
[private | public] structure identifier
 variable-declaration
 {variable declaration}
end structure

� Private – An optional keyword which ensures that a structure is only available from within the

module it is declared. Structures are private by default.

� Public – An optional keyword which ensures that a structure is available to other programs or

modules.

� Identifier – A mandatory type name, which follows the standard identifier naming

conventions

� Variable-declaration – One or more variable declarations. Supported types include boolean,

bit, byte, word, longword, shortint, integer, longint, float, string, char and structures

A structure is a collection of one or more variable declaration fields. Each field can be a different
data type. A structure is an extremely useful and powerful feature of the Swordfish language which
enables you to assemble dissimilar elements under one single roof.

To better understand structures, the following example illustrates how to create a new structure

called TTime,

structure TTime

 Hours as byte

Minutes as byte

end structure

The declaration above informs the compiler that TTime contains two byte fields (Hours and

Minutes). We can now create a variable of type TTime, in exactly the same way as you would any
other compiler type, such as byte or float,

dim Time as TTime

Access to an individual field within the variable Time is achieved by using the dot (.) notation,

Time.Hours = 9

Time.Minutes = 59

A structure can also use another structure in one or more of its field declarations. For example,

structure TSample

 Time as TTime

 Value as word

end structure

dim Sample as TSample

We now have a type called TSample, who's field members include Time (of type TTime) and Value
(of type word). Again, dot (.) notation is used to access individual field elements,

Sample.Time.Hours = 15

Sample.Time.Minutes = 22

Sample.Value = 1024

Structures can also be used with arrays. For example, using the previously declared TSample type,
we could declare and access multiple TSample variables by declaring an array,

Structures and Unions

Page 1 of 3Swordfish - Structures and Unions

12/19/2013mk:@MSITStore:C:\Program%20Files\Mecanique\SwordfishSE\Help\Swordfish.chm::/lr...

dim Samples(24) as TSample // array of samples, one every hour

To access each field for every array element, we just need to iterate through the samples array,

dim Index as byte

for index = 0 to bound(Samples)

 Samples(Index).Time.Hours = 0

 Samples(Index).Time.Minutes = 0

 Samples(Index).Value = 0

next

The above code is actually a very verbose way of initializing all fields to zero, but it does
demonstrate how each field can be accessed. It should be noted that by using the inbuilt compiler

command clear, the above can be achieved by using,

clear(Samples)

Unions

In the previous structure example, the total size of the structure is the sum of all members of the
structure. For example, TTime has two member fields (hours and minutes) and each field is one
byte in size. Therefore, the total size of the structure is two bytes. A union works differently in that
member fields can share the same address space. For example,

structure TStatus

 Val as byte

 Enabled as Val.0

 Connected as Val.1

 Overrun as Val.2

end structure

The member fields enabled, connected and overrun are aliased to the byte variable Val. They don't

have separate storage requirements - they are shared with Val. For example,

dim MyStatus as TStatus

MyStatus.Val = 0 // clear status

MyStatus.Connected = 1

In the above example, we can access the structure as a byte value or access individual bits.
Importantly, the total structure size is only one byte. You can apply all the standard aliasing rules
to structures. For example,

structure TIPAddr

 Val(4) as byte

 IP as Val(0).AsLongWord

end structure

dim IPAddr as TIPAddr

IPAddr.IP = $FFFFFFFF

IPAddr.Val(0) = $00

In this example, the IP address structure only uses 4 bytes of storage. In some cases, it may not

be possible to create a union through aliasing alone. For example, the member field type may be
another structure. In these situations, you can use the union keyword, like this:

structure TWord

 LSB as byte

Page 2 of 3Swordfish - Structures and Unions

12/19/2013mk:@MSITStore:C:\Program%20Files\Mecanique\SwordfishSE\Help\Swordfish.chm::/lr...

 MSB as byte

end structure

structure TValue

 ByteVal as byte union

 WordVal as TWord union

 FloatVal as float union

end structure

In the above example, the size of the structure is equal to the size of the largest member field

which is 4 bytes (the size of float). Another way to think of the union keyword is that it 'resets' the
internal offset address of the member field to zero. For example,

Structure TValue

 FloatVal As Float // offset = 0 (0 + 4 byte = 4)

WordVal As Word // offset = 4 (4 + 2 byte = 6)

ByteVal As Byte // offset = 6 (6 + 1 byte = 7)

End Structure // total storage requirement = 7

The above structure declaration shows the starting offset address, with the total storage
requirement for the structure. Now take a look at the same structure, but this time with the union

keyword:

Structure TValue

 FloatVal As Float Union // offset = 0 (0 + 4 byte = 4)

WordVal As Word Union // offset = 0 (0 + 2 byte = 2)

ByteVal As Byte Union // offset = 0 (0 + 1 byte = 1)

End Structure // total storage requirement = 4

Page 3 of 3Swordfish - Structures and Unions

12/19/2013mk:@MSITStore:C:\Program%20Files\Mecanique\SwordfishSE\Help\Swordfish.chm::/lr...

