
Digital Synthesis of a Sine Wave 

 

This design uses a Freescale microcontroller with an embedded PWM circuit to drive an H-bridge. The 

microcontroller is the MC9S12E128. Freescale calls this embedded circuit Pulse Width Modulator with 

Fault Protection (PMF). In this discussion, PWM and PMF are used interchangeably. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This figure shows a simplified H-bridge circuit. The labels Left and Right are there for discussion 

purposes. The signals on the Left and Right are complementary. In other words, when Left is positive, 

Right is negative and vice versa. 

 

 

 

 

Right 

Left 

+V 

-V 

L 

C 

Left 

Right 

Period 



Digital Synthesis of a Sine Wave 

 

A square wave with equal high and low periods will result in 0 volts across capacitor C. In order to 

produce voltage across C, we have to modulate the square wave. 

 

 

 

 

As the high part of the square wave increases, so does the voltage across C. 

 

 

 

As the high part of the square wave decreases, the voltage across C reverses polarity. 

In order to create a smooth sine wave across C, we need to modulate the square wave drive signal using 

a sine amplitude table. Only values for 90 degrees need to be saved in the table. Each 90 degree 

segment of the sine wave will consist of 125 pulse periods. Therefore, for one cycle of the sine wave, we 

will have 125 x 4 = 500 periods. The sine table values are calculated using the spreadsheet SineTable.xls. 

Since there are 125 periods for each 90 degrees, one period represents 90/125 = 0.72 degrees. 

 

 

 

 

 

 

 

 

 

The microprocessor accesses values from the sine table using sequential addresses starting at address 0. 

Each time a value is retrieved from the sine table, the address is immediately incremented. After 

incrementing the address, a check is made to see if the end of the table has been reached. The end of 

the table has been reached when the address is at 125. At this point the sine table is accessed with 

Left 

Period 

Left 

Period 

90° 

125 Periods 

500 Periods 



Digital Synthesis of a Sine Wave 

 

addresses from 125 to 1 in order to form a decreasing voltage. When the address is decremented to 

zero, the end of the sine table has been reached and the process starts all over again but the slope 

remains negative. 

 

 

 

 

 

 

 

 

 

 

 

 

The microprocessor operates at 24MHz bus frequency. The internal PWM module is set to use ½ this bus 

frequency as its input clock. Therefore, to calculate how many bus clocks we need to make one PWM 

period, we use this formula: 24,000,000 / 2 / 500 / 60 = 400. This will be the Modulus count and 

determines the PWM period. 

This PMF circuit is different from most pulse width modulators in that it can interrupt the 

microcontroller after each pulse. The microcontroller can then make adjustments to the pulse width 

before reloading the value for the next pulse. It also contains protection inputs that will shut it down, 

but I haven’t yet made use of this feature in this version. 

Each time the PMF interrupts the microcontroller, a calculation is made to determine the value that will 

be loaded for the next pulse. The value from the sine wave look-up table is multiplied by the desired 

amplitude (Amp) to come up with the final value. Amp can have values between 0 and 255. Therefore, 

Amp/255 is a fraction which has values from 0 to 1. 

For a positive slope the following calculation is made: 

PMFVAL4 = (Modulus/2)+(SineValue*Amp/255); 

 

Address 0 

Address 124 

Address 125 

Address 1 

Address 0 

Address 124 

Address 125 

Address 1 



Digital Synthesis of a Sine Wave 

 

And for the negative slope: 

PMFVAL4 = (Modulus/2)-(SineValue*Amp/255); 

Note: The Amp value can be set to go out of limits and will produce undesirable results. Therefore 

always use the IncAmplitude subroutine which checks the limits before incrementing the Amp value. 

 

The following flowchart implements the interrupt routine for the pulse with modulator. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

PMF 

Interrupt 

Phase 
1 0 

Slope Slope 

Get SineValue 

At Current 

Address 

Get SineValue 

At Current 

Address 

Get SineValue 

At Current 

Address 

Get SineValue 

At Current 

Address 

1 0 0 1 

Increment 

Address 

Increment 

Address 

Decrement 

Address 

Decrement 

Address 

Calculate 

PWM and put 

In MFVAL4 

Calculate 

PWM and put 

In PMFVAL4 

Calculate 

PWM and put 

In PMFVAL4 

Calculate 

PWM and put 

In PMFVAL4 

Addr=125 Addr=0 Addr=125 Addr=0 

Switch 

Slope=0 

Switch 

Phase=0 

1 

0 0 

1 

0 0 

Switch 

Phase=1 

Switch 

Slope=1 

Prime PWM 

For loading 

Return from 

Interrupt 

1 1 

Positive 

Half-Cycle 

Negative 

Half-Cycle 

Positive 

Slope 

Positive 

Slope 

Negative 

Slope 

Negative 

Slope 



Digital Synthesis of a Sine Wave 

 
/****************************************************************************** 

   PMF.c 

 

******************************************************************************/ 

 

// Include Files 

#include <MC9S12E128.h>  // Derivative information 

#include <stdio.h> 

 

#include "PMF.h" 

#include "ATD.h" 

#include "Buffers.h" 

#include "SCI0.h" 

#include "Datatypes.h" 

 

 

// Constants 

// One-quarter of a sine wave (90 degrees). Only first 126 values are used. 

const byte Sine[128] = 

{ 

  0,  3,  5,  8, 10, 13, 15, 18, 20, 23, 25, 28, 30, 33, 35, 37, 

 40, 42, 45, 47, 50, 52, 55, 57, 59, 62, 64, 67, 69, 71, 74, 76, 

 78, 81, 83, 85, 87, 90, 92, 94, 96, 99,101,103,105,107,109,111, 

113,116,118,120,122,124,126,127,129,131,133,135,137,139,141,142, 

144,146,148,149,151,152,154,156,157,159,160,162,163,165,166,168, 

169,170,172,173,174,175,176,178,179,180,181,182,183,184,185,186, 

187,188,189,189,190,191,192,192,193,194,194,195,195,196,196,197, 

197,198,198,198,199,199,199,199,200,200,200,200,200,200,200,200 

}; 

 

 

// Global Variables 

BOOL     Phase;  // Positive and negative half-cycle (2 per cycle) 

BOOL     Slope;  // Positive and negative slope (2 positive and 2 negative per 

cycle) 

word     Angle;  // Phase angle of a sign wave 

byte     Amp;  // Amplitude of sine wave generated 

int      Adj;  // Correction for zero crossing 

 

word     SineValue; // Value of the sine wave from table 

 

 

/*****************************************************************************/ 

#pragma CODE_SEG NON_BANKED 

interrupt void PMFC_Reload_Int(void) 

{ 

 if (Phase)  // Positive half-cycle 

 { 

  if (Slope) // Positive slope 

  { 

   SineValue = Sine[Angle++]; // Get sine wave value from table 

   PMFVAL4 = (Modulus/2)+(SineValue*Amp/255); // Calculate PWM  

   if (Angle == 125) 

   { 

    switch(Adj) 

    { 

     case +1:  // Add an extra angle cycle 

      Angle--; // Will do 124 over again 

      Adj = 0; 

      break; 

 

     case 0:   // In sync, no need to adjust 

      Slope = 0; // Change to negative slope 



Digital Synthesis of a Sine Wave 

 
      break; 

 

     case -1:  // Subtract one angle cycle 

      Slope = 0; // Change to negative slope 

      Angle--; // Will not do 125 

      Adj = 0; 

      break; 

    } 

   } 

  } 

  else // Negative slope 

  { 

   SineValue = Sine[Angle--]; // Get sine wave value from table 

   PMFVAL4 = (Modulus/2)+(SineValue*Amp/255); // Calculate PWM 

   if (Angle == 0) 

    Phase = 0; // Change to negative half-cycle 

  } 

 } 

 else // Negative half-cycle 

 { 

  if (!Slope) // Negative slope 

  { 

   SineValue = Sine[Angle++]; // Get sine wave value from table 

   PMFVAL4 = (Modulus/2)-(SineValue*Amp/255); // Calculate PWM 

   if (Angle == 125) 

   { 

    switch(Adj) 

    { 

     case +1:  // Add an extra angle cycle 

      Angle--; // Will do 124 over again 

      Adj = 0; 

      break; 

 

     case 0:   // In sync, no need to adjust 

      Slope = 1; // Change to positive slope 

      break; 

 

     case -1:  // Subtract one angle cycle 

      Slope = 1; // Change to positive slope 

      Angle--; // Will not do 125 

      Adj = 0; 

      break; 

    } 

   } 

  } 

  else // Positive slope 

  { 

   SineValue = Sine[Angle--]; // Get sine wave value from table 

   PMFVAL4 = (Modulus/2)-(SineValue*Amp/255); // Calculate PWM 

   if (Angle == 0) 

    Phase = 1; // Change to positive half-cycle 

  } 

 } 

 PMFENCC_LDOKC = 1;  // Allow PWM register load 

 PMFFQCC_PWMRFC = 1;  // Clear PWM Reload Flag C 

} 

#pragma CODE_SEG DEFAULT 

 

 

/*****************************************************************************/ 

void InitPMF(void) 

{ 

/* Use multiple timebase generators. C, B, and A are edge-aligned. C is 



Digital Synthesis of a Sine Wave 

 
   complementary pair, B and A are independent. */ 

 PMFCFG0 = PMFCFG0_MTG_MASK | PMFCFG0_EDGEC_MASK | PMFCFG0_EDGEB_MASK | 

    PMFCFG0_EDGEA_MASK |/* PMFCFG0_INDEPC_MASK |*/ 

PMFCFG0_INDEPB_MASK | 

    PMFCFG0_INDEPA_MASK; 

 

// Prescaler C 

 PMFFQCC_PRSCC = 1; // PWM clock frequency is f(bus)/2 

 

// Load frequency 

 PMFFQCC_LDFQC = 0; // Reload every PWM opportunity 

 

// Modulo of PWM C 

 PMFMODC = Modulus; // See PMF.h 

 

// Pulse width of PWM C 

 PMFVAL4 = Modulus/2; // Equal positive and negative periods produce 0 volts 

 

// Deadtime of PWM C 

 PMFDTMC = 2;  // Insert this many f(bus) cycles for dead time 

 

// Enable generator C 

 PMFENCC_LDOKC = 1; 

 PMFENCC_PWMENC = 1; 

 

 Phase = TRUE;  // 1 = top half, 0 = bottom half 

 Slope = TRUE;  // 1 = going up, 0 = going down 

 Angle = 0;   // Start at zero address is sine table 

 Amp = 0;   // Starting amplitude is zero 

 

 PMFENCC_PWMRIEC = 1; // Enable PWM C interrupts 

} 

 

 

/*****************************************************************************/ 

void IncAmplitude(void) 

{ 

 if (Amp < 255) 

  Amp++; 

} 

 

 

/*****************************************************************************/ 

void DecAmplitude(void) 

{ 

 if (Amp > 0) 

  Amp--; 

} 

 

 

/*****************************************************************************/ 

void DisplayAmplitude(void) 

{ 

 char* BufNum; 

 

 BufNum = GetBuffer();  // Get a free buffer 

 (void)sprintf(BufNum,"Amplitude: %d\r\n",Amp); 

 SCI0_PutQueue(BufNum); 

} 

 

 



Digital Synthesis of a Sine Wave 

 

PWM 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This microcontroller has limitations in its ability to do math. It can multiply an 8-bit number by another 

8-bit number to get a 16-bit product. It can also divide a 16-bit number by an 8-bit number to get an 8-

bit quotient. That is why I had to use the prescaler and adjust the sine table so that the values would fit 

into a single byte. 

30kHz is within the capabilities of most IGBTs. It also divides evenly by 500 periods per sine wave giving 

an exact 60Hz frequency. 

 

 

 

 

 

Prescaler PLL 

24MHz 

PMF 

12MHz 
÷2 

Int 

30kHz 
÷400 

PWM 

Scope 

10k 

0.1uF 



Digital Synthesis of a Sine Wave 

 

Scope 

 

 

The upper trace is the power coming into the house from the mains. The bottom trace is the PWM 

generated across a small filter as in the diagram above. 

 

 

 

 

 

 

 

 

 

 

 


