
VPS_P18_Getting_Started.doc Page 1 of 12 BitCraft 27NOV2013

VPS_P18 Getting Started

---BitCraft-----

Preface
This document is intended to be a quick introduction to the basics of VPS_P18 rather than a lengthy description of
the different options available. The introduction will be in the form of describing the making and testing of a very

small application for the PIC
®
 microcontroller. The „application software‟ that we are going to write, or rather „draw‟,

is shown in Figure 1, where a LED, tied to PORTB pin 0, will flash or stop with every alternate operation of a push-
button connected to PORTB pin 4. The circuit diagram required for the application is shown in Figure 2 but we will

in this document take the easy way out by using the simulator included in VPS_P18

The document also contains Notes with additional information or explanation of related topics.

1.0 Contents

1.0 Contents ... 1
2.0 What is VPS_P18 ... 3
3.0 Installing VPS_P18 .. 3
4.0 Starting VPS_P18 .. 3

5.0 Creating the Project.. 3
6.0 Creating the Function Block Application .. 3
6.1 Code Pages ... 3
6.2 The Task Info function block ... 4

6.3 Add function blocks to a code page ... 4
6.4 Connecting Function Blocks .. 5
7.0 Port and Peripheral Configuration ... 6

8.0 Compile the Project.. 6
9.0 On-Line Monitoring and Debugging of the Application ... 7
10.0 Hardware for the project. ... 8
11.0 List of Function Blocks. ... 9
11.1 Logic Functions. .. 9

Figure 1. Application Software

VPS_P18_Getting_Started.doc Page 2 of 12 BitCraft 27NOV2013

11.2 Timing Functions. .. 9

11.3 Mathematical Functions. .. 9
11.4 Comparator Functions. ... 9
11.5 Variable Test Functions. .. 9
11.6 Counter Functions. ... 10

11.7 Selector/Multiplexor Functions. .. 10
11.8 Limiter Functions. .. 10
11.9 Table Look-up (Function Generator) Functions. ... 10
11.10 Communication Functions. .. 10
11.11 Input and Output Functions. .. 10

11.12 Pulse Generator Functions. .. 11
11.13 Data Pack/Unpack Functions. .. 11
11.14 Read & Write Data EEPROM Functions... 11
11.15 Data Type Conversion Functions... 11
11.16 Sequence Control Functions. ... 11

11.17 Control Functions... 11
11.18 Constants. ... 12

11.19 PIC
®
 Device Functions. ... 12

11.20 Code-Page Functions. .. 12

12.0 Distribution License. .. 12

C1 +

OSC1 OSC2

9 10

XTAL

22p 22p

Vdd

M CLR

1 0K

+5V

17

18

20

1

8

19

1 5

9

5

1 uF

1 uF

1 uF

1 uF

6
C2 -

4
C2 +

1 0
T2in

R2outRC7

RC6
Tx

Rx

C1 -

1

3

Vcc

V+

V-

2

1 6

Vss

Reset

8M Hz

PIC18F242

MAX232

T2out

T2in

7

8 RS232

Tx

Rx

+

++

+

RB0

RB4

1KLED

1 0K

+ 5V

25

21

To PC

1

5

 Figure 2. Application circuit

VPS_P18_Getting_Started.doc Page 3 of 12 BitCraft 27NOV2013

2.0 What is VPS_P18

VPS_P18 is a Windows
®
-based development

application for specific members (See 10.0 Hardware
for the project) of the PIC18F range of

microcontrollers from Microchip™ Technology
Incorporated. A graphical approach is used where the
application/software is drawn in diagram form using the
built-in function block elements which you “wire”
together. No knowledge of a programming language is
required and the package will compile the function
block diagrams application into a ready-to-burn .hex
file.

The simulator will emulate the execution of your
function block application, although the simulators
performance is PC dependent. On an i7 performance is
about 1.5 times slower than real-time for a one code
page application.

The „Lite‟ version of VPS_P18 is limited to 2 code
pages - about 40 function blocks. Should you want to
use more code pages you must obtain a registration
key from bitcraft@global.co.za. A registration key for a
machine is available free of charge if you use it for non-
commercial purposes.

3.0 Installing VPS_P18
Requirements:

 Intel
®
 Pentium (or better) class PC running

Microsoft Windows
®
 XP, 7 or 8.

 Microsoft‟s .NET Framework 4 (available as a
download from Microsoft.com.

Installation:
Uninstall any previous versions of VPS by
running C:\LLG_CB\unins000.exe.Then run
the executable file VPS_P18setup2_05.exe to
install the application. The installation will
place the following icon on your desktop:

4.0 Starting VPS_P18

Start VPS_P18 using the above icon or by executing
C:\LLG_CB\VPS_P18.exe to obtain the window as
shown in Figure 3.

 Figure 3. VPS_P18 Start-up screen

5.0 Creating the Project

Select NewProject and create your project file It is
recommended you keep each project in its own
directory. A project file has the extension .lcb.
Once you have entered the project file name in the File
Dialog pop-up, click the Save button. The file is created
and you will now be presented with VPS_P18‟s desktop

(Figure 4) with the Configuration tab selected by

default. This tab contains a secondary tabcontrol object
with its Project & Processor Info tab selected. This
tab page is provided for your project information Use
these fields so you can later identify your project. It also
shows the memory usage of your project, which now
should be zero because you have not entered any
program, or rather function blocks. The tab to the right
of the Configuration tab is named Code_Page1. A

project will contain at least one code page. Code pages
are the work surfaces on which you place the function
blocks of your application.
At the very bottom of the screen is a status line
showing, amongst other information, the path and name
of your project file.

6.0 Creating the Function Block
Application

6.1 Code Pages

The function block diagram(s) of a project is contained
on one or more code pages. There is no real limit to the
number of code pages you can use. Each code page is
in the form of a tab page; click on the tab and you are
presented with the function block contents of that page.
The name on the tab of a code page can be changed.
For our project we will use two code pages, and we will
leave the tab names at their default text.

Configuration
Tab

Code Page Tab

Project file

Figure 4. Config. Desctop

mailto:bitcraft@global.co.za

VPS_P18_Getting_Started.doc Page 4 of 12 BitCraft 27NOV2013

6.2 The Task Info function block

Each code page contains by default a „task info‟ Block
as per Figure 5, located in the bottom left corner. This

block‟s purpose is so you can select which task the
code on the page must be assigned to. Another useful
function of this block is that it displays the number of

cycles the microcontroller is going to use to execute all
the function block code on the page and also the
program memory (in bytes) that it will occupy.

NOTE:
Two types of tasks are provided, Cyclic and Time tasks. Cycle tasks
are executed in a round-robin strategy while time tasks are
executed at user selectable intervals of 10, 20, 40, 50, 100, and
200mSec. The system provides for 8 cycle, and 7 time tasks.
NOTE:
You can assign more than one code page to a particular task, and
the code pages need not be in a particular order as far as task
numbering goes.

When you now select the tab Code_Page1 you will get
an empty page with only the Task Info function block in
the bottom left corner of the screen and a title block on
the right. Double click on an empty spot in the Task Info
function block frame to obtain the popup dialog for
editing of the task settings for the current code page.

NOTE:
Depending on your screen resolution you might have to use the
scroll bars at the bottom and right sides of your screen to properly
view the Task Info function block. The recommended display
resolution for VPS_P18 is 1280 x 1024.

For the purpose of this exercise make the task type
Cycle Task and select Task Nr equal 1. Figure 5 is a

screen shot of how the task info function block should
appear after the above settings have been
implemented.

6.3 Add function blocks to a code page
Figure 6 is a screenshot showing how the drop-down

menu, obtained by a right mouse click, is used to select
Add Function Block>Logic>D_LATCH FB17. A click
on the item will place the function block on the code
page attached to the cursor. Move the cursor towards
the middle of the page and place the FB with a left click.

NOTE:
Should you want to delete any item (Function Block or line) simply
select the item and use the Delete key..

The D_LATCH (FB17) Function Block will transfer and
latch the logic state of its Data input pin to the output

pin whenever a leading edge is detected on its Clock
input pin, unless of course the Reset pin is at logic zero,
in which case the output is held zero.

NOTE:
There is documentation available that describes the function of each
of the function blocks in detail, except for those which the
function/operation is pretty obvious.

Add the following function blocks to the code page:

1. Digital Input function block (Add Function
Block>Peripherals>D_IN FB29).

2. Digital Output function block (Add Function
Block>Peripherals>D_OUT FB28).

3. 2-Input AND Gate function block (Add
Function Block>Logic>AND_2 FB01)

Add the following off-page connector to the code page:
1. Connector function block

(AddConnector>Read
 Connector FB200).

Add the following constant value to the code page:

1. Boolean constant (Add Function
Block>Constants>Boolean FB210)

The Task Info function block now indicates the
processor cycles and memory requirements for this
code page.

NOTE:
As indicated on the circuit diagram an 8MHz crystal is used and

together with the PLL the PIC
®

 is clocked at a frequency of 32MHz.

Each processor cycle uses 4 clock cycles, so one processor cycle
time is 0.125 micro second

Select and drag each function block so the layout looks
something like Figure 7.

NOTE:
Multiple items can be selected (when not in Insert Line or Edit Line
mode) by dragging a rectangle around them. Holding down the Shift
key to deselect any of the selected items, or select additional item
with a mouse click.

Notice how all function blocks, except the light blue
read connector and the Boolean constant, contain a
number in the bottom right corner. This number

Figure 5. Task Info Function Block

Figure 6. Right Click Menu

VPS_P18_Getting_Started.doc Page 5 of 12 BitCraft 27NOV2013

indicates the sequence in which the final code will be

executed in the simulator and the PIC
®
 microcontroller.

NOTE:
The execution sequence of function blocks is important. If the
blocks are not executed in the direction of the signal flow (left to
right) it will take more than one execution of a task for the signal to
propagate from left to right, and will therefore influence the
response time of your application. Function blocks without execution
sequence numbers do not generate any executable code.

 A double click on a function block will open a dialog
pop-up where you can change its execution sequence
number and other parameters particular to the selected
function block. Like in the case of the D_IN and D_OUT
blocks where we must change the Port and pin setting
from the default to what is required by our application‟s
functional specification. Do not forget to change FB210,
the Boolean constant. In our application it will be
connect to the Reset input of the LATCH, and as we do
not want to reset this latch all the time you must change
FB210‟s default value by a double click on the block to
obtain the dialog pop-up and then modify the setting to
0 (FALSE).

NOTE:
When you change a function block’s execution sequence number
the system will attempt to automatically renumber the other blocks
on the page. This saves you the effort of renumbering all
downstream FB’s when you insert a new FB amongst existing ones.

Double click on the read connector to obtain a dialog
box and enter the Signal Name as FLASHER. Make
sure the signal data type is selected as BIT. This read
connector is going to have a counterpart, a write
connector located on a different code page, the code of
which we will get to shortly.

NOTE:
 Read and write connectors are used to interconnect signals from
one code page to another. Read connectors also serve another
purpose in that when on-line (or Simulator) you can change the
signal value, but only if there is no Write connector on the current or
any another code page, with the same name, because if there is
then the value supplied by you will be overwritten by the application
code. Choose your signal names carefully, assembly errors will be
generated if you use assembler reserved names. .

After the necessary changes your function block
application should look like Figure 8, ready for a bit of

virtual soldering of the interconnecting wires!

6.4 Connecting Function Blocks

Connecting lines are inserted and edited by selecting
the Insert Line and Edit Line modes using the icons in

the tools bar at the top left of the screen as indicated by
the Figure 9 screen shot where the Select, Insert Line,

and Edit Line selection buttons are shown. The cursor
will change according to the selected mode – an arrow
for insert and up-arrow for edit.

Select the Insert Line mode and draw the lines to
connect the function blocks using mouse-down and
drag. A line will start at the mouse-down position and
will end at the mouse-up position. Markers where lines
join are inserted automatically, but notice that only „T‟
junctions are allowed and only horizontal and vertical
lines are possible.

Your project Code_Page 1 should look something like
Figure 1 once you have done all the interconnections.

Notice the „inversion‟ circles on the Data and Clock
inputs of the LATCH function block. All Boolean inputs
of function blocks can be inverted by holding down the
Alt button and then click on the input pin of the function
block near the rectangle body. Do the same thing to
remove the inversion.

Figure 9. Insert, Edit line modes

Figure 7. Placing Function Blocks

Figure 8. Execution Sequence Nrs.

VPS_P18_Getting_Started.doc Page 6 of 12 BitCraft 27NOV2013

NOTE:
While on the subject of connecting function blocks... Each input and
output signal of a function block has a data type. VPS_P18 makes
use of BIT, BYTE, UINT (Unsigned Integer), INT (Signed Integer),
and FP32 (Floating Point) data types. When you connect
input/output pins of different data types together the compiler will
produce an error message. The data types of the input/output pins
of a function block can be identified by holding down the Shift key
and then move the mouse cursor over the function block.

Now it is time to add the function blocks that will
generate the pulsing signal. Two methods are available
to obtain a pulsing signal. The first method is simply to
use one of the internal flasher signals generated by the
operating system, but that will be far too easy! We will
use the second method which requires the PULSER
function block (FB21). If you try to add a FB21 to the
current code page (Add Function
Block>Logic>PULSER FB21) you will get an error
message saying that the PULSER FB can only be used
in a Time Task. So use the Right-Click-Menu, select
Add Page and observe that another code page has
been added with its tab name Code_Page2. Select the

tab of this new page to get to it, and modify the Task
Info blocks Task Type to Time Task and make the Task
Number 1.

Add the following to Code_Page2:

-PULSER function block (Add Function
 Block>Logic>PULSER FB21).
-Boolean constant function block (Add Function
 Block>Constants>Boolean FB210).
-Write connector block (Add Connector>Write Connect

 FB201)

Double click the PULSER function block to obtain its
dialog box, which will tell you the block will generate
pulses at a rate of 2.5 per second. This is a nice rate so
leave the Scan-down factor setting at 1. The Cycle
Time indication of 200mSec is simply information
showing you the execution rate assigned to Time Task
1.

NOTE:
All 7 the Time Tasks default to a cycle time of 200mSec. When you
select the Configuration tab and then the Task tab you are
presented with a dialog where you can change the cycle times.
Cycle times of 10, 20, 40, 50, 100, and 200 mSec are available.

CAUTION:
If you change the cycle time of a time task then you must (re)check
all the time-dependant function blocks executed by this task
because most have settings that depends on rate of execution. Like
our PULSER above, the Scan-down rate setting will remain at what
you have set it to, but if the execution rate of the task is change you
will have a different pulse rate.

Double click the light blue Write Connector. The dialog
box indicates the Signal Name as „x‟, which is the
default. The dialog box also contains a text box
containing the names of all the signal connectors in the
project, which in our case is only that of FLASHER.
Double click on FLASHER, which will update the Signal

Name and Data type parameters for you. Click on
Apply… to accept the settings.

Insert a line to connect the Enable input of the PULSER
function block to the Boolean 1 block, and its output pin
to the input of the write connector with signal name
FLASHER. Your application should look something like

Figure 10.

 Figure 10. The Pulse Generator

7.0 Port and Peripheral Configuration

To configure the PIC
®
 microcontroller ports and

peripherals you must select the Configuration tab and

then the required port tab. For our project it is required
to only set up PORTB for the LED and push button.
Leave the rest of the port settings at their default
values.

Figure 11 shows a section of the dialog box obtained

after you have selected the Port B tab. It shows how
RB0 is selected as Output because it will drive our LED.
Remember to click the Apply…. button after you have
marked the box to set RB0 as output.

In the Tools menu item is a selection named Task

Stats. If you click it you will obtain information about the

program memory used and execution cycles required
for each task of your project.

8.0 Compile the Project

Next step is to generate the .hex file for the PIC
®

controller.

NOTE:
On the status bar at the bottom of the screen there is an indication
of the state of the application STATUS = DESIGN. Once you have
successfully compiled your project this will change to STATUS =

Figure 11. Port B Setup

VPS_P18_Getting_Started.doc Page 7 of 12 BitCraft 27NOV2013

COMPILED. Your application must be at STATUS = COMPILED to
be able to go on-line or use the simulator. The status of an
application is saved in the project file.

On the Tools menu click the Compile item to start the

compiling process. After some internal housekeeping it
will start Microchip‟s MPASM Assembler. This is
indicated by the Microchip assembler pop-up (Figure
12) showing the assembler at work. After a few

seconds it should indicates that the assembly was
carried out successfully. (No errors or warnings) To
continue the compilation process you must click the OK
button on the pop-up.

 Figure 12. Assembler.

The status bar at the bottom of the screen should now
indicate STATUS = COMPILED. Another thing you will
notice about a COMPILED project is that if you place
the cursor over a function block (see Figure 13) the

register addresses (HEX format) of all input and outputs
of that block will be displayed at their respective pins.
These addresses you use in on-line mode for the Trend
View option discussed in the next section.

The directory where your project file is located should
now also contain a .hex file. This file you can program

into your microcontroller. I use Microchip‟s MPLAB
®

with a PICkit
TM

3 programmer.

Next we will use the simulator to verify that the
application is functioning as per specification.

9.0 On-Line Monitoring and Debugging
of the Application

The simulator (and when using f RS232 communication
when the processor is used) allow you to visually
monitor the real-time input and output values of function

blocks, and also supply a „Trend view‟ where you can
observe the last 400 samples of up to 4 values. (See
Figure 16).. Development of control strategies is also

made easy by the „register modification‟ options. The
value property of Read Connectors in the application
can be modified when in on-line or simulator mode.

Activate the simulator as indicated in in Figure 14.

If you now place the cursor over any function block you
should see your application in action. Take note that the
logic status shown for a Boolean pin that contains an
inversion circle is the status before inversion. That
means the inversion is done inside the function block.

NOTE:
When in on-line mode with the cursor over a function block

VPS_P18 will poll the PIC
®

 for information. If there is no reply from

the microcontroller for about 5 seconds an error message is
displayed. Make sure you have selected the correct PC COM port
number for RS232 communication.

In many a case testing requires observing how
variables behave over a period of time and in relation to
one another. Figure 15 demonstrates how this can be

done in VPS_P18 using the TrendView facility.

Figure 14. Activate Simulator

Figure 13. Signal addresses

VPS_P18_Getting_Started.doc Page 8 of 12 BitCraft 27NOV2013

Figure 15. Testing the application.

10.0 Hardware for the project.

The circuit for our project is straight forward and can be
assembled on a piece of Vero board. For the circuit of
Figure 2 you can use a PIC18F242-I/SP, or the

PIC18F252-I/SP, both of which are available in 28 Pin
DIL packages. For a new project it is recommended to
use the PIC18Fxx20-I/SP devices. For applications that
require more input/output pins you can use the
PIC18F4420-I/SP or PIC18F4520-I/SP processors..
Just make sure your selection of processor on the
Configuration>Project & Processor Info tab is

correct

VPS_P18_Getting_Started.doc Page 9 of 12 BitCraft 27NOV2013

11.0 List of Function Blocks.

11.1 Logic Functions.
Reference Description

FB1 AND Gate 2-Input

FB2 AND Gate 3-Input

FB3 AND Gate 4-Input

FB7 AND Gate 8-Input

FB8 OR Gate 2-Input

FB9 OR Gate 3-Input

FB10 OR Gate 4-Input

FB12 Schmitt Trigger

FB14 OR Gate 8-Input

FB15 SR Latch

FB16 XOR Gate 2-Input

FB17 D-LATCH with Reset

FB18 TRAILING EDGE Detect

FB19 LEADING EDGE Detect

FB138 Byte AND

FB139 Byte OR

FB140 Byte XOR

FB141 Byte INVERT

11.2 Timing Functions.
Reference Description

FB30 ON-Delay Timer

FB31 OFF-Delay Timer

FB32 MONO-Stable Timer

FB33 MONO-Stable Timer retriggerable

11.3 Mathematical Functions.
Reference Description

FB120 ADD INT Values

FB102 ADD FLOATING POINT Values

FB122 SUBTRACT INT Values

FB103 SUBTRACT FLOATING POINT Values

FB124 MULTIPLY INT Values

FB101 MULTIPLY FLOATING POINT Values

FB126 DIVIDE INT Values

FB100 DIVIDE FLOATING POINT Values

FB105 ABSOLUTE of FLOATING POINT Value

FB129 ABSOLUTE of INT Value

FB170 INTEGRATOR for INT Values

FB171 DIFFERENTIATOR for INT Values

11.4 Comparator Functions.
Reference Description

FB59 COMPARE for BYTE Values >, =, <

FB92 COMPARE for INT Values >, =, <

FB60 TEST if A>=B for INT Values

FB61 TEST if A=B for INT Values

FB64 TEST if A<B for FLOATING POINT Values

FB65 TEST if A>B for FLOATING POINT Values

11.5 Variable Test Functions.
Reference Description

FB93 TEST INT Value for +ve, =0, -ve

VPS_P18_Getting_Started.doc Page 10 of 12 BitCraft 27NOV2013

FB98 TEST FLOATING POINT Value for +ve, =0, -ve

11.6 Counter Functions.
Reference Description

FB39 8BIT UP-DOWN COUNTER with Limits

FB40 16BIT UP-DOWN COUNTER with Limits

11.7 Selector/Multiplexor Functions.
Reference Description

FB20 CHANGE-OVER-SWITCH for BOOLEAN values

FB56 CHANGE-OVER-SWITCH for BYTE values

FB72 CHANGE-OVER-SWITCH for INT values

FB78 CHANGE-OVER-SWITCH for FLOATING POINT values

FB41 MUX for 1-of-8 BYTE Literals

FB42 MUX for 1-of-8 INT Literals

FB43 MUX for 1-of-8 UINT Literals

FB44 MUX for 1-of-8 FLOATING POINT Literals

FB79 SELECT 1-of-4 FLOATING POINT Values

FB70 SELECT MAXIMUM of 2 INT Values

FB71 SELECT MINIMUM of 2 INT Values

FB76 SELECT MAXIMUM of 2 FLOATING POINT Values

FB77 SELECT MINIMUM of 2 FLOATING POINT Values

FB107 SELECT 1-of-12 PATTERNS (mainly for 7-segment pattern look-up)

FB108 SELECT 1-of-8 BYTE Literal values

FB109 SELECT 1-of-8 INT Literal values

FB110 SELECT 1-of-8 UINT Literal values

FB111 SELECT 1-of-8 FLOATING POINT Literal values

11.8 Limiter Functions.
Reference Description

FB83 HIGH LIMITER for INT Values

FB84 LOW LIMITER for INT Values

FB90 HIGH LIMIT DETECT for INT Values

FB91 LOW LIMIT DETECT for INT Values

FB94 HIGH LIMIT DETECT for FLOATING POINT Values

FB95 LOW LIMIT DETECT for FLOATING POINT Values

11.9 Table Look-up (Function Generator) Functions.
Reference Description

FB168 FUNCTION GENERATOR INT Values (Input 0…1024, Output -32768…32767)

FB169 FUNCTION GENERATOR INT Values (Input 0…32767, Output -32768…32767)

11.10 Communication Functions.
Reference Description

FB163 I2C WRITE (to Slave, 7Bit address)

FB164 I2C READ (from Slave, 7Bit address)

11.11 Input and Output Functions.
Reference Description

FB13 1 to 4 CHANNEL HOBBY SERVO DRIVER

FB23 8BIT SERIAL INPUT DRIVER (for 74LS166)

FB24 8BIT SERIAL OUTPUT DRIVER (for 74LS595 or similar)

FB25 ANALOG INPUT

FB26 FREQUENCY COUNTER INPUT (max 32000Hz)

FB27 PWM OUTPUT

FB28 DIGITAL OUTPUT

VPS_P18_Getting_Started.doc Page 11 of 12 BitCraft 27NOV2013

FB29 DIGITAL INPUT

FB142 DISPLAY BYTE Variable on LCD

FB143 DISPLAY INT Variable on LCD

FB145 DISPLAY FLOATING POINT Variable on LCD

FB146 DISPLAY STRING on LCD

FB147 DISPLAY TIME (HH:MM:SS) on LCD

FB148 DISPLAY TIME (HH:MM) on LCD

11.12 Pulse Generator Functions.
Reference Description

FB21 LOW FREQUENCY PULSE GENERATOR

FB36 PULSE WIDTH MODULATOR

FB211 FLASHER BITS (System Resource)

11.13 Data Pack/Unpack Functions.
Reference Description

FB112 PACK 8 Bits into BYTE

FB113 PACK 2 BYTES into INT

FB114 PACK 2 BYTES into UINT

FB115 PACK 4 BYTES into FLOATING POINT

FB116 UNPACK BYTE into 8 Bits

FB117 UNPACK INT into 2 BYTES

FB118 UNPACK UINT into 2 BYTES

FB119 UNPACK FLOATING POINT into 4 BYTES

11.14 Read & Write Data EEPROM Functions.
Reference Description

FB45 READ BYTE Value from EEPROM

FB47 READ INT Value from EEPROM

FB49 READ UINT Value from EEPROM

FB51 READ FLOATING POINT Value from EEPROM

FB46 WRITE BYTE Value to EEPROM

FB48 WRITE INT Value to EEPROM

FB50 WRITE UINT Value to EEPROM

FB52 WRITE FLOATING POINT Value to EEPROM

11.15 Data Type Conversion Functions.
Reference Description

FB150 CONVERT INT to FLOATING POINT

FB151 CONVERT FLOATING POINT to INT

FB152 RANGE TRANSFORM INT/ FLOATING POINT

FB153 Binary to BCD

FB154 2 Bytes to BCD Byte

FB155 BCD TO Binary Byte

FB156 BCD to 2 Bytes

11.16 Sequence Control Functions.
Reference Description

FB157 SEQUENCE CONTROLLER

FB158 SEQUENCE STEP HEAD

FB159 SEQUENCE STEP TAIL

11.17 Control Functions.
Reference Description

FB66 INCREMENT/DECREMENT RATE LIMITER for INT Values

FB67 INC/DEC RAMP CONTROLLER

FB173 FILTER, (very) LOW PASS for INT Values

FB174 FILTER, LOW PASS for INT Values

FB175 LEAD FUNCTION for INT Values

VPS_P18_Getting_Started.doc Page 12 of 12 BitCraft 27NOV2013

FB176 LAG FUNCTION for INT Values

FB177 DEAD-TIME FUNCTION for INT Values

FB181 PID CONTROLLER (velocity algorithm)

11.18 Constants.
Reference Description

FB195 DEFINE FLOATING POINT Constant

FB196 DEFINE UINT Constant

FB197 DEFINE INT Constant

FB198 DEFINE BYTE Constant

FB210 DEFINE BOOLEAN Constant (System Resource)

11.19 PIC® Device Functions.
Reference Description

FB189 SHOW MICROCONTROLLER DEVICE ID

FB190 SFR BYTE Read

FB191 SFR BIT Read

FB192 SFR BYTE Write

FB193 SFR BIT Write

11.20 Code-Page Functions.
Reference Description

FB200 SIGNAL READ Connector (read signal from another, or same, Code Page)

FB201 SIGNAL WRITE Connector (write signal for use on another, or same, Code Page)

FB202 TEXT COMMENT BOX

FB203 SIGNAL WRITE Connector (for Sequence Output Signals)

12.0 Distribution License.

Users of VPS_P18 must keep in mind that it is only to be used for non-commercial purposes. The package contains
certain MICROCHIP proprietary development systems and software code and is distributed under license from
MICROCHIP. In this regard please note the following:

MPASMWIN and PIC18 Floating Point Libraries are reproduced and distributed by
Lourens le Grange under license from Microchip Technology Inc. All rights
reserved by Microchip Technology Inc. MICROCHIP SOFTWARE OR FIRMWARE
IS PROVIDED “AS IS,” WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL MICROCHIP BE LIABLE FOR ANY
CLAIM, DAMAGES OR OTHER LIABILITY ARISING OUT OF OR IN CONNECTION
WITH THE SOFTWARE OR FIRMWARE OR THE USE OF OTHER DEALINGS IN THE
SOFTWARE OR FIRMWARE.

Function Blocks, closing the divide between requirement and solution.
Happy PicKing.

Lourens

