

WZ1175 Page 1

Automatic Animal Feeder
Abstract

Project Registration No: WZ1175

Prepared for:
WIZnet 2014 Design Challenge

WZ1175 Page 2

The Automatic Animal Feeder system is designed to automatically feed hay to small farm animals
such as goats and sheep. The system provides owners of these animals the freedom to be away
from their animals for up to a week at a time and to be confident that their animals are being fed
properly. The control system for the feeder uses a Microchip ChipKit Max32 processor module, and
the network interface connection is provided by the WIZnet WIZ550io network module This design
extends the Internet of Things to the barnyard which allows the operation of the feeder to be
controlled and monitored remotely via the Internet.

The Automatic Animal Feeder consists of the chipKit Max32 development board, along with two
extension boards that host the unique interfaces required by the system. The Control Board hosts
the chipKit processor, WIZ550io module, power supply, system interfaces, and a host of
housekeeping and monitoring functions. The AC Control Board contains the solid state relays that
control the feeder and several auxiliary outputs. In addition, this board also hosts a watchdog
monitor to ensure the overall system operates safely. A block diagram is shown in Figure 1 and the
completed project is shown in Figure 2. A photo of the control electronics is shown in Figure 3.

The feeder consists of 6 vertical feed bins to hold individual pads of hay. Each pad of hay, which is
approximately 24” x 15” x 4”, is sufficient to feed the animals for one day. The bottom of the vertical
bin consists of a trap door which holds the hay in the bin. At the appropriate time, either based on
time of day or via command received from the Internet, the control system commands a linear
actuator which triggers the release mechanism, which causes the trap door to open. The pad of hay
then drops into the area below the feeder, which is accessible to the animals. A sensor is attached to
each trap door so the controller can verify that door opened correctly. If the controller senses that a
problem existed that prevented the door from opening, it will automatically select a different bin to
release. The web interface for monitoring and controlling the system operation is shown in Figure 4.

A short two minute video that demonstrates the operation of the system is provided in the file
“Demo_video.wmv” located in the Demo_video directory.

The software design for the Automatic Animal Feeder utilizes custom software written in the C
language using the Microchip MPLAB X development environment to implement all the functions
required to control the feeder. This custom software is integrated with the Microchip TCPIP stack,
which provides the web server interface and all the other standard network functions. At the time this
project was completed, interface drivers between the Microchip TCPIP stack and the WIZ550io
module were not available so a significant part of this project was to develop the interface between
the WIZ550io module and the Microchip stack.

The linear actuators, which are part of the mechanical release mechanism, have the unfortunate
characteristic that they are not rated for continuous operation. Under normal operating conditions,
this is not an issue since each actuator is energized for only 1-second at a time. However, since the
actuators are under software control there was a possibility that a software failure could result in an
actuator being energized continuously potentially resulting in a fire hazard. This condition violates
one of my fundamental design rules, which is “A single software failure must never result in damage
to life or property”. To mitigate this risk, a watchdog function was implemented to continuously
monitor the actuators and to disable them in the event they are commanded on too long.

WZ1175 Page 3

chipKit Max32
Development

Board

Health
Monitor

Feed Bin
Dump Relays

6

2 ADC Inputs

SPI1 & SPI2

Power
Supply

Control Board

120 V AC Input

AC Control Board

Custom Designed

Purchased item

Legend

WIZ550io Ethernet3.3V

SPI

Interface

5.0V

Digital Inputs

Digital Outputs

3.3V5.0V

Temperature
Sensor

Feed Bin
Dump Outputs

Feed Bin
Sensor Inputs

Aux Control
Outputs

24V
Transformer

Feed Bin
Manual Dump

Interface

Actuator
Watch Dog

Monitor

Feed Bin
Status

Interface

Linear
Actuator

(Feed)

Sensor

Manual
Release

1 of 6 Feed Bins

Aux Control
Relays

Six Feed Bins

Aux AC Outputs
5.0V

6

6

5

Figure 1 Automatic Animal Feeder Block Diagram – The feeder system consists of the chipKit
Max32 controller, the WIZ550io network interface, and two custom boards. In addition, mechanical

mechanisms are included to physically control the release of the animal feed.

WZ1175 Page 4

Figure 2 Photo of Completed Automatic Animal Feeder System – The six feed bins are shown in
the upper left portion of the photo and the gray electrical box on the right contains all the control
electronics to control the feeder. The electronics also contains a web server to provide remote

control and monitoring via the Internet.

WZ1175 Page 5

Figure 3 Photo of control electronics for the Animal Feeder System – The custom printed wiring
board in the upper left hosts the chipKit Max32 controller and the WIZ550io module. The board in the

middle contains the solid state relays that control the linear actuators. The terminal blocks on the
bottom and on the right provide the interface for the AC wiring and bin sensor signals.

WZ1175 Page 6

Figure 4 Control/Monitoring Web Page – This webpage is generated by the web server built into
the control system. The web interface provides a quick way to monitor the operation of the system. It

is also possible to manually control they system via this web page if desired.

WZ1175 Page 7

Sample of Code

As mentioned previously, a significant portion of this project was to develop the interface driver
between the Microchip TCPIP stack and the WIZ550io module which uses the W5500 Ethernet
Controller. Fortunately, WIZnet does provide a driver for the W5200 device which was used as a
starting point for this development, but there are significant differences between the SPI interface
frame of the W5200 part and the W5500 part. In addition, the memory mapping between the two
parts is significantly different. The W5200 maps the Common Registers, Socket Registers and the
Rx/Tx buffer block into a linear address space. For example, the Socket 0 Registers are located
between 0x4000 and 0x402e. The W5500 device uses a Block Select field in the SPI frame to select
a memory, and the addressing within the memory is zero based. For example, the Socket 0
Registers are in block 0x01 between addresses 0x0000 and x0030. In an effort to utilize as much of
the existing W5200 driver code as possible in the new W5500 driver, the internal operation was left
for the most part untouched, and the differences were handled in the functions that implemented the
SPI interface and the functions that interface with the device memory.

The code shown below is the new WriteReg function:

void WriteReg(BYTE BS, WORD Address, BYTE Data)

{

#if defined (__DISABLE_ALL_INT__)

 DINT();

#endif

 W5500_CS_IO = 0;

#if defined (__18CXX) // For PIC18 Series

 W5500_SPI_SendByte((BYTE) ((Address & 0xFF00) >> 8));

 W5500_SPI_SendByte((BYTE) (Address & 0x00FF));

 W5500_SPI_SendByte(0x80);

 W5500_SPI_SendByte(0x01);

 W5500_SPI_SendByte(Data);

#else // for PIC32

 DWORD_VAL dwv;

 W5500_SPICON1bits.MODE32 = 1;

 if(BS == SOCKET_0_TX_BUFFER)

 dwv.w[1] = Address - TXSTART;

 else if(BS == SOCKET_0_RX_BUFFER)

 dwv.w[1] = Address - RXSTART;

 else

 dwv.w[1] = Address;

 dwv.w[0] = ((WORD) BS << 11) | 0x0400 | Data; //Second word is BS, R/W=1,OP=0, Data

 W5500_SPI_SendDword(dwv.Val); //Send 32 bits and read buffer

 W5500_SPICON1bits.MODE32 = 0;

#endif

 W5500_CS_IO = 1;

#if defined (__DISABLE_ALL_INT__)

 EINT();

#endif

}//end WriteReg

WZ1175 Page 8

As mentioned earlier, the design also includes a watchdog function to prevent the linear actuators
from being energized too long due to a software failure. The watchdog is implemented with a simple
PIC16F688 processor. The watchdog monitors the drive signals for the linear actuators, and if they
are active for more than 3 seconds it forces them to be de-energized to prevent them from getting too
hot. The complete main() routine for this processor is shown below:

void main(void)

{

 Init();

 NewSecond = FALSE;

 TickCounter = 0;

 OnTime = 0;

 OffTime = 0;

 ShutDownFlag = FALSE;

 //Set the Bin_enable true

 PORTC |= 0b00100000;

 while(1)

 {

 if(NewSecond == TRUE)

 {

 //Do one second processing

 NewSecond = FALSE; //Clear the second flag

 CLRWDT(); //Kick the dog

 //Determine if a solnoid is on

 if(((PORTA & 0b00110100) | (PORTC & 0b00000111)) != 0)

 {

 //Solnoid is on so increment timer

 OnTime++;

 //Turn the LED on as long as an actuator is activated

 PORTC |= 0b00001000;

 if(OnTime >= ON_TIME_MAX)

 {

 //Solnoid is ON too long so shut down

 ShutDownFlag = TRUE;

 OnTime--;

 }

 }

 else

 {

 OnTime = 0;

 //Toggle the one second LED

 PORTC ^= 0b00001000;

 }

 if(ShutDownFlag == TRUE)

 {

 //Set the Bin_enable false and turn the LED OFF

 PORTC &= 0b11010111;

 OffTime++;

 if(OffTime >= OFF_TIME)

 {

 //We have been off long enough so re-enable the solnoides

 ShutDownFlag = FALSE;

 OffTime = 0;

 OnTime = 0;

 //Set the Bin_enable true

 PORTC |= 0b00100000;

 }

 }

 } //if(NewSecond)

 } //while(1)

}

WZ1175 Page 9

Control Board Schematic

Note: High resolution version of the control board schematic is available in

“Control_board_schematic.pdf”

WZ1175 Page 10

WZ1175 Page 11

WZ1175 Page 12

WZ1175 Page 13

WZ1175 Page 14

AC Control Board Schematic

Note: High resolution version of the AC Control Boar is available in
“AC_control_board_schematic.pdf”

WZ1175 Page 15

WZ1175 Page 16

Interconnect

Note: High resolution version of the interconnect is available in “Interconnect_diagram.pdf”

WZ1175 Page 17

WZ1175 Page 18

