
IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 4, APRIL 2000 401

Hierarchical Symbolic Analysis of Analog Integrated
Circuits via Determinant Decision Diagrams

Xiang-Dong Tan, Member, IEEEand C.-J. Richard Shi, Senior Member, IEEE

Abstract—A new method is proposed for hierarchical symbolic
analysis of large analog integrated circuits. It consists of per-
forming symbolic suppression of each subcircuit to its terminals
in terms of subcircuit matrix determinants and cofactors, and
applying Cramer’s rule to symbolically solve the set of equations
at the top level of the circuit hierarchy. An annotated, directed,
and acyclic graph, called determinant decision diagram (DDD),
is used to represent symbolic determinants of subcircuit matrices
and cofactors used in subcircuit suppression, as well as symbolic
determinants of the top-level circuit matrix and cofactors required
in applying Cramer’s rule. DDD enables us to systematically
exploit the inherent sparsity of circuit matrices and the sharing
of symbolic expressions. It is capable of representing a huge
number of symbolic product terms in a canonical and highly
compact manner. The proposed method is illustrated using a
Cauer parameter low-pass filter. It has been implemented in
a symbolic analyzer and compared to best-known hierarchical
symbolic analyzer SCAPP and numerical simulator SPICE.
Experimental results on several analog circuits including the

741 operational amplifier—a circuit with less structural
regularities—are described.

Index Terms—Analog circuit design, analog symbolic analysis,
determinant decision diagrams, hierarchical analysis.

I. INTRODUCTION

SYMBOLIC analysis calculates the behavior or the charac-
teristic of a circuit in terms of symbolic parameters. It is

important for many circuit-design applications such as optimum
topology selection, design space exploration, behavioral model
generation, and fault detection [5]. Symbolic analysis, however,
has not been widely used by circuit designers. The root of the
difficulty is apparent: the number of product terms in a fully-ex-
pended symbolic expression may increase exponentially with
the size of a circuit. Any manipulation and evaluation of sym-
bolic expressions would require CPU time at best linear in the
number of terms and, therefore, have both the time and space
complexities exponential in the size of a circuit.

To cope with the circuit-size limitation problem, modern
symbolic analyzers rely on two techniques: symbolic sim-

Manuscript received February 28, 1999; revised October 27, 1999. This
work was sponsored by the U.S Defense Advanced Research Projects Agency
(DARPA) under Grant F33615-96-1-5601, from the United States Air Force,
Wright Laboratory, Manufacturing Technology Directorate, and by Conexant
Systems, Inc. Some preliminary results of this paper appeared inProc. IEEE
Int. Symp. Circuits and Systems, 1998, Monterey, CA, May 31–June 3, 1998.
This paper was recommended by Associate Editor K. Mayaram.

X.-D. Tan was with the Department of Electrical Engineering, University of
Washington, Seattle, WA 98195 USA. He is now with Monterey Design Sys-
tems, Sunnyvale, CA 94089 USA.

C.-J. R. Shi is with the Department of Electrical Engineering, University of
Washington, Seattle, WA 98195 USA (e-mail: cjshi@ee.washington.edu).

Publisher Item Identifier S 0278-0070(00)03220-6.

plification and hierarchical decomposition [3]. Symbolic
simplification discards those insignificant terms based on the
relative numerical magnitudes of symbolic parameters and the
frequency defined at some nominal design points or over some
ranges. It can be performed before/during the generation of
symbolic terms [1], [7], [13], [21] or after the generation [2],
[4], [20]. The simplified expressions, however, only have suffi-
cient accuracy at some points or over some frequency ranges.
Even worse, simplification often loses certain information,
such as sensitivity with respect to parasitics, which is crucial
for computer-aided circuit optimization and testability analysis.

Hierarchical decomposition generates circuit transfer func-
tions as either nested symbolic expressions or sequences of sym-
bolic expressions. There are three methods known as topolog-
ical analysis [14], network formulation [6], and two-port decom-
position [8].

• Topological Analysis[14]: The circuit topology is repre-
sented as a directed graph and circuit parameters are rep-
resented as the weights of the edges in the graph. Hierar-
chical decomposition is carried out on the directed graph.
Subcircuit analysis amounts to finding node-disjoint di-
rected paths and node-disjointed directed loops. Results
obtained in subcircuit analysis are combined upward until
the root circuit is reached.

• Network Formulation[6]: Hierarchical decomposition is
performed directly on the system equations. The decom-
position procedure is characterized by eliminating vari-
ables one at a time (called reduced modified nodal anal-
ysis) for each subcircuit analysis. The results of lower-
level subcircuits are combined according to some rules
to form the equation sets for upper-level subcircuits. The
process continues until the root circuit is reached, and the
transfer function is computed from the resulting equation
set. All the intermediate steps are expressed as asequence
of expressions.

• Two-Port Decomposition[8]: Two-port decomposition
derives the equivalent circuit for each subcircuit based on
the two-port circuit theory, and then uses the equivalent
circuit to perform hierarchical symbolic analysis. The
two-port decomposition method is essentially a gener-
alization of the network formulation method [6] where
types of terminal variables can be selected (currents or
voltages) based on the types of circuit ports that a designer
chooses.

Unfortunately, no systematic mechanisms exist to fully exploit
the expression sharing and circuit sparsity in existing hierar-
chical symbolic analysis methods. The resulting expressions are
not compact enough. Manipulations, other than evaluation, of

0278–0070/00$10.00 © 2000 IEEE

402 IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 4, APRIL 2000

the resulting sequences of expressions are known to be compli-
cated and often require dedicated efforts, e.g., sensitivity calcu-
lation in [10] and lazy approximation in [13].

In this paper, we present a new hierarchical method for exact
symbolic analysis. It takes advantage of both hierarchical de-
composition and a recently introduced graphical representation
of symbolic determinants called determinant decision diagrams
(DDD’s) [11], [12]. DDD’s can exploit thesparsityof circuit
matrices and thesharingamong symbolic expressions in a sys-
tematic manner. For example, the determinant of the circuit ma-
trix of an -section ladder circuit can be represented by a DDD
with vertices, which represents product terms,
where is the th Fibonacci number [11], [12]. For a 30-sec-
tion ladder circuit, over 1.3 million product terms can be rep-
resented by a DDD with only 88 vertices. In the worst case,
the number of DDD vertices (called the DDD size) can grow
exponentially with the size of a circuit. Fortunately, for prac-
tical analog circuits, the number of DDD vertices are gener-
ally many orders of magnitude less than the number of product
terms. More importantly, manipulations such as cofactoring and
sensitivity can be performed in almost linear time in the size of
a DDD.

The rest of the paper is organized as follows. Following an
overview of the general procedure for hierarchical circuit anal-
ysis in Section II, Section III presents the basic idea under-
lying the proposed DDD-based hierarchical symbolic analysis
method. Section IV reviews the concept of DDD’s. Section V
illustrates the application of the proposed method to an analog
circuit. The complete algorithm is summarized in Section VI.
Section VII describes experimental results and the comparison
to symbolic analyzer SCAPP and numerical simulator SPICE
on several practical analog circuits. Section VIII concludes the
paper.

II. OVERVIEW OF HIERARCHICAL CIRCUIT ANALYSIS

For a linear(ized), time-invariant analog circuit, its system of
equations can be formulated by, for example, the modified nodal
analysis (MNA) approach, in the following general form [18]:

(1)

where is the vector of node-voltage and branch-current vari-
ables, is the modified nodal admittance matrix or simply the
circuit matrix, and represents the external sources.

The circuit hierarchy can be viewed as a rooted tree shown in
Fig. 1. A circuit may have one or more subcircuits at each hier-
archical level. A subcircuit at a leaf in the circuit hierarchy tree
is called aleafsubcircuit, otherwise it is amiddlesubcircuit. In
this paper, we assume the presence of the predefinedsubcircuits
in the circuit hierarchy.

Consider a subcircuit with some internal structures and termi-
nals, as illustrated in Fig. 2. The circuit unknowns—the node-
voltage variables and branch-current variables—can be parti-
tioned into three disjoint groups , , and , where the
superscripts stand for, respectively,internal variables,
boundaryvariables, and therestof variables.Internalvariables
are those local to the subcircuit,boundaryvariables (also called
tearing variables) are those related to both the subcircuit and the

Fig. 1. Model of a circuit hierarchy.

Fig. 2. Partition of a circuit.

rest of the circuit. Note that boundary variables include those
variables required as the circuit inputs and outputs. Equations
that are associated with only theinternal variables are called
the internal equations of a subcircuit. Their corresponding cir-
cuit matrix is called theinternal circuit matrix. With this, the
system-equation set (1) can be rewritten in the following form:

The gray matrix, , is theinternalmatrix associated with in-
ternal variable vector .

Subcircuit suppressionis to eliminate all the variables in ,
and to transform (2) into the following reduced set of equations:

(3)

where

(4)

TAN AND SHI: HIERARCHICAL SYMBOL ANALYSIS OF ANALOG INTEGRATED CIRCUITS VIA DDD’S 403

and

(5)

Subcircuit suppression can be performed for all the subcir-
cuits by visiting the circuit hierarchy in a bottom-up fashion.
Hierarchicalnumericalanalysis performs (4) and (5) numeri-
cally by partial triangular decomposition [17]. Hierarchicalsym-
bolic analysis uses intermediate variables to represent (4) and
(5), which leads to asequence of expressions[6], [14]. In the
network formulation approach [6], internal variables are sup-
pressed one at a time. Hence, becomes a scalar— ,
becomes a matrix with a single column, denoted as, and

becomes a matrix with a single row, denoted as. With
this notation, (4) becomes

(6)

III. H IERARCHICAL ANALYSIS USING DETERMINANTS AND

COFACTORS

In this section, we show how hierarchical symbolic circuit
analysis can be represented using determinants and cofactors.
We first introduce some notations. Letbe an matrix. It
may be denoted as . Similarly, a vector

of size is denoted as . Thedeterminant
of matrix is denoted by . According to linear algebra,
the inverse of nonsingular matrix can be written as

(7)

where matrix is the transpose of matrix , and

(8)

Here, is called theadjoint matrix of , is the
first-ordercofactorof with respect to , and matrix

is the -matrix obtained from matrix
by deleting row and column . Matrix is sometimes

written as in the sequel. Note that each entry in the adjoint
matrix is a first-order cofactor of the original matrix, and the
adjoint matrix itself is afull (dense) matrix.

Now we consider subcircuit suppression. Applying (7) to (4)
and (5), we have

(9)

and

(10)

Suppose that the number of internal variables is, and the
number of boundary variables is. Equations (9) and (10) can
be written in the following expanded forms:

(11)

and

(12)

From (11) and (12), we can observe that first-order cofactors
are required only when both and are

nonzeros. For practical circuits,usually is much smaller than
provided that a good circuit partition is given, and and

are generally verysparse. This implies that onlya very
fewof the first-order cofactors of are needed for subcircuit
suppression.

At the top level of the circuit hierarchy tree, we can simply
use Cramer’s rule to obtain the desired transfer function. For ex-
ample, suppose that the reduced equation set for the root circuit
is , then the voltage gain from nodeto node can be
expressed as follows:

(13)

where is the submatrix obtained from by deleting row
and column .

The key idea of the proposed method for hierarchical sym-
bolic analysis is to represent all the determinants and cofactors
in (11)–(13) by a newly introduced graph, called DDD’s. DDD’s
exploit systematically the expression sharing among the deter-
minants of subcircuit matrices and the required first-order co-
factors. The exploration thereby leads to a very compact rep-
resentation of transfer functions and renders DDD’s extremely
suitable for hierarchical symbolic analysis.

IV. DETERMINANT DECISION DIAGRAMS

A DDD is a canonical and compact graphical representa-
tion of a symbolic-matrix determinant [11], [12]. It is a signed,
rooted, directed, and acyclic graph. Each DDD vertex represents
the determinant of a symbolic matrix. It has two outgoing edges
pointing to two children vertices. Similar to binary decision di-
agrams (BDD’s) for Shannon expansion of Boolean functions,
DDD is a graphical representation of the following expansion
of a matrix determinant:

(14)

where
is the matrix element at row;

column of matrix , is the first-order cofactor of
with respect to ;

is the remainder of
with respect to .

Matrix can be obtained from matrix by deleting row
and column . Matrix can be obtained by setting to
zero in . Note that is also called aminorof
with respect to .

404 IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 4, APRIL 2000

Fig. 3. Graphical representation of a determinant expansion.

In the DDD representation, we label the vertex by and
assign the vertex sign as . We use the two children ver-
tices to represent minor and remainder .
We use a1-edgeto link the vertex representing to the
vertex representing and a0-edgeto link the vertex
representing to the vertex representing . This
is illustrated in Fig. 3. This expansion process can be recursively
performed on and . This leads to a bi-
nary decision diagram with two terminal vertices, namely the
zero-terminal vertex representing constant zero and the one-ter-
minal vertex representing constant one.

For example, consider the following determinant

(15)

Fig. 4 illustrates the corresponding DDD representation under
the expansion order: , , , and . Symbolic
expressions represented by each vertex are also given near the
vertices in the figure.

In a DDD, each path from the root vertex (in our case) to the
1-terminal is called a1-path. Each 1-path defines a product term
which includes all vertices (symbols) which originate all the
1-edges in the 1-path. We note that in Fig. 4 subterms, , and

appear in several product terms of the matrix determinant,
and they are shared in the DDD representation.

A key issue is that how to find a suitable expansion order
for a given circuit matrix so that the resulting DDD has as few
vertices as possible. A simple and efficient heuristic is to first
expand those matrix rows or columns with fewest numbers of
nonzero entries. It has been proved that this simple heuristic
yields optimal DDD’s for a class of circuits in the sense that
for each circuit, the number of DDD vertices is exactly equal to
the number of nonzero elements in the circuit matrix [11], [12].
We emphasize that in the worst case, the number of DDD ver-
tices can grow exponentially with the size of a circuit. However,
for practical analog circuits, the numbers of DDD vertices are
generally many orders of magnitude less than the numbers of
product terms [11], [12].

Fig. 4. A DDD for matrixMMM .

We note that the first program that uses determinant ex-
pansion for symbolic circuit analysis is ISAAC [19]. ISAAC
expands the determinant and minors recursively and uses a
cache to avoid duplicate constructions of the same minor. Later
on, the program SAGA developed by Jou and Hung improved
ISAAC by combining top-down determinant expansion and
bottom-up minor construction to reduce the number of symbolic
multiplications [8]. Although DDD’s are constructed based
on a similar determinant expansion procedure as in ISAAC
and SAGA, DDD’s achieve the advantage by formulating the
expansion process as a graph, and using the graph to represent
symbolic expressions. With this, the problem of symbolic
analysis reduces to the problem of graph manipulation, which
has the time complexity proportional to the number of DDD
vertices, not the number of product terms. The formalization
of DDD’s also allows a systematic exploration of expression
sharing and matrix sparsity.

V. AN ILLUSTRATION EXAMPLE

In this section, we illustrate the proposed hierarchical anal-
ysis method using a real analog circuit. We consider a Cauer
parameter low-pass filter with 0.02-dB ripple in the passband
and minimum 50-dB suppress in stopband as shown in Fig. 5. It
has four topologically identical frequency-dependent negative
resistance (FDNR) subcircuits, named– . Fig. 6 gives the
detailed structure of the FDNR subcircuit. An FDNR subcircuit
contains two operational amplifiers (opamp), which are imple-
mented by a well-known linear macromodel shown in Fig. 7.

We first consider the linear macromodel of an opamp in
Fig. 7. There are four nodes in this leaf subcircuit and, thus,
four variables in the circuit equations. Except

, all variables are boundary variables. Its circuit matrix,

TAN AND SHI: HIERARCHICAL SYMBOL ANALYSIS OF ANALOG INTEGRATED CIRCUITS VIA DDD’S 405

Fig. 5. An active low-pass filter.

Fig. 6. An FDNR subcircuit.

under the modified nodal analysis formulation, can be written
as follows:

The gray variable is the internal variable to be suppressed. The
gray matrix, , in the is the internal circuit matrix of the
opamp macromodel subcircuit, i.e., .

To suppress an opamp macromodel subcircuit, we need to
suppress variable . According to (11), the suppressed circuit
matrix associated with the boundary variables is given by

where

(18)

(19)

and is the first-order cofactor of with respect to
the row 1 and column 1 of . Note that

(20)

where . Thus the suppression of an opamp macro-
model subcircuit requires the DDD representation of two deter-
minants: and . Since is
constant 1, only one DDD vertex is needed; the resulting DDD
is shown in Fig. 8 with .

After the suppression of all opamp macromodel subcircuits,
we are ready to consider their parents, FDNR subcircuits. The
circuit matrix of an FDNR subcircuit can be constructed by
combining the matrix in (17) for an opamp macromodel subcir-
cuit with the contributions from resistors in the FDNR circuit.

406 IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 4, APRIL 2000

Fig. 7. A linear macromodel of an opamp.

Fig. 8. The DDD fordet((TTT)) anddet((TTT)).

The resulting circuit matrix can be written as (21), shown at the
bottom of the page, where

(22)

Again, the gray variables are internal variables to be sup-
pressed, and the gray matrix, , in is the internal circuit
matrix of an FDNR subcircuit. The suppressed circuit matrix of

, which is associated with only the boundary variable, be-
comes a matrix as follows:

(23)

where

(24)
Here, is the first-order cofactor of with respect
to the element in row 1 and column 1 of and it can be
written as

TAN AND SHI: HIERARCHICAL SYMBOL ANALYSIS OF ANALOG INTEGRATED CIRCUITS VIA DDD’S 407

We now show how the two required determinants,
and , can be represented by DDD’s. To simplify
our presentation, we label each matrix entry in with a
distinct symbol as

where, the gray area is matrix . Determinant
has 31 product terms, and has

10 product terms. Detailed analysis shows that they can be
represented by two DDD’s with 37 and 19 vertices, respec-
tively. Exploiting the sharing of product terms among these two
DDD’s, the two determinants can actually be represented by
a shared DDD with only 39 vertices as shown in Fig. 9. This
result contrasts with 247 () DDD vertices if
each symbol is represented by a DDD vertex without sharing.
Finally, the circuit matrix of the root circuit, the low-pass filter,
is constructed after the suppression of all FDNR subcircuits.
The resulting circuit matrix is given

(25)

where

Note that each FDNR subcircuit may have a different set of de-
vice parameter values. Thus , are used
to represent for four FDNR subcircuits. Since all the
FDNR subcircuits have the same topology, only one symbolic
expression of and, thus, one DDD (Fig. 8), is needed.

The required transfer function can now be derived and repre-
sented by DDD’s. According to Cramer’s rule, the voltage gain
from – in Fig. 5 can be expressed as

To illustrate the DDD representation of the transfer function, we
label each matrix entry in with a distinct symbol and rewrite

as follows:

where the boxed matrix is and the gray matrix is . Note
that is a band matrix. The DDD representation of

and is shown in Fig. 10, where 13 DDD ver-
tices are used to represent , and 5 DDD vertices (each
for a matrix entry) are needed to represent . Taking into
account of the DDD’s for subcircuit suppression (Figs. 7 and 8),
a total of 58 () DDD vertices are used for entire
hierarchical symbolic analysis of the low-pass filter circuit.

To conclude this section, we have the following observations.

• Suppression of a subcircuit may create fill-ins in its parent
circuit matrix. For instance, appearing in row 2
and column 5, as well as in row 4 and column 1, in ma-
trix in (21) are fill-ins. In order to obtain a com-
pact symbolic expression, the number of fill-ins should be
minimized. This is generally consistent with minimizing
the total number ofboundarynodes of subcircuits. An ef-
ficient heuristic based on this idea has been developed for
finding a good partition for DDD-based hierarchical sym-
bolic analysis [16]. We note that the problem of automatic
recognition of identical subcircuits remains open.

• Given a good partition of an analog circuit, subcircuit sup-
pression only requires a few first-order cofactors of the
subcircuit-matrix determinants. In our example, only one
cofactor, , is actually required in the entire anal-
ysis process.

VI. HIERARCHICAL SYMBOLIC ANALYSIS PROCEDURE

The proposed hierarchical symbolic analysis method is per-
formed by the depth-first traversal of the circuit hierarchy tree
shown in Fig. 1. Then DDD’s are constructed for each subcircuit

408 IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 4, APRIL 2000

Fig. 9. The DDD fordet((TTT)) anddet((TTT)).

based on the algorithms described in [11] and [12]. The com-
plete procedure for DDD-based hierarchical symbolic analysis
can be summarized as follows.

1) Partition the circuit or use the predefined subcircuit struc-
ture.

2) Build the circuit matrix for each leaf subcircuit by mod-
ified nodal analysis. Suppress each leaf subcircuit based
on (11) and (12). Represent the determinant of the internal
subcircuit matrix and its first-order cofactors required in
subcircuit suppression by a shared DDD.

3) Build the circuit matrix of a middle subcircuit after the
suppression of all its children subcircuits. An entry in the
middle subcircuit matrix may consist of the contribution
from its children subcircuits as well as that from the cir-
cuit devices in the middle subcircuit. Suppress the middle
subcircuit based on (11) and (12). Represent the determi-
nant of the internal subcircuit matrix of the middle sub-

circuit and its first-order cofactors required in subcircuit
suppression by a shared DDD. Recursively build and sup-
press the circuit matrices for all the middle subcircuits
until the root circuit is reached.

4) Construct the desired symbolic transfer function at the
root circuit by using Cramer’s rule with all the required
symbolic determinants and cofactors represented by
DDD’s.

VII. EXPERIMENTAL RESULTS

The proposed method has been implemented in a symbolic
circuit analyzer based on DDD’s. The program reads in a circuit
description in the SPICE format, where.subcktstatements are
used to specify the circuit hierarchy. All the MOS and bipolar
transistors are replaced by their corresponding small-signal
models at their dc operating points computed by SPICE. The ac

TAN AND SHI: HIERARCHICAL SYMBOL ANALYSIS OF ANALOG INTEGRATED CIRCUITS VIA DDD’S 409

Fig. 10. The DDD fordet(TTT) anddet(TTT).

Fig. 11. Miller-compensated two-stage opamp.

analysis is performed by depth-first traversals of all the DDD
vertices used to represent all symbolic expressions at each
frequency point.

A number of experiments have been conducted on a SUN
SPARCstation 5 with 32M memory. The results from three ex-
amples are presented. The first example is an active low-pass
filter circuit shown in Fig. 5. We tested our program on two dif-
ferent implementations of opamps used in the low-pass filter cir-
cuit: the macromodel shown in Fig. 7 and a simplified miller-
compensated two-stage opamp circuit shown in Fig. 11.

The second example is a bandpass filter circuit shown in
Fig. 12. This example was also used to illustrate hierarchical
analysis in [6] and [14]. The circuit can be partitioned into
the circuit hierarchy shown in Fig. 13 with four topologically
identical subcircuits – shown in Fig. 14. Each leaf-level

Fig. 12. An active RC bandpass filter.

Fig. 13. The partitioned hierarchy of the bandpass filter.

Fig. 14. The subcircuit structure in the bandpass filter.

opamp subcircuit is implemented by the miller-compensated
two-stage opamp circuit shown in Fig. 11.

The third example is a A741 opamp circuit with 26 tran-
sistors and 11 transistors shown in Fig. 15. Unlike previous

410 IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 4, APRIL 2000

Fig. 15. A three-level two-way partitioned�A741.

Fig. 16. A three-level two-way partition of�A741.

two examples, this circuit has less structural regularities. In this
paper, we consider a three-level binary-tree hierarchy (Fig. 16)
as marked in Fig. 15; this hierarchy is obtained by using a mul-
tilevel multiway partitioning heuristic aimed at minimizing the
total number of DDD vertices [16].

We first compare our program to SPICE on repetitive numer-
ical evaluation. For each circuit, 1000 frequency points are com-
puted. The results are summarized in Table I, where columns 2
and 3 show, respectively, the size of the overall circuit matrix
and the total number of nonzeros for each circuit, column 4 is
the actual number of distinct product terms generated, column

5 is the total number of DDD vertices used to represent all the
symbolic expressions. Columns 6–8 list, respectively, the sim-
ulation CPU time in seconds used by the proposed DDD-based
method, SPICE, and the speedup of the proposed method over
SPICE for each test circuit. From Table I, we can see that the
proposed DDD-based method outperforms SPICE for all the test
cases. Further, the speedup increases with the size of a circuit.

We then compare our method to SCAPP—a best-known hi-
erarchical symbolic analyzer. We construct the test circuits by
cascading, respectively, the first 1–4 subcircuit blocks (Fig. 13).
The opamp subcircuit is implemented by the miller-compen-
sated opamp circuit shown in Fig. 11.

Theresultsaresummarized inTableII.Columns1and2list, re-
spectively, the number of subcircuits cascaded for each test case,
and the size of the overall circuit matrix, and the total number
of nonzeros. Columns 4 and 5 describe, respectively, the total
number of DDD vertices and the number of product terms rep-
resented. Columns 6 and 7 give the total numbers of additions
and multiplications used in the expressions generated by SCAPP.
Since each DDD vertex uses one addition and one multiplication,
the number of additions and multiplications used by the DDD-
based method is bounded by the number of DDD vertices. From
Table II, we can observe that the DDD-based representation is

TAN AND SHI: HIERARCHICAL SYMBOL ANALYSIS OF ANALOG INTEGRATED CIRCUITS VIA DDD’S 411

TABLE I
COMPARISONAGAINST SPICEIN NUMERICAL EVALUATION

TABLE II
COMPARISONAGAINST SCAPP

TABLE III
COMPARISONAGAINST SCAPPAND SPICEIN CPU TIME

much more compact than the sequence-of-expression represen-
tationused inSCAPP. Inaddition,weseethat theDDDsizegrows
almost linearly in the circuit size, although the number of product
terms grow exponentially.

Table III shows the statistics of using the DDD-based sym-
bolic method and SCAPP for repetitive numerical evaluation. In
the current implementation of SCAPP, the sequence of expres-
sions for circuit transfer functions are first generated as C code,
the generated C code is then compiled, and the compiled code is
finally linked with the simulation driver to perform ac analysis.
For each test case, we report in columns 2 and 3 the CPU time re-
quired toconstruct theDDDand then theCPUtime taken forsim-
ulating thefrequency-domainresponsefor1000frequencypoints
from the constructed DDD. For SCAPP, we report, respectively,
in columns 4, 5, and 6, the CPU time for SCAPP to construct the
sequence-of-expressions (const.), the compilation time (comp),
and the actual simulation time (sim). The last two columns give
the matrix-setup time and simulation time used by SPICE.

From Table III, we can see that the proposed DDD-based
method is more efficient than both SCAPP and SPICE. Note
that, in our current implementation, the constructed DDD is
stored in memory; hence, no additional compilation time is re-
quired. We note that SCAPP can be re-implemented to store the
constructed sequences of expressions in memory, and then the
extra compilation time can be avoided.

TABLE IV
STATISTICS FORTHREE-LEVEL HIERARCHICAL SYMBOLIC ANALYSIS OF�A741

We finally test our program on a three-level two-way
partitioned bipolar A741 opamp circuit shown in Figs. 15
and 16. Table IV shows the statistics of hierarchical sym-
bolic analysis of this circuit. The first four rows list the
results of DDD-based symbolic analysis without partitioning,
which include the size of the overall circuit matrix, the total
number of nonzeros, the total number of DDD vertices, and
the total product terms represented by the DDD. The next
ten rows describe the statistics of three-level hierarchical
symbolic analysis with partitioning; these results are broken
down for leaf subcircuits, middle subcircuits, and the root
circuit. The total number of DDD vertices and the number
of terms generated are reported in rows 13 and 14. The
last row shows the best result from SCAPP, where #
and # are the numbers of multiplications and additions,
respectively. Since the number of multiplications required
in numerically evaluating a DDD-based symbolic expres-
sion is bounded by the number of DDD vertices, three-level
two-way DDD-based hierarchical symbolic analysis speeds up
DDD-based canonical symbolic analysis (one-level one-way)
by a factor of 56 (117 vertices versus 6654 vertices), whereas
DDD-based canonical symbolic analysis already speeds up
sum-of-product-based canonical symbolic analysis by several
orders of magnitude (6654 multiplications versus 119 011
product term evaluation).

412 IEEE TRANSACTIONS ON COMPUTER AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 19, NO. 4, APRIL 2000

VIII. C ONCLUSION

A new method for hierarchical symbolic analysis of analog
integrated circuits has been presented and implemented. The
method takes advantage of both the circuit hierarchy and DDD’s
for symbolic determinant representations. DDD representation
exploits systematically the sharing among symbolic expressions
and thus results in very compact symbolic expressions. Experi-
mental results have shown that the proposed method compares
favorably to the best-known symbolic analyzer SCAPP and nu-
merical simulator SPICE for small-signal ac analysis.

ACKNOWLEDGMENT

The authors would like to thank Prof. G. Gielen of Katholieke
Universiteit Leuven for several helpful discussions on symbolic
analysis and Prof. M. Hassoun of Iowa State University for
making SCAPP code available to them.

REFERENCES

[1] S.-M. Chang, J.-F. MacKey, and G. M. Wierzba, “Matrix reduction and
numerical approximation during computation techniques for symbolic
analog circuit analysis,” inProc. IEEE Int. Symp. Circuits and Systems,
1992, pp. 1153–1156.

[2] F. V. Fernández, J. D. Martín, A. Rodríguez-Vázquez, and J. L.
Huertas, “On simplification techniques for symbolic analysis of analog
integrated circuits,” inProc. IEEE Int. Symp. Circuits and Systems,
1992, pp. 1149–1152.

[3] F. V. Fernández and A. Rodríguez-Vázquez, “Symbolic analysis
tools—The state of the art,” inProc. IEEE Int. Symp. Circuits and
Systems, 1996, pp. 798–801.

[4] G. Gielen and W. Sansen,Symbolic Analysis for Automated Design of
Analog Integrated Circuits. Norwell, MA: Kluwer Academic, 1991.

[5] G. Gielen, P. Wambacq, and W. Sansen, “Symbolic analysis methods
and applications for analog circuits: A tutorial overview,”Proc. IEEE,
vol. 82, pp. 287–304, Feb. 1994.

[6] M. M. Hassoun and P. M. Lin, “A hierarchical network approach to sym-
bolic analysis of large scale networks,”IEEE Trans. Circuits Syst., vol.
42, pp. 201–211, Apr. 1995.

[7] J.-J. Hsu and C. Sechen, “DC small signal symbolic analysis of large
analog integrated circuits,”IEEE Trans. Circuits Syst., vol. 41, pp.
817–828, Dec. 1994.

[8] S.-J. Jou and C.-C. Hung, “Hierarchical symbolic analysis of analog cir-
cuits,” in Proc. National Science Council (R.O.C.),Part A, vol. 17, July
1993, pp. 301–313.

[9] A. Liberatore and S. Manetti, “SAPEC—A personnel computer program
for the symbolic analysis of electric circuits,” inProc. IEEE Int. Symp.
Circuits and Systems, 1988, pp. 897–900.

[10] P. M. Lin, “Sensitivity analysis of large linear networks using symbolic
program,” in Proc. IEEE Int. Symp. Circuits and Systems, 1992, pp.
1145–1148.

[11] C.-J. Shi and X.-D. Tan, “Symbolic analysis of large analog circuits
with determinant decision diagrams,” inProc. IEEE Int. Conf. Com-
puter-Aided Design (ICCAD), 1997, pp. 366–373.

[12] , “Canonical symbolic analysis of large analog circuits with deter-
minant decision diagrams,”IEEE Trans. Computer-Aided Design, vol.
19, pp. 1–18, Jan. 2000.

[13] S. J. Seda, M. G. R. Degrauwe, and W. Fichtner, “Lazy-expansion sym-
bolic expression approximation in SYNAP,” inProc. IEEE Int. Conf.
Computer-Aided Design (ICCAD), 1992, pp. 310–317.

[14] J. A. Starzky and A. Konczykowska, “Flowgraph analysis of large elec-
tronic networks,”IEEE Trans. Circuits Syst., vol. 33, pp. 302–315, Mar.
1986.

[15] X.-D. Tan and C.-J. Shi, “Hierarchical symbolic analysis of large analog
circuits with determinant decision diagrams,” inProc. IEEE Int. Symp.
Circuits and Systems, vol. VI, May 1998, pp. 318–321.

[16] , “Balanced multilevel multiway partitioning of large analog cir-
cuits for hierarchical symbolic analysis,” inProc. IEEE Asia and South
Pacific Design Automation Conf. (ASP-DAC), Hong Kong, 1999, pp.
1–4.

[17] M. Vlach, “LU decomposition algorithms for parallel and vector com-
putation,” inAnalog Methods for Computer-Aided Circuit Analysis and
Diagnosis, T. Ozawa, Ed. New York: Marcel Dekker, 1988, pp. 37–64.

[18] J. Vlach and K. Singhal,Computer Methods for Circuit Analysis and
Design. New York: Van Nostrand Reinhold, 1994.

[19] H. Walscharts, G. Gielen, and W. Sansen, “Symbolic simulation of
analog circuits ins- andz-domain,” inProc. IEEE Int. Symp. Circuits
and Systems, 1989, pp. 814–817.

[20] P. Wambacq, G. Gielen, and W. Sansen, “A new reliable approximation
method for expanded symbolic network functions,” inProc. IEEE Int.
Symp. Circuits and Systems, 1996, pp. 584–587.

[21] Q. Yu and C. Sechen, “A unified approach to the approximate symbolic
analysis of large analog integrated circuits,”IEEE Trans. Circuits Syst.,
vol. 43, pp. 656–669, Aug. 1996.

Xiang-Dong Tan (S’96–M’99) received the B.S.
and M.S. degrees in electrical engineering from
Fudan University, Shanghai, China, in 1992 and
1995, respectively, and the Ph.D. degree in electrical
and computer engineering from the University of
Iowa, Iowa City, in 1999.

He is currently a Member of Technical Staff
at Monterey Design Systems, Monterey, CA. He
worked with Rockwell Semiconductor Systems in
the summer of 1997, and Avant! Corporation in the
summer of 1998. He was a Research Assistant in

the Department of Electrical Engineering, University of Washington, Seattle,
from September 1998 to April 1999. His current research interests include very
large scale integration (VLSI) physical design automation, symbolic analysis
of large analog circuits, layout optimization for performance, timing, power,
and clock tree synthesis.

Dr. Tan received a Best Paper Award from the 1999 IEEE/ACM Design Au-
tomation Conference in 1999 and the First-Place Student Poster Award from
the 1999 Spring Meeting of the Center for Design of Analog Digital Integrated
Circuits (CDADIC). He received a Best Graduate Award in 1992 and a number
of Excellent College Student Scholarships from 1988 to 1992, all from Fudan
University.

C.-J. Richard Shi (M’91–SM’99) received the B.S.
and M.S. degrees in electrical engineering from
Fudan University, Shanghai, China, in 1985 and
1988, respectively, the M.A.Sc. degree in electrical
engineering and the Ph.D. degree in computer
science from the University of Waterloo, Waterloo,
ON, Canada, in 1991 and 1994, respectively.

He is currently an Assistant Professor in the
Department of Electrical Engineering, University of
Washington, Seattle. His research interests include
methodologies and tools for systems-on-a-chip

design, with the particular emphasis on analog, mixed-signal, and deep-sub-
micron design and test automation. He has published more than 70 technical
papers, and has been a principal investigator of more than $2M in research
funding from DARPA, NSF, USAF, CDADIC, and industry since 1995. He is a
consultant to several semiconductor and EDA companies.

Dr. Shi co-founded IEEE/ACM/VIUF International Workshop on Behavioral
Modeling and Simulation, and served as its Technical Program Chair from 1997
to 1999. Having been involved in IEEE DASC 1076.1 VHDL-AMS Working
Group since 1994, he is one of the contributors to, and promoters of, IEEE std
1076.1-1999 standard language (VHDL-AMS) for the description and simula-
tion of mixed-signal/mixed-technology systems. He has delivered tutorials on
VHDL-AMS and behavioral modeling at several conferences including DAC,
EuroDAC, and ASP-DAC. He has been a recipient or co-recipient of several
awards including the T. D. Lee Physics Award for excellence in graduate study
from Fudan, University of Waterloo Outstanding Achievement in Graduate
Studies Award, the Natural Sciences and Engineering Research Council of
Canada Doctoral Prize, a National Science Foundation CAREER Award,
four Best Paper Awards (including the 1999 IEEE/ACM Design Automation
Conference Best Paper Award and the 1999 IEEE VLSI Test Symposium Best
Paper Award), and three other Best Paper Award Nominations (ASP-DAC’98,
EuroDAC’96, and ASP-DAC’95). He is a member of IEEE Design Automation
Standards Committee. He is an Associate Editor of IEEE TRANSACTIONS ON

CIRCUITS AND SYSTEMS–II. This year, he was nominated by his students to
receive the UW/COE Outstanding Educator Award.

