
VPS_P18_Graphical_Programming_for_PICs.docx Page 1 of 10 BitCraft - 01 MAY 2013

Graphical Programming for PIC® Microcontrollers.
 --BitCraft-----

Introduction
Most electronic enthusiast/hobbyist
will agree that microcontrollers are
very versatile and powerful marvels
of technology. They are also
inexpensive and it is easy to build a
working circuit. Generating and
testing software for them is another
story, especially if you are not
reasonably familiar with any of the

programming languages and your
application is a bit more involved
than just flashing an LED. In which
case there is a good chance of
your ideas remaining just ideas.

This document can maybe help,
not by teaching you the use of one
of the popular programming
languages, but by describing an
alternative approach and a
graphics tool for generating and
debugging software without writing
a single line of code

The first part of this document is
designed to introduce you to the
use of function blocks to produce a
software design for your
microcontroller. The concept is
simple, so those of you expecting
some brand new technology, you
will be disappointed. Function
blocks are very successfully used
for programming industrial

automation controllers sometimes
referred to as PLC’s. If you think
about it most of our microcontroller
applications do some sort of
control, like reading one or more
inputs, do some processing, and
then use the results to drive some
output device(s), just like the
industrial controller. So the idea
here is to show how the use of
function blocks can simplify things
considerably when making
software for microcontrollers, even
if it is just to make an LED flash!
We will use a simple application to

VPS_P18_Graphical_Programming_for_PICs.docx Page 2 of 10 BitCraft - 01 MAY 2013

show how to arrive at a software
design based on function blocks.

The second part of this document
describes the basics of a PC
application that will allow you to
generate the software for your PIC®
microcontroller application. A CAD
based approach is used where
graphic symbols, representing
function blocks, are dropped on
one or more screen pages and
then inter-connected by lines to
form your complete application. For
testing your project live values from
the simulator or your
microcontroller can be displayed on
the ‘drawing’.

Where to Start with a
Project
A method used by many is to first
make a basic functional diagram of
the general workings of the
application, nothing complicated,
just to show the basics. You will be
amazed how this first step can
serve to generate ideas. Just a few
blocks on paper can say a lot; after
all, a picture is still worth a
thousand words.

Our example application’s function
is to measure the ambient
temperature and to warn us if any
alarm condition is detected. Here is
a bit more detail of what we want
our system to do.

When Temperature > 40 DegC
then Alarm1 LED on.

When Temperature < 20 DegC
then Alarm2 LED on.

Also every time any one of
the alarms become active it
will switch on a buzzer,
which will remain on (even if
the alarm condition goes
away) until it is silenced by
operating a push button.

Figure 1 is my version of the basic
functional diagram for our project.
Stick to a few general rules when
drawing the basic functional
diagram:

1. Inputs into the
microcontroller chip are
located on the left side of
the diagram and outputs
from the chip on the right
side of the diagram.

2. Function/Processing
blocks receive input
signals on their left side
and their result(s) appear
on their right side. This
means a signal/value
propagate through the
diagram from left to right

3. The description of a
Function/Processing
block only states what it
is doing, not how it is
doing it.

Figure 1 show how the signals from
the input devices are transferred by
‘Read Input’ Blocks 1 and 2 to the
processing Blocks 6 and 7, and
also how the ‘Write Output’ Blocks
3 to 5 drive the output devices.
Take note that Figure 1 is not a
circuit diagram, it is a function
diagram.

VPS_P18_Graphical_Programming_for_PICs.docx Page 3 of 10 BitCraft - 01 MAY 2013

The workings of Blocks 2 to 5 are
straight forward; they handle
signals that can only be ON or
OFF. Block 1 on the other hand

handles a numeric value
representing the temperature. The
specification for the temperature
probe states that it will produce
10mVolt for every 1 DegC above
zero degrees. (Refer to LM35). For
example if the ambient temperature
is 20 DegC the probe will supply
200mVolt. For our software to
‘read’ the temperature value the
voltage signal from the temperature
probe must be connected to a pin
on the microcontroller equipped

with an Analog-to-Digital (A/D)
converter. In our case the A/D
converter of the microcontroller can
convert an input signal ranging
from 0 to 5Volt, into a numeric
count ranging from 0 – 1023, that is

for a 10bit A/D converter. With a bit
of mathematic manipulation you
can show that the ambient
temperature (in DegC) is given by:

Ambient temperature =
2.046 * (A/D converter
count)

The functionality required for Block
1 in Figure 1 can now be
expressed by using simple function
blocks as shown in Figure 2.
Remember you don’t need to know
how a function block is working;
only what it is doing.

From Block 1a, the A/D converter,
we obtain an ‘integer’ in the range
0 – 1023 representing the ambient
temperature.
With the aid of Block 1b this integer
value is converted into a ‘real’

VPS_P18_Graphical_Programming_for_PICs.docx Page 4 of 10 BitCraft - 01 MAY 2013

(floating point) value which is then
multiplied by 2.046 in Block 1c to
produce the ambient temperature
in DegC.

At this stage you might ask: What
function blocks are available to use
in the design? As far as I know
there is no fixed standard, but there
seem to be general consensus that
at least the following should be
provided for in a controller:

Logic functions
 AND, OR, XOR, SR-LATCH

Timing functions
ON-DELAY, OFF-DELAY,
MONOSTABLE)

Mathematical function
 ADD, SUBTRACT, MULTIPLY,
DIVIDE

Comparator functions
>, <, =

Input and Output functions
ANALOG-IN,
ANALOG-OUT,
DIGITAL-IN,
DIGITAL-OUT

In more involved designs it is not
unusual to have one or more
intermediate stages of functional
designs, with the last stage using
the function blocks provided by the
specific controller.

Let us get back to our project by
looking at Block 6 in Figure 1. This
block must generate the 2 alarm
conditions depending on the
current temperature value.
Comparator function blocks are
used as shown in Figure 3, and I
have taken the liberty of including
in the figure the Blocks 3 and 4 to
show how the alarm signals Alarm
1 and Alarm 2 are used to drive the
output pins to which are connected
the LED’s.

Block 7 in Figure 1 requires that
when any of the alarm conditions
occur the buzzer is to sound
continuously until it is silenced by

VPS_P18_Graphical_Programming_for_PICs.docx Page 5 of 10 BitCraft - 01 MAY 2013

the Silence Buzzer push button,
ready to be triggered by the next
alarm occurrence. In Figure 4 the
Blocks 7a and 7b will each output a
short pulse when they detect a 0-
to-1 transition at their respective
inputs. Any of these pulses will be
transferred via Block 7c to the S(et)
input of the SR-Latch (Block 7d).
The output of the latch, driving
Block 5, will remain set until the
Reset Alarm push button is
momentarily operated, which will
convey a Logic 1 signal to the
R(eset) input of Block 7d, causing it
to clear its output, thus silencing
the buzzer.

That concludes our function block
design. As a bonus you now also
have your application documented;
something which is usually left for
last, or worse, never done.

Next step is to generate the
software that implements our
functional design. You can of
course now proceed to write code
for the function blocks in Figures 2,
3, and 4, using your favorite
programming language, but there is
an easy way out, just read the next
section.

Software Development with
VPS_P18
In the section above was described
a method of using function blocks
to arrive at a design for the
software of a microcontroller
project. If now you write the code
each function block then after a few
projects you will probably have
quite a handy ‘library’ of function
and this is blocks that you can re-
use in new projects. In actual fact
this is how VPS_P18 started.

VPS_P18 is a PC CAD application
that will allow you to ‘draw’ the

application in much the same form
as that what we ended up with in
the first section of this document.
The function blocks available are
listed at the end of this document.
Courtesy of Microchip™, VPS_P18
produces a .HEX file, complete with
an operating system, ready to be
programmed into your
microcontroller.

When you first test-run VPS it is
probably more convenient to use
the built-in simulator, as you do not
require any hardware.

Once the program is ‘burned’ into
the microcontroller it is time for
debugging and testing. Using the
microcontroller’s serial port
VPS_P18 will display on your
application drawing live values
(100mSec update rate, if your PC
is fast enough) for the inputs and
outputs of each function block. This
means, for instance, that you can
follow the effect a pushbutton input
signal has ‘inside’ the application
and not just if it produces the
desired result at some output pin.
Debugging and testing is further
made easier when using the ‘trend
view’ in VPS_P18. With this
‘oscilloscope type’ tool you can
view 400 values of up to 4
variables sampled at an adjustable
rate of multiples of 100 mSec.
Communication between PIC® and
PC is via RS232. You can use a
USB/RS232 converter if your PC
does not have a serial port.

VPS_P18 can generate
applications for the following PIC®
microcontrollers from Microchip™.

 PIC18F242
 PIC18F2420
 PIC18F252

VPS_P18_Graphical_Programming_for_PICs.docx Page 6 of 10 BitCraft - 01 MAY 2013

 PIC18F2520
 PIC18F442
 PIC18F4420
 PIC18F452
 PIC18F4520
The following figure is a screenshot
showing the implementation of our
temperature alarm project using
VPS_P18. The sections for Figures

2, 3, and 4 are identified by
relevant comment blocks. For
those interested in this kind of
information, the project occupies
426* bytes of program memory and
takes on average 584 processor
cycles, which translates to 73uSec
execution time.

VPS_P18 was made by a hobbyist for (professional?) hobbyists, so I welcome
any suggestions, questions and critic. For those who want more information or
wants to use the program it is available at no charge when used for non-
commercial purposes. Contact Lourens at bitcraft@global.co.za.

Happy PicKing.

*This is of course without the memory required for the base software and
operating system.

mailto:bitcraft@global.co.za

VPS_P18_Graphical_Programming_for_PICs.docx Page 7 of 10 BitCraft - 01 MAY 2013

VPS_P18 Function Block library
The following are the Function Blocks available in VPS_P18 Ver 2.04

Logic Functions:

Reference Description

FB1 AND Gate 2-Input

FB2 AND Gate 3-Input

FB3 AND Gate 4-Input

FB7 AND Gate 8-Input

FB8 OR Gate 2-Input

FB9 OR Gate 3-Input

FB10 OR Gate 4-Input

FB12 Schmitt Trigger

FB14 OR Gate 8-Input

FB15 SR Latch

FB16 XOR Gate 2-Input

FB17 D-LATCH with Reset

FB18 TRAILING EDGE Detect

FB19 LEADING EDGE Detect

FB138 Byte AND 2-Input

FB139 Byte OR 2-Input

FB140 Byte XOR 2-Input

FB141 Byte INVert

Timing Functions:

Reference Description

FB30 ON-Delay Timer

FB31 OFF-Delay Timer

FB32 MONO-Stable Timer

FB33 MONO-Stable Timer retriggerable

Mathematical Functions:

Reference Description

FB120 ADD INT Values

FB102 ADD FLOATING POINT Values

FB122 SUBTRACT INT Values

FB103 SUBTRACT FLOATING POINT Values

FB124 MULTIPLY INT Values

FB101 MULTIPLY FLOATING POINT Values

FB126 DIVIDE INT Values

FB100 DIVIDE FLOATING POINT Values

FB105 ABSOLUTE VALUE of FLOATING POINT Value

FB129 ABSOLUTE VALUE of INT Value

FB170 INTEGRATOR for INT Values

FB171 DIFFERENTIATOR for INT Values

Comparator Functions:

Reference Description

FB59 COMPARE for BYTE Values >, =, <

FB92 COMPARE for INT Values >, =, <

FB60 TEST if A>=B for INT Values

FB61 TEST if A=B for INT Values

FB64 TEST if A<B for FLOATING POINT Values

FB65 TEST if A>B for FLOATING POINT Values

VPS_P18_Graphical_Programming_for_PICs.docx Page 8 of 10 BitCraft - 01 MAY 2013

Variable Test Functions:

Reference Description

FB93 TEST INT Value for +ve, =0, -ve

FB98 TEST FLOATING POINT Value for +ve, =0, -ve

Counter Functions:

Reference Description

FB39 8BIT UP-DOWN COUNTER with Limits

FB40 16BIT UP-DOWN COUNTER with Limits

Selector/Multiplexor Functions:

Reference Description

FB20 CHANGE-OVER-SWITCH for BOOLEAN values

FB56 CHANGE-OVER-SWITCH for BYTE values

FB72 CHANGE-OVER-SWITCH for INT values

FB78 CHANGE-OVER-SWITCH for FLOATING POINT values

FB41 MUX for 1-of-8 BYTE Literals

FB42 MUX for 1-of-8 INT Literals

FB43 MUX for 1-of-8 UINT Literals

FB44 MUX for 1-of-8 FLOATING POINT Literals

FB79 SELECT 1-of-4 FLOATING POINT Values

FB70 SELECT MAXIMUM of 2 INT Values

FB71 SELECT MINIMUM of 2 INT Values

FB76 SELECT MAXIMUM of 2 FLOATING POINT Values

FB77 SELECT MINIMUM of 2 FLOATING POINT Values

FB107 SELECT 1-of-12 BYTE Literal values (used for 7-segment pattern look-up)

FB108 SELECT 1-of-8 BYTE Literal values

FB109 SELECT 1-of-8 INT Literal values

FB110 SELECT 1-of-8 UINT Literal values

FB111 SELECT 1-of-8 FLOATING POINT Literal values

Limiter Functions:

Reference Description

FB83 HIGH LIMITER for INT Values

FB84 LOW LIMITER for INT Values

FB90 HIGH LIMIT DETECT for INT Values

FB91 LOW LIMIT DETECT for INT Values

FB94 HIGH LIMIT DETECT for FLOATING POINT Values

FB95 LOW LIMIT DETECT for FLOATING POINT Values

Table Look-up (Function Generator) Functions:

Reference Description

FB168 FUNCTION GENERATOR INT Values (Input 0…1024, Output -
32768…32767)

FB169 FUNCTION GENERATOR INT Values (Input 0…32767, Output -
32768…32767)

Communication Functions:

Reference Description

VPS_P18_Graphical_Programming_for_PICs.docx Page 9 of 10 BitCraft - 01 MAY 2013

FB163 I2C WRITE (to Slave, 7Bit address)

FB164 I2C READ (from Slave, 7Bit address)

Input and Output Functions:

Reference Description

FB13 1 to 4 CHANNEL HOBBY SERVO DRIVER

FB23 8BIT SERIAL OUTPUT DRIVER (for driving 74LS166 shift registers)

FB24 8BIT SERIAL OUTPUT DRIVER (ideal for driving 74LS595 shift registers)

FB25 ANALOG INPUT

FB26 FREQUENCY COUNTER INPUT (max 32000Hz)

FB27 PWM OUTPUT

FB28 DIGITAL OUTPUT

FB29 DIGITAL INPUT

FB142 DISPLAY BYTE Variable on LCD

FB143 DISPLAY INT Variable on LCD

FB145 DISPLAY FLOATING POINT Variable on LCD

FB146 DISPLAY STRING on LCD

FB147 DISPLAY TIME (HH:MM:SS) on LCD

FB148 DISPLAY TIME (HH:MM) on LCD

Pulse Generator Functions:

Reference Description

FB21 LOW FREQUENCY PULSE GENERATOR

FB36 PULSE WIDTH MODULATOR

FB211 FLASHER BITS with periods 20, 40, 80, 160, 320 and 640mSec (System
Resource)

Data Pack/Unpack Functions:

Reference Description

FB112 PACK 8 Bits into BYTE

FB113 PACK 2 BYTES into INT

FB114 PACK 2 BYTES into UINT

FB115 PACK 4 BYTES into FLOATING POINT

FB116 UNPACK BYTE into 8 Bits

FB117 UNPACK INT into 2 BYTES

FB118 UNPACK UINT into 2 BYTES

FB119 UNPACK FLOATING POINT into 4 BYTES

Read & Write Data EEPROM Functions:

Reference Description

FB45 READ BYTE Value from EEPROM

FB47 READ INT Value from EEPROM

FB49 READ UINT Value from EEPROM

FB51 READ FLOATING POINT Value from EEPROM

FB46 WRITE BYTE Value to EEPROM

FB48 WRITE INT Value to EEPROM

FB50 WRITE UINT Value to EEPROM

FB52 WRITE FLOATING POINT Value to EEPROM

Data Type Conversion Functions:

Reference Description

FB150 CONVERT INT to FLOATING POINT

FB151 CONVERT FLOATING POINT to INT

VPS_P18_Graphical_Programming_for_PICs.docx Page 10 of 10 BitCraft - 01 MAY 2013

FB152 RANGE TRANSFORM INT/ FLOATING POINT

FB153 BINARY Byte to packed BCD

FB154 BINARY 2 Bytes to 1 Byte packed BCD

FB155 1 Byte packed BCD to BINARY Byte

FB156 1 Byte packed BCD to 2 Bytes BINARY

Sequence Control Functions:

Reference Description

FB157 SEQUENCE CONTROLLER

FB158 SEQUENCE STEP HEAD

FB159 SEQUENCE STEP TAIL

Control Functions:

Reference Description

FB66 INCREMENT/DECREMENT RATE LIMITER for INT Values

FB67 INC/DEC RAMP CONTROLLER

FB173 FILTER, (very) LOW PASS for INT Values

FB174 FILTER, LOW PASS for INT Values

FB175 LEAD FUNCTION for INT Values

FB176 LAG FUNCTION for INT Values

FB177 DEAD-TIME FUNCTION for INT Values

FB181 PID CONTROLLER using velocity algorithm

Constants:

Reference Description

FB195 DEFINE FLOATING POINT Constant

FB196 DEFINE UINT Constant

FB197 DEFINE INT Constant

FB198 DEFINE BYTE Constant

FB210 DEFINE BOOLEAN Constant (System Resource)

PIC

®
 Device Functions and utilities:

Reference Description

FB188 LOAD INDICATOR

FB189 SHOW MICROCONTROLLER DEVICE ID

FB190 SFR BYTE Read

FB191 SFR BIT Read

FB192 SFR BYTE Write

FB193 SFR BIT Write

Code-Page Functions:

Reference Description

FB200 SIGNAL READ Connector (read signal from another, or same, Code Page)

FB201 SIGNAL WRITE Connector (write signal for use on another, or same, Code
Page)

FB202 TEXT COMMENT BOX

FB203 SIGNAL WRITE Connector (for Sequence Output Signals)

