A USB BARCODE READER/SCANNER IMPLEMENTATION
WITH PS2-TO-USB CONVERSION

Paul Yang & Eric Lu
APIC, Philips Semiconductors

OVERVIEW

A barcode reader/scanner istypically employed in a point-of-sale (POS) class application in that the scanned bar code data can be
transferred to the host party through the USB. The USB HID DWG has developed a HID usage table specification particularly for
POS class products and has also released revision 1.0 for barcode usage table.

Barcode product vendors can design the new barcode reader/scanner to fully comply with the barcode specification. Nevertheless, an

intermediate product that can convert PS/2 interface to USB will still find relevance in the current market. The reasons are:

- To design anew barcode product that is fully compliant with USB HID specification and USB barcode specification, vendors
must invest timein training their engineers to be familiar with the specifications.
To date, Win 98 has not integrated compatible minidrivers to support the USB barcode reader/scanner. This may also be true of
Win2000. Hence, vendors have to develop their own minidrivers for such barcode products.
Some of the USB HID compliant devices such as keyboard and mouse have drivers that are already mature under Win 98. By
providing a converter that can expertly transform atraditional barcode product into such USB HID compliant devices, no specia
minidrivers will be necessary for the barcode product. Vendors are required only to convert the formatted data from PS/2 protocol
to USB protocol in the converter firmware. For barcode vendors, the additional cost is very low, yet they get al the benefits of a
new technology, i.e., USB, for their mature products. For existing customers of barcode products, they can protect their
investment because they do not need to buy a new barcode reader or device driver.

To install the converter, amicrocontroller and a USB interface IC are required. PDIUSBD11 (D11) of Philips Semiconductorsis a
USB interface IC that interfaces with the microcontroller through 1°C. It has some additional advantages, most importantly, serving as
agood link and possessing enough physical endpoints.

In this engineering manual, we use D11 and 80C51 in implementing the PS/2-to-USB conversion.

HARDWARE SCHEME

Figure 1 shows the schematic of the proposed converter. The device is bus-powered. As D11 works under 3.3V of power supply,

hence, a 3.3V power supply regulator is required to convert the 5V into 3.3V to drive the D11. A 22Wterminator for D+/D- is required
as mentioned in the D11 datasheet. In addition, the pins connected to the microcontroller must be pulled up because they are al open-
drain gates.

The I%C interface between D11 and the microcontroller, and the PS/2 interface between the PS/2 connector and the microcontroller
are:

PS/2-SDA: P0.2
PS/2-SCL: INTO (P3.2)
1>?C-SCL: P0.0
12C-SDA: P0.1

Cc1

4. 7TuF

PS2_CLK

PS2 _CLK 5

Femal e PS2 connect or

JP4
MOUSECONN

U4
ZR78L033C

+3v3 +3V3A

),

16

+5v

Ji

+5V
D-
D+

il

R7
22 1%

+5v

GND
SHIELD

UP_CONN

T

TP1

©

e

R8

22 1%

N

+3V3A

14

13

10

11

N +5v L5
A T FERRITE BEAD
8 INPUT 3.3V L ‘ L2,
g
+5V
10 N c12 c13
ci1
0.1uF 4.7uF 10UF (TANT) 10UF (TANT)
PS2_DATA
UL
E% P10 vce gg
E—5 P11 P00 35 —
R1 B—, | P12 PO.1 57 -
B— P13 P02 (55 PS2_DATA V3
K B—| P14 P0.3 5z
- P15 P04 51
Eﬁ P1.6 P0.5 W
B9 PL7 PO6 75 © cis
10 | RST P0.7ﬁ
Bp| P30 EAI +3v3 0-LuF
G| P3l ALE 59t T
13| P32 _PSEN Tﬂ —
14 P33 P2.7 57— 5y XTALL P -
Ei5| P34 P26 26 - 1[]2 RL u2
G2 P35 P25 5ot — I:l' 1
G, P36 P2.4 5, F) P 104 5 JEST_ VBUS
G| P37 P2.3 55— RI& RI& R2G- cg 12MHz co 5] RESET AvCC
ERTI R P2.2 55l - 2| XTALL AGND
Bix P21 225 1K8, 1K8,4K7 | 22pF 22pF 2 XTAL2
VsS P20 = CLKOUT DM
= = DP
rrr & vee scL
8051 7 SDA
| SUSPEND
INT GND
L D11

Typi cal

PS/ 2-t0- USB bri dge
circuitry

ki

= V 0.1uF

All interface signals, except PS/2, employ 10 pins of the microcontroller unit (MCU). The PS/2 clock signal employs SCL. The PS/2

interface is similar to the 12C interface. They both employ two lines—clock and data—as the data transmission media. They both use
“Line AND” logic, that is, the low logic of any device on a PS/2 bus will prohibit the active state of the other devices on the same bus.
However, PS/2 protocol specifies that the moment the PS/2 clock becomes low, the data on the data line should already be stable.

Figure 1. Schematic for PS/2-to-USB converter

Hence, PS/2 data should be read from the data line at this moment.

The actual operation of a barcode reader is usually ON-Command, i.e.; a one-stroke button is built-up on the surface of a barcode
reader. Once the button is pressed, the circuits inside the barcode reader begin to scan the bars and output the HEX code through its
interface. In such a situation, the microcontroller of the converter is just passively reading data from the barcode reader: it will not
know when data come and end. Hence, two methods—polling and interruption—may be used to sense the upcoming PS/2 clock or the

data occurrence. Figure 2 shows atypical barcode data sequence.

23-May-99 MEASURE

Z0:00: 16
1 T
5 ms I
B2 W . L .
4_89 VW F mode
R B T .
! T I Amplitude
5 ms I type
-A.85 W L
B.42 W T e o Absolute
I 2 show———
M 1======== K i e ‘ DiFF - ReF
L2 ms — T e P
—0.27 Y M RO E L)L
4.89 v
HUUPUgULUUL i
Ba===T T 1 “‘"j ’“‘“ M| ReFerence
- T cursar
-g.85 W +
8142 v il B i 5

}
T] OiFFerence
5 ms cursor

1 .5 & OC§ ft 86 ps L 11.7 kHz

% BV DC g 1 M5/
2 WO 1 1 OC 1.8 W

4 5 v L O STORPED

Figure 2. PS2 data for mat

In Figure 2, Curve 1 isthe PS/2 clock and Curve? isthe PS/2 data. Curve A isthe zoom-in of the first clock in Curve 1 and Curve B is
the zoom-in of the first PS/2 data in the data line. On each falling edge of the PS/2 clock, the level on the data line must be read as a
bit value. In Figure 1 we see that the bit stream of a one-byte stream contains 11 bits. PS/2 protocol specifies that the first bit of any
PS/2 data bit sequence must be low at the beginning, the last bit must be as high as the end of the one-byte stream, and the second last
bit an odd parity bit for data byte. The rest of the 8 bits form one byte.

Because the PS/2 datarateis very low (11.7 Kbps as shown in Figure 1), polling will consume too much CPU time and hence deprive
other USB devices of the USB bandwidth. Hence, only interruption is practical for sensing the upcoming PS/2 clock or data
occurrence in this situation.

Nevertheless, both interruption and polling are used in PS/2 data acquisition. Thiswill be explained in the firmware part.

DRIVER SUPPORTING ARCHITECTURE

Our PS/2-to-USB converter isintended to emulate any existing HID-compliant device that can be directly connected to a USB
downstream port to work. This bypasses any need to develop any additional minidrivers for barcode readers. In today’ s supporting
architecture of Windows 98, the keyboard and mouse minidrivers above the HID driver stack are indeed mature. In this
implementation, only the USB keyboard is emulated; the driver stacks are organized as Figure 3.

Legacy Applications like Notepad, Wordpad

User Mode

KBDHID.VXD Kermel Mode

| HIDParse.SYS |

[HIDCLASS.SYS |

usB
Driver :
Interface | hidush.SYS |

| USB DRIVER Stack |

| PCI Enumerator |

Figure 3. USB HID class keyboard driversarchitecture

To see akeyboard entry in the Windows Device Manager, there must be a HID-compliant keyboard device connected to the computer.
Under that device entry, the driver must contain KBDHID.V XD. In addition, there must be one USB Human Interface Device under
Human Interface Device item; the drivers for standard USB HID device are HISUSB.SY S, HIDPARSE.SY S and HIDCLASS.SY S

To emulate a HID keyboard, we must use the USB HID keyboard device report descriptor as the converter report descriptor. Appendix
A lists the barcode reader report descriptor which is amost identical to the standard HID keyboard report descriptor but with the
FEATURE tags removed as the barcode reader is an input-only device.

FIRMWARE ARCHITECTURE AND SCHEME

The firmware architecture for D11 is the same as the firmware for H11A/H12. Because the code for data acquisition is time-critical,
we prefer assembly language to C language for coding the firmware.

The whole firmware for D11 can be separated into three parts:
initialization and main loop
Chap9 processing subroutines
functional processing subroutine

The procedureis as follows:

1. Initialize the microcontroller and D11.
2. Set up the necessary RAMs for the I°C buffer and the PS/2 data buffer.

3. Usetheexterna interrupt INTO to sense the coming of PS/2 clock. Initidize it as follows:

CLR EA ;disable all interrupt
SETB EXO ;enabl e external interrupt |INTO
MOV TCON, #00000001B ;enable interrupt triggered with the falling edge

Theinterrupt INTO is always disabled until the USB device has been configured during enumeration. So the main loop looks like this:

MAI N
ACALL USB_SUBROUTI NE
JNB EMB_CONFIG MAIN ; stop_ps?2
SETB EA ;enable interrupt INTO only after configuration
AJMP MAIN

Thus, data will not be acquired until the USB deviceis already enumerated.

The second part is handling the standard device and class-specific requests, which we will not cover.

The third part is responsible for PS/2 data acquisition, data format conversion, and sending the converted datato host. Asin any USB
HID device, the USB dataistransferred through the interrupt pipe of the HID device. Of these subsections, the data acquisition isthe
most important.

Data acquisition

Because the data acquisition is handled in interrupt service subroutine, while the data transfer is handled by polling (depending on the
interval the host requires to access the interrupt endpoint, and how long the microcontroller finishes the data acquisition and
microcontroller machine cycle). So, it is one of the CPU’ stask to ensure an orderly transfer of data. In this application, the data
generation is very sow (only when people press down the stroke button of the barcode reader), and we can manage the CPU not to
acquire data before it finishes data transfer. That can be achieved by controlling the interrupt disable/enable bit EXO of TCON.

Similarly, because of the low data transfer speed (normally 25ms) of interrupt pipe, the CPU doesn’t necessarily always read each
PS/2 bit by entering the interrupt service subroutine. On one hand, reading one bit needs some time (at worst case, it needs 100ns)
which may excel one bit-time (one PS/2 clock cycle), hence causing bit lost. On the other hand, entering interrupt service subroutine
requires too many stack buffers. So, the trade-off between PS/2 clock sensing (requiring interruption) and data reading (needing some
time) is that the interrupt is used to sense the coming of each data sequence, while inside the interrupt service subroutine, polling is
used to read the bit stream of this data.

As areminder, before exiting from interrupt service subroutine, the CPU should clear the interrupt flag bit of TCON. Otherwise, once
it leaves the interrupt service subroutine, it would enter into another interrupt service subroutine again because each falling edge of
PS/2 clock causes this flag bit set.

Figure 4 plots the flowchart for data acquisition. There are some very important implications in this flowchart.

Data conversion and transfer:

Both data conversion and transfer are handled in the interrupt pipe subroutine. The data transfer is very simple - just send data into
FIFO of D11.

The data conversion is actually alookup table because the PS/2 code is different from HID keyboard. What we have is the PS/2 code,
but we have to find out the HID code for a PS/2 code in lookup table. Table 1 lists the PS/2 code of one key, its position in standard
keyboard, and the corresponding HID code.

Another point to note is the PS/2 code format. It is usually configured as:

xxH, OFOh, xxH, 5AH, OFOH, 5AH for uppercase keys
12H, xxH, OFOH, xxH, OF0h, 12H, 5AH, OFOH, 5AH for lowercase key.

The true key value is the number O, number 3 and so on. The last key value is always the ENTER key.

ISR

A
field protect
close interrupt
change register bank
B <-bit stream length

-«

read one bit
bit length counter B --

<4“—No

Yes

bit Stream read

) Yes
Yes done?i.e.
B=0
No
#47 No
forming one byte
clear PS/2 data buffer
PS2_byte cnt ++
data ends? No
Yes
v
set data Ok flag L .
clear PS/2 data buffer clear possible interrupt flag in TCON
clear PS/2 byte count OPEN interrupt
restore field

A

clear possible interrupt flag in TCON
DON'T OPEN interrupt
restore field

P
«

A

IRET

Figure 4. Flowchart for data acquisition

From the preceding data format, the PS/2 barcode assumes the default status of the keyboard which is Caps Lock (0x39). If it isthe
first time in transfering any key value, 39H must first be transferred to the host.

TABLE 1 Conversion Lookup Table from PS/2 code to HID keyboard code

42 38 OE
43 24 ocC
44 25 12
45 11 27
46 10 26
47 N/A 00
48 N/A 00
49 54 37
4A 55 38
4B 39 OF
4C 40 33
4D 26 13
4E 12 2D
4F N/A 00
50 N/A 00
51 N/A 00
52 41 34
53 N/A 00
54 27 2F
55 13 2E
56 N/A 00
57 N/A 00
58 64 E4
59 57 E5
5A 43 28
5B 28 30
5C N/A 00
5D 14 31
5E N/A 00
5F N/A 00
60 N/A 00
61 N/A 00
62 N/A 00
63 N/A 00
64 N/A 00
65 N/A 00
66 15 2A
67 N/A 00
68 N/A 00
69 93 59
6A N/A 00
6B 92 5C
6C 91 5F
6D N/A 00
6E N/A 00
6F N/A 00
70 99 62
71 104 63
72 98 5A
73 97 5D
74 102 5E
75 96 60
76 90 53
77 95 54
78 N/A 00
79 108 58
7A 103 5B
7B 107 85
7C 106 57
7D 101 61
7E 100 55
7F N/A 00
80 N/A 00
81 N/A 00
82 N/A 00
83 73 00
84 105 56

Ps2 key code Traditional HID keyboard
(HEX) position in code (HEX)
keyboard
00 N/A 00
01 74 00
02 N/A 00
03 72 00
04 71 00
05 70 00
06 65 00
07 N/A 00
08 N/A 00
09 69 00
0A 68 00
0B 67 00
0C 66 00
oD 16 2B
OE 1 35
OF N/A 00
10 N/A 00
11 58 EO
12 44 02
13 N/A 00
14 30 39
15 17 14
16 2 1E
17 N/A 00
18 N/A 00
19 N/A 00
1A 46 1D
1B 32 16
1C 31 04
1D 18 1A
1E 3 1F
1F N/A 00
20 N/A 00
21 48 06
22 47 1B
23 33 07
24 19 08
25 5 21
26 4 20
27 N/A 00
28 N/A 00
29 61 2C
2A 49 19
2B 34 09
2C 21 17
2D 20 15
2E 6 22
2F N/A 00
30 N/A 00
31 51 11
32 50 05
33 36 0B
34 35 0A
35 22 1C
36 7 23
37 N/A 00
38 N/A 00
39 N/A 00
3A 52 10
3B 37 oD
3C 23 18
3D 8 24
3E 9 25
3F N/A 00
40 N/A 00
41 36 36

CONCLUSION

The PS/2-to-USB converter for a barcode reader/scanner is a trade-off between SUB barcode fully compliant to USB barcode
specification and legacy barcode. It results in reducing the total cost of upgrading legacy barcode device to USB device.

It is envisioned that in not too far a future, the USB barcode which is fully compliant to USB barcode specification will be developed
because the minidriver will eventually be made available, and fully compliant solutions can generate savings through reducing
hardware cost.

Appendix

A: report descriptor for barcode reader

rhkkkhkkhkkhkhkhkhkhkhhkhkhhkhkhhkhkhhkhkhhhkhhhhhhhhhhhhhhhhhhhhkhhhkhhkhkhhhkhhhkhhhkhhhkhhkhkhhkhkhhk
’

;* H D device (Barcode reader with Keyboard protocol) report descriptor
BRIk S S Sk S Rk Ik Sk S S R S S S S S S Rk b S Sk S S S R Rk S S S Rk S

Rpt Dsc:
db 5h, 1h ; USAGE_PAGE (Generic Deskt op)
db 9h, 6h ; USAGE (Keyboar d)
db Oalh, 1h ; COLLECTI ON (Application)
db 5h, 7h ; USAGE_PAGE (Keyboar d)
db 19h, 0eOh ; USAGE_M NI MUM (Keyboard Left Control)
db 29h, Oe7h ; USAGE_MAXI MUM (Keyboard Ri ght GU)
db 15h, Oh ; LOG CAL_M NI MUM (0)
db 25h, 1h ; LOG CAL_NMAXI MUM (1)
db 75h, 1h ; REPORT_SI ZE (1)
db 95h, 8h ; REPORT_COUNT (8)
db 81h, 2h ; | NPUT (Dat a, Var, Abs)
db 95h, 1h ; REPORT_COUNT (1)
db 75h, 8h ; REPORT_SI ZE (8)
db 81h, 3h ; I NPUT (Cnst, Var, Abs)
; db 95h, 5h ; REPORT_COUNT (5)
; db 75h, 1h ; REPORT_SI ZE (1)
; db 5h, 8h ; USAGE_PAGE (LEDs)
; db 19h, 1h ; USAGE_M NI MUM (Num Lock)
; db 29h, 5h ; USAGE_MAXI MUM (Kana)
; db 91h, 2h ; QUTPUT (Dat a, Var, Abs)
; db 95h, 1h ; REPORT_COUNT (1)
; db 75h, 3h ; REPORT_SI ZE (3)
; db 91h, 3h ; QUTPUT (Cnst, Var, Abs)
db 95h, 6h ; REPORT_COUNT (6)
db 75h, 8h ; REPORT_SI ZE (8)
db 15h, Oh ; LOG CAL_M NI MUM (1 0)
db 25h, 65h ; LOG CAL_NVAXI MUM (1101)
; db 5h, 7h ; USAGE_PAGE (Keyboar d)
db 19h, Oh ; USAGE_M NI MUM (Reserved (no event indicated))
db 29h, 65h ; USAGE_MAXI MUM (Keyboard Applicati on)
db 81h, Oh ; I NPUT (Dat a, Ary, Abs)
db 0cOh ; END_COLLECTI ON

Rpt Dscend:

