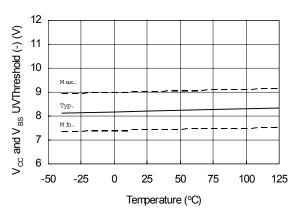


Figure 18. V_{CC} and V_{BS} Undervoltage Threshold (-) vs. Temperature

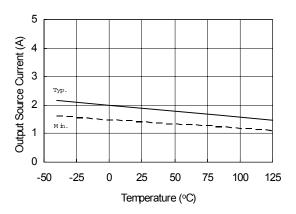


Figure 19A. Output Source Current vs. Temperature

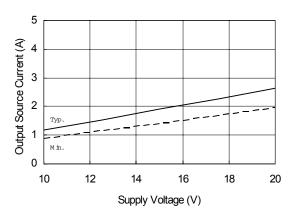


Figure 19B. Output Source Current vs. Supply Voltage

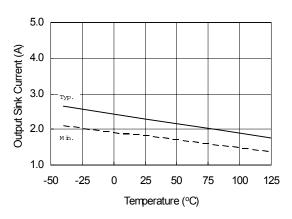


Figure 20A. Output Sink Current vs. Temperature

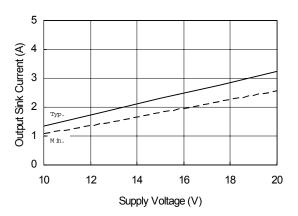


Figure 20B. Output Sink Current vs. Supply Voltage

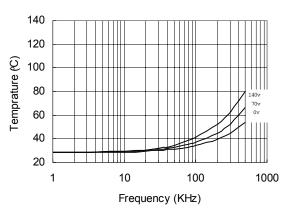


Figure 21. IR2181 vs. Frequency (IRFBC20), ${\rm R_{gate}}\text{=}33\Omega,\,{\rm V_{cc}}\text{=}15{\rm V}$

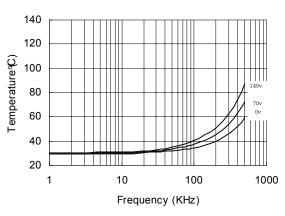


Figure 22.IR2181 vs.Frequency (IRFBC30), $R_{\rm gate} = 22 \Omega \text{, V}_{\rm CC} = 15 \text{V}$

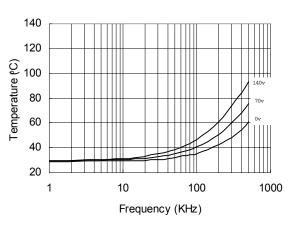


Figure 23. \mathbb{R} 2181 vs. Frequency (\mathbb{R} FBC 40), $R_{\text{gate}} = 15 \Omega, V_{\text{CC}} = 15 V$

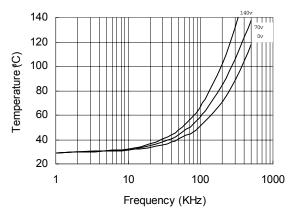


Figure 24. R2181 vs. Frequency (RFPE50), $R_{\text{gate}} = 10 \Omega, V_{\text{cc}} = 15 V$

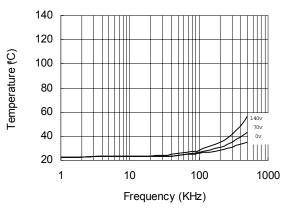


Figure 25.R21814 vs.Frequency (RFBC 20), $R_{\rm gate} = 33 \Omega \mbox{,} V_{\rm cc} = 15 V \label{eq:reconstruction}$

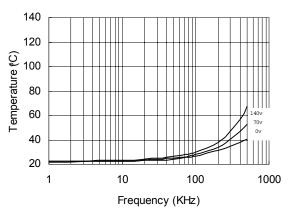


Figure 26. R 21814 vs. Frequency (RFBC 30), $R_{\rm gate} = 22 \Omega \text{, V}_{\rm CC} = 15 \text{V}$

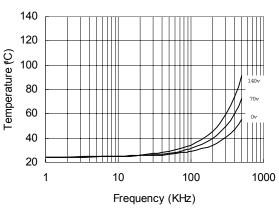


Figure 27.R21814 vs.Frequency (RFBC 40), $R_{\rm gate} = 15 \Omega , V_{\rm CC} = 15 V$

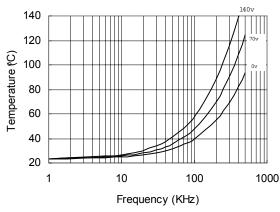


Figure 28.R21814 vs.Frequency (RFPE50), $R_{\rm gate} = 10 \, \Omega \, , V_{\rm CC} = 15 V \label{eq:RFPE50}$

Figure 29. R2181s vs. Frequency (RFBC 20), $R_{\rm gate} = 33 \Omega \text{, V}_{\rm CC} = 15 \text{V}$

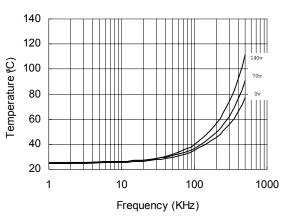


Figure 30.R2181s vs.Frequency (RFBC30), $R_{\rm gate} = 22 \Omega \mbox{,V}_{\rm cc} = 15 \mbox{V} \label{eq:reconstruction}$

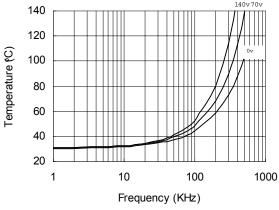


Figure 31.R2181s vs.Frequency (RFBC40), $R_{_{\tt qabs}} = 15 \Omega \text{,V}_{_{\tt CC}} = 15 \text{V}$

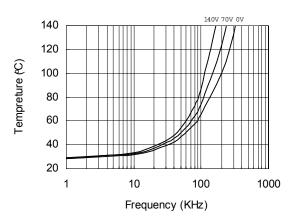


Figure 32.R2181s vs.Frequency (RFPE50), $R_{\rm gate} = 10 \, \Omega \, , V_{\rm CC} = 15 V \label{eq:RFPE50}$

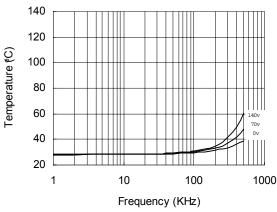


Figure 33. \mathbb{R} 21814s vs. Frequency (\mathbb{R} FBC 20), $R_{\text{gate}} = 33 \Omega, V_{\text{CC}} = 15 V$

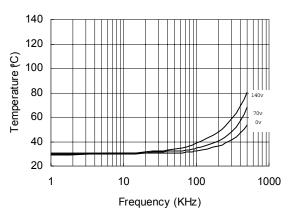


Figure 34.R21814s vs.Frequency (RFBC 30), $R_{\rm gate} = 22 \Omega \text{, V}_{\rm CC} = 15 \text{V}$

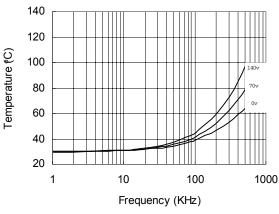


Figure 35. \mathbb{R} 21814s vs. Frequency (RFBC 40), $R_{_{\text{gate}}} = 15 \Omega \text{, V}_{_{\text{CC}}} = 15 \text{V}$

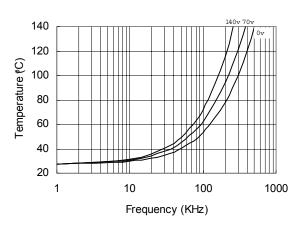
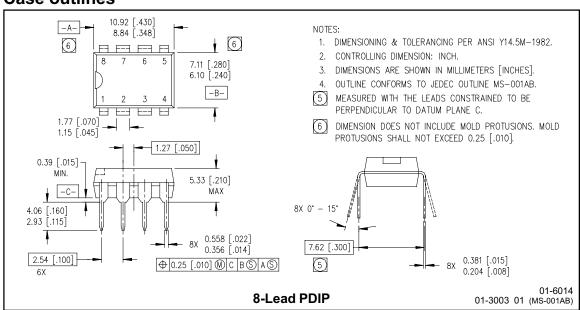
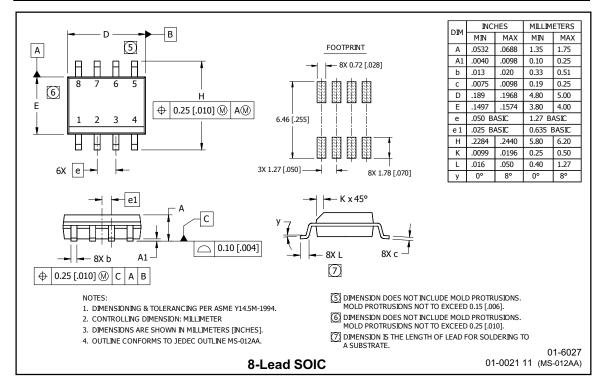
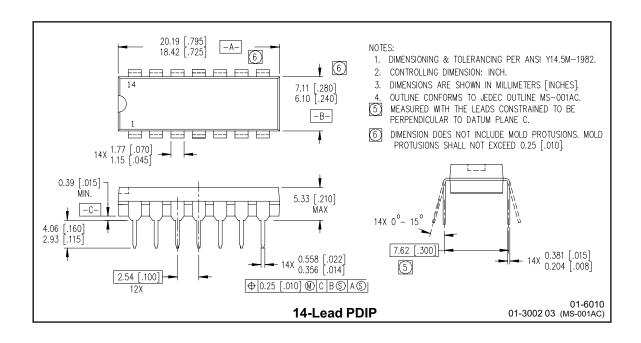
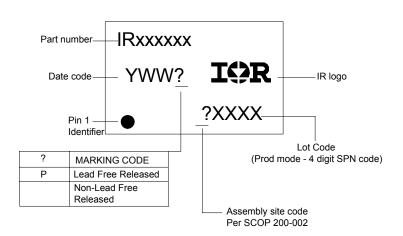





Figure 36. \mathbb{R} 21814s vs. Frequency (\mathbb{R} FPE50), $\mathbf{R}_{\text{gate}} = \mathbf{10}_{\Omega}, \mathbf{V}_{\text{cc}} = \mathbf{15} \mathbf{V}$

Case outlines



LEADFREE PART MARKING INFORMATION

ORDER INFORMATION

Basic Part (Non-Lead Free)

8-Lead PDIP IR2181 order IR2181 8-Lead SOIC IR2181S order IR2181S 14-Lead PDIP IR21814 order IR21814 14-Lead SOIC IR21814 order IR21814S

Leadfree Part

8-Lead PDIP IR2181 order IR2181PbF 8-Lead SOIC IR2181S order IR2181SPbF 14-Lead PDIP IR21814 order IR21814PbF 14-Lead SOIC IR21814 order IR21814SPbF

International TOR Rectifier

Thisproduct has been designed and qualified for the industrial market.

Qualification Standards can be found on IR's Web Site http://www.irf.com

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105 10/15/2004