
PICDIS-LITE 1

PICDIS-LITE

Disassembler
for

Microchip PIC
Microcontrollers

Joe's Cat Software
Richmond, BC, Canada

PICDIS-LITE 2

Table of Contents
What Can PICDIS-LITE Do For You?..3
What Is Included In This PICDIS-LITE Package................................3
Operating System And Memory Requirements..................................3
Conditions Of Use For PICDIS-LITE..4
DOS, Installing Files Onto Your Harddrive...4
Linux, Installing PICDIS-LITE On Your Harddrive..............................5
Using PICDIS-LITE From The Command Line...................................6
How Are PIC Ports And Registers Displayed?.................................11
How Is PIC Code Displayed & Options [-p][-d0][-d1]........................12
Erasing Memory To 0bits, Option [-0]...13
Big Endian, Little Endian, And The [-b] Option.................................13
Why Show o or e Attached? And Option [-q]................................14
Why Show p Attached? And Option [-e]...15
Show Me A Map, The Memory Map Option [-m]..............................16
Core Filter Option [-c]...17
Strict Code Rules, Mnemonics, Option [-s].......................................18
Jump Labels, Pages, And The [-j] Option...19
Error Messages..22
Bug Reports And Technical Support..22
Appendix A: HEX File Input Formats..23
Appendix B: Special Mnemonics..24
Appendix C: ANSI 'C' Escape Character Sequences.......................25
Appendix D: Display Formats...26
Appendix E: Error Messages..27
Appendix F: Processor Filter [-p]..29

PICDIS-LITE PROGRAM and PICDIS-LITE MANUAL
Copyright © 2004, JDS, Joe's Cat Software, Canada
All rights reserved

Microchip and PIC are trademarks of
Microchip Technology Inc, Chandler, USA

PICDIS-LITE 3

What Can PICDIS-LITE Do For You?
PICDIS-LITE is a disassembler for Microchip PIC10, 12 and 16 micro controllers.
It is free for Student or Hobbyist use as a command line DOS or Linux tool to help
diagnose Microchip's HEX format files or HEX files of other formats.

Differences from the full version are: there are no Hexadecimal file Tool options,
it is limited to 2048 words, a few PIC10, 12 and 16 chips, and no 14 or 17 chips.

What Is Included In This PICDIS-LITE Package
Inside the PICDISL.ZIP file, you should find these files:

FILE DESCRIPTION

PICDISL.PDF "This file" explains how to install and use PICDIS-LITE.

PICDISL.EXE Executable command line program for DOS.

picdisl Executable binary program for Linux.

TEST.HEX Sample HEX format file to test PICDIS-LITE.

Operating System And Memory Requirements
o IBM Personal Computer or Compatible

o DOS
DOS version 3.3 or later, 8086 or better CPU, tested on 640K RAM.

o Windows 3.x, or Windows
Runs as a DOS program in a DOS box/shell.

o Linux Kernel 2.4.4 (Intel 386 Compatible) and glib5 (or higher)
Tested on Mandrake 8.0, expect to work correctly on RedHat 7.2,
SuSE 7.2 and Slackware 8.0 due to common Linux Kernel 2.4

PICDIS-LITE 4

Conditions Of Use For PICDIS-LITE
You are free to use, copy or distribute PICDIS-LITE if:

1) NO FEE IS CHARGED FOR USE, COPYING OR DISTRIBUTION.
2) IT IS NOT MODIFIED IN ANY WAY.
3) PICDIS-LITE IS USED FOR HOBBYIST OR STUDENT USE ONLY.

If you are a business or professional user:
PICDIS-LITE is provided as a sample to see if PICDIS is a program you
want to purchase. After a reasonable period of 10 days or so, it is expected
you go purchase PICDIS at http://www.JoesCat.com/micro/picchip.htm

PICDIS-LITE is freeware. No support or warranty of any kind is given or implied.

DOS, Installing Files Onto Your Harddrive
Installing the Linux version of PICDIS-LITE is described on the next page.
These steps help you install the DOS version of PICDIS-LITE on your harddrive.

1) Make a floppy disk backup copy of your PICDISL.ZIP file.
Label the floppy disk and put it in a safe place.

2) UNZIP PICDISL.ZIP file into your MPLAB directory.
If you are not sure where to look, MPLAB is usually installed by default
at C:\MPLAB or C:\Program Files\MPLAB.
Make sure you install these files:

PICDISL.EXE, TEST.HEX

Note: If you prefer not to install <PIDISL.EXE> in your MPLAB directory you can
choose another directory. Good choices are directories in your computer's
PATH. Type PATH at the command line to display possible directories you
may want to use to install <PICDISL.EXE> in. Some suggestions are your
C:\WINDOWS or C:\DOS directory.
Choose or create a suitable directory for your sample <TEST.HEX> file.

PICDIS-LITE 5

Linux, Installing PICDIS-LITE On Your Harddrive
1) Make a floppy disk backup copy of your PICDISL.ZIP file.

Label the floppy disk and put it in a safe place.

2) If you already have PIC Chip tools located elsewhere on your harddrive
such as gpasm (GNU PIC Assembler), then you may want to install picdisl
there too. If you have no special location for <picdisl> then we suggest
you install it in /usr/bin for group users or /usr/local/bin for single users.

You will need root Administrator access to place it in /usr/.... If you do not
have permission, then you can only save it and run it from your /home/...
If you can only install <picdisl> in a /home/... directory, then you will only be
able to run it as ./picdisl instead of picdisl (note the extra ./ in front).

3) If you are not a root
Administrator then ignore
or skip step 3.

If you are an Administrator
then set the user or group
permissions for PICDIS-LITE.

For an office with a networked
server shared between users,
if you are an Administrator,
then you may want to set the
Owner or Group for
PICDIS-LITE to the correct
engineering or user group.

4) Now install <TEST.HEX> and <PICDISL.PDF> in your /home/... directory.

Note: If you placed <picdisl> in your /home/... directory, then you need to use
./picdisl for all commands.

PICDIS-LITE 6

Using PICDIS-LITE From The Command Line
If you are running Windows, please open up a DOS shell.
If you are running Linux from a Graphical User Interface (GUI, such as GNOME
or KDE), please open up a terminal window.

For DOS, please change directory to where <PICDISL.EXE> is located, or type
the <drive:\path\PICDISL.EXE> to run PICDIS-LITE. For Linux, if you did not
install picdisl in /usr/bin, or your local directory, then use </path/picdisl> to run it.

Now display PICDIS-LITE help by typing picdisl -h on the command line.
This displays a list of all options available to you. See Example below:

The screen above should look similar for DOS, Linux or DOS-Windows screens.

PICDIS-LITE can accept one or several options followed by one or several input
files, and then everything is figured out, and then sent out to the standard output,
or by redirection using ">out_file.lst" to an output file.

For a better explanation of each option shown above, here is a list of the
command line options in better detail (see next pages):

PICDIS-LITE 7

OPTION DESCRIPTION OF COMMAND LINE OPTION

H
?

PICDISL -h
This option shows a summary help on how to use PICDIS-LITE.

To use PICDIS-LITE, you insert options first, then a list of input
files, and then an output file (if you are not printing to display).

Here are some examples:

Merge in_file1 and in_file2 and then display it to screen.
picdisl in_file1.hxl in_file2.hxh
Get a file as output from another program, then save results.
cat in_file1.hex | picdisl -@ >out_file.lst
Map a data file (as 8 bit).
picdisl -d1 -peeprom8 in_file.hex >out_file.map
Printing your latest PIC HEX file to verify that it is correct.
picdisl -m in_file.s19 >prn:

L PICDISL -l
PICDIS-LITE is free for Students, Hobbyists, or free distribution.
If you are a professional, it is expected you will use PICDIS-LITE
for evaluation (approximately 10 days) before buying PICDIS.

@ [..... |] PICDISL -@ [<in_file.hex] [>out_file.lst]
PICDIS-LITE will get the HEX input file from standard input and
not from a file on disk. This is useful if you use other programs to
translate or filter the data before giving it to PICDIS-LITE.
If you use this option, you can only have 1 input file at a time and
it cannot be intellec *.HXH or *.HXL since PICDIS-LITE will not
know if it is the high or low byte file since the file names are not
included in this method of input.

Here are several examples:

normal picdisl in_file.hex >out_file.lst
from std input: picdisl -@ <in_file.hex >out_file.lst
piped DOS: type in_file.hex | picdisl -@ >out_file.lst
piped Linux: cat in_file.hex | picdisl -@ >out_file.lst

PICDIS-LITE 8

OPTION DESCRIPTION OF COMMAND LINE OPTION

S PICDISL -s in_file.hex [>out_file.lst]
If you use this option, PICDIS-LITE will display the CPU codes as
per data sheets. By default, PICDIS-LITE displays the easier to
remember Mnemonics for specific CPU codes, therefore making
the flow of assembler code easier to read.

Sample with Mnemonic Same Sample using Strict Code
0743 skpz 0743 btfss status,z

Read Chapter "Strict Code Rules, Mnemonics, Option [-s]".
"Appendix B: Special Mnemonics" has a list of codes affected.

M PICDISL -m in_file.hex [>out_file.lst]
This option makes PICDIS-LITE display a memory map.

See Chapter "Show Me A Map, The Memory Map Option [-m]".

J PICDISL -j in_file.hex [>out_file.lst]
This option is only useful for options [-d0] and [-m].
Many PIC Chips contain paged program space. This information
is recognized in the assembler code, but is lost in the HEX format
code. PICDIS-LITE will put all jumps pointing to program page 0.
This option only removes references to empty value jump
locations to make the code appear cleaner with less clutter.

It is up to you to identify if a jump points to the correct program
page and then modify the jump labels accordingly.

Read more in chapter "Jump Labels, Pages, And The [-j] Option"

D0
D1

PICDISL -d0 in_file.hex [>out_file.lst]
PICDISL -d1 in_file.hex [>out_file.map]
By default PICDIS-LITE uses [-d0] to display a disassembled
listing of the HEX code specified. Option [-d1] may be useful if
you wish to see output in a data format (useful for ROMs).

"Appendix D: Display Formats" shows example outputs.

PICDIS-LITE 9

OPTION DESCRIPTION OF COMMAND LINE OPTION

Q PICDISL -q in_file.hex [>out_file.lst]
This option is useful if you are merging 2 or more files together.
Sometimes you have bytes overwritten, therefore this removes all
overwritten bytes from the resulting output file.

Note: no preference is given to first or last byte since one or the
other byte may be wrong, therefore, the data byte is erased.
See example at "Why Show e or o Attached? And Option [-q]"

0

(zero)

PICDISL -0 in_file.hex [>out_file.lst]
By default, PICDIS-LITE expects memory to be erased as FFh.
If you use the [-0] option, then PICDIS-LITE treats memory as
erased to 00h instead of FFh.

There is an example in "Erasing Memory To 0bits, Option [-0]".

B PICDISL -b in_file.hex [>out_file.lst]
PICDIS-LITE is designed to work with 16 bit word data by default
but sometimes the information is Big Endian or Little Endian.
This option swaps the high and low bytes before processing.
This option has no effect if you use the [-peeprom8] option.

"Big Endian, Little Endian, And The [-b] Option" has examples.

E PICDISL -e in_file.hex [>out_file.lst]
PICDIS-LITE verifies the HEX file contains an End-Of-File (EOF)
record for the HEX formats that are supposed to contain one,
otherwise the file is considered truncated and incomplete.
Using this option tells PICDIS-LITE to ignore the fact that the
EOF record is missing, therefore process what it has left.

"Why Show p Attached? And Option [-e]" has an example.

O PICDISL -oout_file.lst in_file.hex
This allows you to enter the output file name on command line for
programs that save to file and do not use standard output.

PICDIS-LITE 10

OPTION DESCRIPTION OF COMMAND LINE OPTION

C12
C14

PICDISL -c12 in_file.hex [>out_file.lst]
PICDISL -c14 in_file.hex [>out_file.lst]
PICDIS-LITE is designed to be a PIC Chip tool so this option
verifies that the input HEX file(s) are 12 or 14 bits wide only by
making sure the upper 4 or 2 bits are always 0 bits.
Data words larger than 12 or 14 bits trigger an error.
The default for this option is auto-detect since PICDIS-LITE is
expected to read HEX files for 8 bit or 16 bit ROMS too.

Chapter "Core Filter [-c]" explains this in more detail.

Pxxxx PICDISL -pxxxx in_file.hex [>out_file.lst]
If you choose a processor, then PICDIS-LITE knows which
processor rules to apply. Memory boundaries are set according
to [-pxxxx], and for disassember mode, the correct register labels
are used.

PICDISL -p
If [-p] is used by itself, then PICDIS-LITE displays it's list of
known processor models which you can choose from.

Read "How Is PIC Code Displayed & Options [-p][-d0][-d1]".
"Appendix F: Processor Filter [-p]" lists known processors.

RB
RO
RD
RH
RA

PICDISL -rB in_file.hex [>out_file.lst]
PICDISL -rO in_file.hex [>out_file.lst]
PICDISL -rD in_file.hex [>out_file.lst]
PICDISL -rH in_file.hex [>out_file.lst]
PICDISL -rA in_file.hex [>out_file.lst]
PICDIS-LITE shows data values in hexadecimal by default.
It can be directed to display data values in [-rB] Binary,
[-rO] Octal, [-rD] Decimal, [-rH] Hexadecimals, or [-rA] ASCII.
This is only useful for HEX file disassembly mode.

Note: "Appendix C: ANSI 'C' Escape Sequences" shows special
codes which may be displayed for certain ASCII values.

PICDIS-LITE 11

How Are PIC Ports And Registers Displayed?
Due to the banked register design of the PIC Chip, there is a certain amount of
lost information when viewing PIC hexadecimal files.

PICDIS-LITE shows only the 1st possible bank of registers for the processor you
choose. PICDIS-LITE does not make assumptions for which port is addressed
and will display a list of possible ports. Two reasons for displaying all ports are:

 1st is because it makes it easier to debug and/or understand what your
code may possibly be doing. For example:

1283 bcf STATUS,5
0185 clrf PORTA/TRISA <- PORTA?
1683 bsf STATUS,5
0185 clrf PORTA/TRISA <- TRISA?

0185 is the same for both above, yet may seem more apparent if PORTA
and TRISA are both shown as PICDIS-LITE output.

 2nd and more important, as better/newer PIC Chips are introduced, you may
note information on older/abandoned chips may no longer be available
from your updated development toolkit or from Microchip's website.
PICDIS-LITE is self contained, so this information won't be lost, therefore
translating obsolete work into better/current PIC Chips is easier.

 Sample PIC16C61 PICDIS-LITE Output REGISTER MAP
INDF INDF

TMR0 OPTION

PCL PCL

STATUS STATUS

FSR FSR

PORTA TRISA

PORTB TRISB

PCLATH PCLATH

INTCON INTCON

register ...

register ...

register ...

0080h movwf INDF 00h
0081h movwf TMR0/OPTION_REG 01h
0082h movwf PCL 02h
0083h movwf STATUS 03h
0084h movwf FSR 04h
0085h movwf PORTA/TRISA 05h
0086h movwf PORTB/TRISB 06h
0087h db 0x00,0x87 07h
0088h db 0x00,0x88 08h
0089h db 0x00,0x89 09h
008ah movwf PCLATH 0ah
008bh movwf INTCON 0bh
008ch movwf 0x0c 0ch
...
00afh movwf 0x2f 2fh
00b0h db 0x00,0xb0 30h

80h
81h
82h
83h
84h
85h
86h
87h
88h
89h
8ah
8bh
8ch
...
afh
b0h

PICDIS-LITE 12

How Is PIC Code Displayed & Options [-p][-d0][-d1]
If you select a particular processor using option [-p], then PICDIS-LITE knows
what rules to apply to incoming HEX files.

For example, if you select [-p16c16], then PICDIS-LITE knows all PICDIS-LITE
code must fit in address range 0000h...03FFh and be 14 bits wide,
otherwise it does not fit in a PIC16C61 chip. PICDIS-LITE will not
process files outside [-p16c61] boundaries. In disassembly [-d0]
mode, PICDIS-LITE displays correct [-p16c61] register names, and
knows certain registers do not exist, so it displays instructions
affecting non-existing registers as data statements to get your
attention (for example: "Sample PIC16C61 PICDIS-LITE Output" on
previous page has 0087h, 0088h, 0089h and 00b0h shown as db
and not movwf instructions).

Substituting code instructions with db statements is not a bug, it is a
design feature of display mode [-d0] which you may find useful for debugging if
you compile code using alpha, beta, or experimental compilers or assemblers but
can't explain why some things may not be happening as expected. If you do not
like this default disassembly mode and prefer to see instructions in it's pure form,
then add option [-s] (see chapter "Strict Code Rules, Mnemonics, Option [-s]").

Below are example commands to disassemble [-d0] input HEX files:

picdisl -d0 -p16c61 in_file.hex [>out_file.lst]
picdisl -p16c554 -s in_file1.hex in_file2.hex in_file3.hex

Below are example commands to map [-d1] input HEX files:

picdisl -d1 -p10f200 in_file1.hex in_file2.hex [>out_file.map]
picdisl -p16c622 -d1 in_file.hex [>out_file.map]

"Appendix D: Display Formats" shows detailed example [-d0] and [-d1] outputs.
"Appendix F: Processor Filter [-p]" has a list of PICDIS-LITE known processors.

PICDISL
This area
is beyond
PIC16C61

p16c61
14 bit

x
1024

PICDIS-LITE 13

Erasing Memory To 0bits, Option [-0]
Many ROMs and programmable parts (including PIC Chips) are set to 1bits when
erased, then bits are "burned" to 0 to program the data into the part.

There are some odd ROMs and parts manufactured that are erased to 0bits.
PICDIS-LITE has the [-0] option to initialize its' memory to 0bits before reading
HEX format files for processing. This allows PICDIS-LITE to emulate those types
of ROMs when loading HEX files.

Below is an example where PICDIS-LITE loads a byte that contains 0x55 and
then merges more data over the same location (merging 0xC3 then 0x99):

OPTION [-0]
1 to 0 or 0 to 1

INIT
MEM

LOAD
0x55

LOAD
0xC3

LOAD
0x99

1bit burn to 0bit, default 0xFF 0x55 0x41 0x01

0bit burn to 1bit, use [-0] 0x00 0x55 0xD7 0xDF

Big Endian, Little Endian, And The [-b] Option
PICDIS-LITE is designed mainly to read 16bit hexadecimal files for the PIC Chip,
but occasionally you may find non-standard files written for other programmers or
other processors. This option allows you to switch the high and low byte of input
hexadecimal files.

Example input file to demonstrate option [-b]:
<HEXFILE.S19>

S10B00004142434445464748D0
S9030000FC

Resulting outputs without and with the [-b] option:
picdisl -ra HEXFILE.S19 picdisl -ra -b HEXFILE.S19
0000 4241 db 'B','A' 0000 4142 db 'A','B'
0001 4443 db 'D','C' 0001 4344 db 'C','D'
0002 4645 db 'F','E' 0002 4546 db 'E','F'
0003 4847 db 'H','G' 0003 4748 db 'G','H'

PICDIS-LITE 14

Why Show o or e Attached? And Option [-q]
PICDIS-LITE is designed to flag overwritten bytes by adding o or e beside the
byte values that were overwritten (1 flag for high byte, 1 flag for low byte).

To demonstrate flags o (overwritten but not changed) and e (overwritten and
value has changed as a result), here is <TEST.HEX> merged with another file:

<TEST.HEX>
:10002000E2010D0844084C0852084F085708200800
:0A0030004F084C084C08450848082A
:10020000400006000C0C2700C70010092600E7027A
:04021000040B000BD0
:0203FE00000BF2
:021FFE00FB0FD7
:00000001FF

<OVERWRIT.HEX>
:04021000030C000BD0
:00000001FF

Partial Result of: picdisl TEST.HEX OVERWRIT.HEX [>out_file.lst]
etc... 0107 02e7 decfsz 0x07,f

0108 e0800e retlw 0x00
0109 o0b00o goto j100

o The value o0b shows the high byte value 0Bh was overwritten with 0Bh
but nothing was modified during the overwrite. The value 00o shows the
low byte value of 00h was overwritten with the same value of 00h again,
therefore, nothing changed again. The o flag signals overwritten bytes.

e The e value in e08 shows the high byte was first loaded with one value
(0Bh first) and then it got overwritten with another value (0Ch next) that
changed the result to 08h. The e shows the low byte (04h first) was then
overwritten and changed to 00h by another value (03h).
Read "Erasing Memory To 0bits, Option [-0]" to explain result of 0800h.

Overwritten bytes are a warning that there is something wrong with your
hexadecimal file(s) unless you are merging files/bytes on purpose.
If you want to erase overwritten bytes, use the [-q] option to remove those bytes.

TEST
HEX

OVERWRIT
HEX

PICDIS-LITE 15

Why Show p Attached? And Option [-e]
One of PICDIS-LITE's duties is to recover/merge what you can of abandoned,
damaged or corrupted files. All that may be left for you to work with is a partial
hexadecimal file. Normally, PICDIS-LITE complains about an incomplete file if it
is missing the End-Of-File marker (EOF).

To rescue what you have left (if there is no EOF), then you add option [-e] to the
command. Below is a sample where <TEST.HXH> is complete but <TEST.HXL>
is damaged (Intellec 8 bit format is made of 2 files, 1 = high bytes, 1 = low bytes).

<TEST.HXH> (high bytes of 16 bit words)
:0D0010000108080808080808080808080882
:0A01000000000C00000900020B0BC8
:0101FF000BF4
:010FFF000FE2
:00000001FF

<TEST.HXL> (low bytes of 16 bit words)
:0D001000E20D444C524F57204F4C4C4548D8
:0A01000040060C27C71026E7040094

Partial Result of: picdisl -e TEST.HXH TEST.HXL [>out_file.lst]
etc... 0108 0b04 goto j104

0109 0b00 goto j100

01ff org 0x01ff
01ff 0bffp db 0x0b,?

0fff 0fffp db 0x0f,?

As seen above, the [-e] option allows PICDIS-LITE to ignore the missing EOF in
file <TEST.HXL> and output results of whatever is left of your file(s).

If you look at the results, you may see that words at locations 01FFh and 0FFFh
are incomplete. Location 01FFh holds the high byte 0bh while the low byte is still
blank, so PICDIS-LITE places a p there. Location 0FFFh is similar in results.

If it is possible to program this into a PIC Chip, then it would be seen as 0b(blank)
or 0bffh while location 0FFFh would be seen as 0f(blank) or 0fffh.

TEST
HXL

TEST
HXH

PICDIS-LITE 16

Show Me A Map, The Memory Map Option [-m]
This option is similar to the memory map option used for assembly or compiling
of your programs using your development tools, however, if you have to work
with debugging, corrupted files, splicing information, reconstruction, recovering
and/or rescue of legacy or abandoned data, then you may find this option helpful.

If you read previous chapters "Why Show o or e Attached? And Option [-q]"
or "Why Show p Attached? And Option [-e]", you will note PICDIS-LITE shows
the same useful information within the memory map.

If PICDIS-LITE is used as a disassembler, the memory map option [-m] shows
possible jump faults as per chapter "Jump Labels, Pages, And The [-j] Option".

The default is for PICDIS-LITE to display memory maps in 16 bit word format, but
if you use the [-m] option with the [-peeprom8] option, PICDIS-LITE displays a
memory map in 8 bit format (useful for ROMs or 8 bit processors).

Below is a sample map displaying several possible errors you may encounter if
you are repairing, merging, splicing, recovering, reformatting hexadecimal files:

Memory map (X=Used, -=Unused)
0000 : XX--j-XXXoepXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX
0040 : XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX XXXXXXXXXXXXXXXX

(j) Jump label error. This error only shows if you are using the disassembler or
specify a processor [-pxxxx], otherwise the file is considered a data HEX file.
All jumps will point to the 1st program bank due to the limited nature of the
hexadecimal code. You may take this to be a true error or simply a warning.
Please read chapter "Jump Labels, Pages, And The [-j] Option" for more info.

(o e) Over-burn error. This error occurs if more than one byte or word writes over
the same address. This may happen if manipulating or merging files.
Chapter "Why Show o or e Attached? And Option [-q]" has more information.

(p) Partial word error. Read chapter "Why Show p Attached? And Option [-e]".

PICDIS-LITE 17

Core Filter Option [-c]
PICDIS-LITE auto-detects between 12, 14 and 16 bit
code or data by testing bits 15,14,13,12 for 1 bits while
loading the input hexadecimal file (or files).

Using the [-c] option allows you to force PICDIS-LITE to
only accept 12 bit or 14 bit hexadecimal code by testing
the upper bits and rejecting the input file if 1 bits are
found in bits 15 & 14 and/or bits 13 & 12.

Notes: PICDIS-LITE does PIC16C5X & PIC16CXX
cores only. All input files are limited to 0000h..03FFh x
16bit words or 0000h..07FFh x 8bit bytes in size.

Examples below:

This only allows 2K x 12bit hex code that would fit within a 12 bit PIC16C5X type
micro controller. If 14 or 16 bit code is found, then PICDIS-LITE stops and returns
an error code because the input file is not 12 bit wide code. If the input file is not
within 0000h..03FFh, then it returns an error since the file does not fit within
PICDIS-LITE's 2K memory.

picdisl -c12 in_file.hex [>out_file.lst]

This example allows 2K x 14bit hex code that would fit within a 14 bit PIC16CXX
type micro controller. 12 bit code will be translated incorrectly as 14 bit code. If
the input file is not within 0000h..03FFh, then it returns an error since the file
does not fit within PICDIS-LITE's 2K memory limit.

picdisl -c14 in_file.hex [>out_file.lst]

Here, the [-c] option is ignored since the [-p] option describes the CPU core.

picdisl -p16c54 -c12 in_file.hex [>out_file.lst]

eeprom8 (data)
07FFh x 8bit

or
eeprom16 (data)
03FFh x 16bit

PIC16CXX
03FFh x 14bit

 0000h

 PIC10F20X
 PIC12C5XX
 PIC16C5X

 03FFh x 12bit

PICDIS-LITE 18

Strict Code Rules, Mnemonics, Option [-s]
By default, PICDIS-LITE relaxes the rules of decoding hexadecimal files by using
easier to understand mnemonics as shown in Microchip's first PicStart Kits.

Use the [-s] option if you prefer absolute PIC instructions, or your development
tools do not know the mnemonics ("Appendix B: Special Mnemonics").

Here is an example to show the differences when using option [-s]:

<IN_FILE.HEX>
:020000040000FA
:0C0000000508013E8500031DBF0A002812
:00000001FF

Results Using: picdisl -p16c61 IN_FILE.HEX
0000 0805 j000: movfw PORTA/TRISA
0001 3e01 addlw 0x01
0002 0085 movwf PORTA/TRISA
0003 1d03 skpz
0004 0abf db 0x0a,0xbf (no register here)
0005 2800 goto j000

Results Using: picdisl -p16c61 -s IN_FILE.HEX
0000 0805 j000: movf PORTA/TRISA,w
0001 3e01 addlw 0x01
0002 0085 movwf PORTA/TRISA
0003 1d03 btfss STATUS,2
0004 0abf incf 0x3f,f (no register here)
0005 2800 goto j000

Default is to display mnemonics
like movfw or skpz as described
in Appendix B.

If you prefer to see the instructions
as movf or btfss exactly as
described in the Microchip PIC
instruction set, then use the [-s]
option to disable the optional
mnemonics.

The instruction is incf 0x3f,f but
you are warned that the pic16c61
processor has no register 0x3f by
showing db 0x0a,0xbf to catch
your attention.

If you use [-pxxxx] and prefer to
see the instruction even if there is
no valid register, then use the [-s]
option to disable this feature.

PICDIS-LITE 19

Jump Labels, Pages, And The [-j] Option
PICDIS-LITE puts Jump labels only in the 1st program memory page and then
leaves it for the user to decide which page is correct for a particular label.

A PIC16C5X call label can span a range of 00h..0FFh,
so all labels are placed in memory at 0000h..00FFh.

A PIC16C5X goto instruction can jump anywhere from
000h to 1FFh, so labels are placed at 0000h..01FFh.

14bit PIC16CXXs are capable of a call or goto from
000h to 7FFh within a program memory page, therefore
all labels are placed within 0000h..07FFh.

PICDIS-LITE does not use "smart" algorithms to guess
the correct program memory page to place labels since
it only takes a more complicated hexadecimal file to
outsmart the algorithms and then give out wrong label
data. The following two pages shows examples why.

The 1st example shows what could easily be a good file for PICDIS-LITE putting
the labels in the correct locations of j200 and j202, however, the 2nd page shows
an example why it would be difficult for PICDIS-LITE to label a listing correctly
using smart algorithms.

To avoid possible assumptions or errors, no exceptions are made, and all labels
are put in the 1st program pages whether the program is simple or complicated
and whether there is code there or not.

Now, in terms of the [-j] option, sometimes a program may be disassembled and
contain jump labels to nowhere. This likely can happen where little of a program
exists in the 1st page (such as the example on the next page). The [-j] option
should clear up a listing by removing non-existent program jump label locations
from the disassembly.

Note: The [-j] option is only useful for disassembly [-d0], or the map [-m] option.

PIC16CXX
call 07FFh
goto 07FFh

PIC10F20X
PIC12C5XX
PIC16C5X
goto 01FFh

 0000h
 PIC10F20X
 PIC12C5XX
 PIC16C5X
 call 00FFh

PICDIS-LITE 20

PICDIS-LITE could generate "smart" labels j000 & j002 as j200 & j202, but
this is not done to stop false assumptions later (see next page for reason).

Example PIC16C56 Program Listing: Resulting HEX File:
03FF org 0x3FF <IN_FILE.HEX>
03FF 0BFF goto start :0203FE00A30555
01FF org 0x1FF :060400000209000A0008D9
01FF 05A3 start bsf STATUS,PA0 :0207FE00FF0BEF
0200 0902 loop call xyz :021FFE00FF0FD3
0201 0A00 goto loop :00000001FF
0202 0800 xyz retlw 0

Resulting Disassembly Using: picdisl -p16c56 IN_FILE.HEX
0000 pffffp j000: db ?,?

0002 org 0x0002
0002 pffffp j002: db ?,?

01ff org 0x01ff
01ff 05a3 j1ff: bsf STATUS,5
0200 0902 call j002
0201 0a00 goto j000
0202 0800 retlw 0x00

03ff org 0x03ff
03ff 0bff goto j1ff

0fff 0fff __fuses 0x0fff

o Insufficient data means call and goto labels are placed on the 1st

program memory page (even if it seems obvious to go elsewhere).

o The "p" means this is a partial byte. The HEX file is missing bytes
here to complete word value. This word is blank since there is a "p"
for the high byte and one for the low byte. The only reason you see
this address is because there is a jump label here due to program
code pointing here (see call j002 and goto j000 in disassembly).

o Using the [-j] option, PICDIS-LITE can hide the j000 and j002
labels since there is NO program code at 0000h or at 0002h.

Example: picdisl -j -p16c56 IN_FILE.HEX

PICDIS-LITE 21

This example is very complicated for a smart labeling routine, so to keep
consistent, PICDIS-LITE, only puts labels in the 1st program page.

Example PIC16C57 Program Listing: Resulting HEX File:
07FF org 0x7FF <IN_FILE.HEX>
07FF 0A0E goto start :04001C00A30510091F
000E org 0x0E :06002000100910090E0A90
000E 05A3 start bsf STATUS,PA0 :04042000C305000808
000F 0910 call xyz1 :04082000C304000805
0010 0910 call xyz2 :040C2000A304000821
0011 0910 call xyz3 :020FFE000E0AD9
0012 0A0E goto start :021FFE00FF0FD3
0210 org 0x210 :00000001FF
0210 05C3 xyz1 bsf STATUS,PA1
0211 0800 retlw 0
0610 org 0x610
0610 04A3 xyz2 bcf STATUS,PA0
0611 0800 retlw 0
0410 org 0x410
0410 04C3 xyz3 bcf STATUS,PA1
0411 0800 retlw 0

Resulting Disassembly Using: picdisl -p16c57 IN_FILE.HEX
000e org 0x000e
000e 05a3 j00e: bsf STATUS,5
000f 0910 call j010
0010 0910 j010: call j010
0011 0910 call j010
0012 0a0e goto j00e

0210 org 0x0210
0210 05c3 bsf STATUS,6
0211 0800 retlw 0x00

0410 org 0x0410
0410 04c3 bcf STATUS,6
0411 0800 retlw 0x00

0610 org 0x0610
0610 04a3 bcf STATUS,5
0611 0800 retlw 0x00

07ff org 0x07ff
07ff 0a0e goto j00e

This program is too
complicated to have the
labels placed in the
correct locations.

Not enough data in the
HEX file means call and
goto labels are placed on
the 1st program memory
page (even if it seems
obvious to go elsewhere).

Correct label locations if
HEX files contained more
information.

PICDIS-LITE 22

Error Messages
PICDIS-LITE recognizes and reports errors when found.
"Appendix E: Error Messages" contains a description of possible error codes.

The DOS version of PICDIS-LITE reports text errors to standard output and
sends an error value back to the parent program. If the error value returned is
zero, then no errors were found while a non-zero value means an error was
found.

The Linux version of PICDIS-LITE reports text errors to standard error output
which is typical of Linux type programs.
Error values are returned to the parent program to aid in pipes and script
programs, zero means okay, while non-zero indicates a fault was found.

Examples:
DOS: PICDISL in_file.hex >out_file.lst
Linux: picdisl in_file.hex >out_file.lst 2>err_file.txt

Bug Reports And Technical Support
Much work was done into making PICDIS-LITE trouble free but errors and bugs
may still be encountered. If you have a bug or error to report, please check the
PICDIS-LITE web page at http://www.JoesCat.com/micro/picchip.htm for the
latest email address to report to. This email address may change from time to
time due to the unfortunate reality of what is considered SPAM or JUNK email on
the internet.

If you own a copy of PICDIS, please send in your registration along with any
question(s) or request for support to the email address mentioned on the website.

PICDIS-LITE 23

Appendix A: HEX File Input Formats
PICDIS-LITE automatically recognizes several HEX format files as input files.
These are the list of file types automatically recognized:

o Intel HEX 8-bit Merged Format (INHX8M).
This is the most common format expected.

o Intellec 8-bit High (.HXH). This is the high byte part of 2 files.
Intellec 8-bit High (.HXL). This is the low byte part of 2 files.
This is the only file type where you need to have .HXH or .HXL as the last
4 characters in the file name, otherwise it is seen as Intel 8-bit (above).

o Intel HEX 16-bit Format.
This allows for the 20-bit segmented address space of 16-bit processors.

o Intel HEX 32-bit Format.
This allows for the 32-bit linear address space of 32-bit processors.

o Motorola S-record Formats.
These are the Motorola HEX Formats (S19, S28, S37).

o EMON52, Elektor Monitor Format.

o FPC, Four Packed Code Format.

o Tektronix HEX, and Tektronix Extended HEX Formats.

o Parallax/Tech-tools SPASM.

o Atmel Generic.

PICDIS-LITE 24

Appendix B: Special Mnemonics
PICDIS-LITE shows mnemonic assembler codes by default unless the [-s] option
for Strict CPU Codes is enabled. The status register is register 0x03 for 12-bit
and 14-bit PIC Chips, and register 0x04 for the PIC17 family.

MNE-
MONIC

STRICT
CPU CODE

DESCRIPTION

clrc bcf status,c Clear Carry Flag

setc bsf status,c Set Carry Flag

clrdc bcf status,dc Clear Digit Carry Flag

setdc bsf status,dc Set Digit Carry Flag

clrz bcf status,z Clear Zero Flag

setz bsf status,z Set Zero Flag

clrov bcf status,ov Clear Overflow Flag

setov bsf status,ov Set Overflow Flag

skpnc btfsc status,c Skip On No Carry Flag

skpc btfss status,c Skip On Carry Flag

skpndc btfsc status,dc Skip On No Digit Carry Flag

skpdc btfss status,dc Skip On Digit Carry Flag

skpnz btfsc status,z Skip On No Zero Flag

skpz btfss status,z Skip On Zero Flag

skpnov btfsc status,ov Skip On No Overflow Flag

skpov btfss status,ov Skip On Overflow Flag

tstf f movf f,1 Test File Register

movfw f movf f,0 Move File Register To W

Note: PICDIS-LITE shows instructions to non-existing registers as DB values,
unless you use option [-s]. For example a PIC16C83 has NO register 0x30, so a
"movf 0x30,w" will be shown as "db 0x08,0x30" unless you use option [-s].

PICDIS-LITE 25

Appendix C: ANSI 'C' Escape Character Sequences
PICDIS-LITE shows hexadecimal values by default.
PICDIS-LITE shows ASCII values if option [-rA] is enabled.

Example: DOS PICDISL -rA in_file.hex >out_file.lst
Linux picdisl -rA in_file.hex >out_file.lst 2>err_file.txt

These are the special ANSI 'C' Escape Codes displayed for option [-rA]:

ESCAPE
CHAR

HEX
VALUE

DEC
VALUE

MNE-
MONIC

DESCRIPTION

\a 0x07 7 BEL Bell (Alert) Character

\b 0x08 8 BS Backspace Character

\t 0x09 9 HT Horizontal Tab Character

\n 0x0A 10 LF New-Line Character (Line Feed)

\v 0x0B 11 VT Vertical Tab Character

\f 0x0C 12 FF Form-Feed Character

\r 0x0D 13 CR Carriage Return Character

\\ 0x5C 92 Backslash Character

\" 0x22 34 Double Quote Character

\x__ 0x__ __ Non-Printable HEX Character

PICDIS-LITE 26

Appendix D: Display Formats
PICDIS-LITE will display output in [-d0] or [-d1] formats.
The [-d0] option is default, you do not need to insert [-d0] on the command line.

Example input file to demonstrate options [-d0] and [-d1]:
<TEST.HEX>

:10002000E2010D0844084C0852084F085708200800
:0A0030004F084C084C08450848082A
:10020000400006000C0C2700C70010092600E7027A
:04021000040B000BD0
:0203FE00000BF2
:021FFE00FB0FD7
:00000001FF

Results using [-d0] as output style: picdisl -d0 TEST.HEX [>out_file.lst]
0010 org 0x0010
0010 01e2 j010: addwf PCL,f
0011 080d retlw 0x0d
0012 0844 retlw 0x44
0013 084c retlw 0x4c
0014 0852 retlw 0x52
0015 084f retlw 0x4f
0016 0857 retlw 0x57
0017 0820 retlw 0x20
0018 084f retlw 0x4f
0019 084c retlw 0x4c
001a 084c retlw 0x4c
001b 0845 retlw 0x45
001c 0848 retlw 0x48

etc....

Results using [-d1] as output style: picdisl -d1 TEST.HEX [>out_file.map]
0010 : 01e2 080d 0844 084c 0852 084f 0857 0820 D.L.R.O.W.
0018 : 084f 084c 084c 0845 0848 ____ ____ ____ .O.L.L.E.H
0100 : 0040 0006 0c0c 0027 00c7 0910 0026 02e7 .@.....'.....&..
0108 : 0b04 0b00 ____ ____ ____ ____ ____ ____
01f8 : ____ ____ ____ ____ ____ ____ ____ 0b00 ..
0ff8 : ____ ____ ____ ____ ____ ____ ____ 0ffb ..

Note: <"."> refers to a non-ASCII printable value, for example 0844h has 08h as a
non-ASCII printable <"."> and 44h as a printable ASCII value of <"D">.

PICDIS-LITE 27

Appendix E: Error Messages
DOS PICDIS-LITE displays error descriptions to standard output.
Linux PICDIS-LITE displays error descriptions to standard error output.
The Error Code is returned to the parent program (useful for script programming).

Example: DOS PICDISL in_file.hex >out_file.lst
Linux picdisl in_file.hex >out_file.lst 2>err_file.txt

Note: There are references to both PICDIS-LITE and PICDIS in this list.

ERROR
CODE

DESCRIPTION

101 Error, not enough memory
DOS PICDIS-LITE expects more RAM memory.
You may have to turn off some TSR programs in DOS.
Create more swap file disk space for Linux, OS/2 or Windows.

102 Can't open file
Cannot open or find input file named on command line.
DOS version expects file names in DOS 8.3 format.
Linux version is case sensitive to file names.

103 This is not a HEX file
PICDIS-LITE understands several HEX file formats, but this file is
not a known format. See "Appendix A: HEX File Input Formats".

104 Byte count does not match data length
Record length does not match the expected byte count.
The record may be corrupted or a different format.

105 Error, address out of range
The address for this byte is beyond the range for this type of PIC
Chip. PICDIS-LITE is limited to 0000h-03FFh words.

106 Error, unknown record type
This input file appears to change from one HEX format to a new
HEX format. Example, changing from Intel HEX to Motorola S.

PICDIS-LITE 28

ERROR
CODE

DESCRIPTION

107 Error, expected 0000 for this record type
Some HEX files have an End-Of-File (EOF) marker or other
special markers and 0000h is expected for this record address.

108 Error, wrong byte count for this record type
The byte count for this record does not match the record length.

109 Error, unknown data value
Most HEX files use char[2] ASCII values forming 00h..FFh but
this record does not appear to have valid data.

110 Error, this CPU code bigger than 12 bits (option [-c12])
Error, this CPU code bigger than 14 bits (option [-c14])
PICDIS-LITE is trying to filter only 12-bit or 14-bit values but the
value found is larger than expected.

111 Bad checksum calculated
Checksum for this record does not match the computed value.
This record is corrupted or modified.

112 Error, more code after EOF record
The last record in this HEX format must be End-Of-File (EOF)
record, but this file has more records merged after the EOF.
Possibly this file was merged from 2 or more files incorrectly.

113 Error, missing an EOF record
The last record in this HEX format must be End-Of-File (EOF)
record but this file has none. This file is possibly truncated.

114 Wrong commandline option
An unrecognized command line option or out-of-range value
was given. Type PICDISL -h at the command line to list help.

PICDIS-LITE 29

Appendix F: Processor Filter [-p]
PICDIS-LITE filters displayed results according to the [-pxxxx] option by showing
appropriate registers and verifying HEX data does not go out of limits.

PROCESSOR:
PICDIS-LITE verifies the HEX file fits the Processor shown. For example,
picdisl -ppic16f84 in_file.hex [>out_file.lst], checks that the program fits
within {0000h..03FFh}, is only 14 bits wide, and if the hex file also includes
initial flash memory data, then the data fits in the 64 x 8 of flash space.
If the HEX format file does not fit this form, then it is considered an error.

PINS: Has no meaning in a HEX format file. Shown only for your information.

I/O: PICDIS-LITE will display correct I/O PORTS unless you use [-s] option.

PROGRAM MEMORY: This is the expected program memory for this Processor.
The HEX format file should fit within it, otherwise it is an error.

USER RAM: This is the expected RAM for this Processor.
Note: Some micro controllers do not have a full set of registers to fill a RAM
bank. PICDIS-LITE displays these instructions as data statements unless
you use the [-s] option to show the true instruction.
Note: Showing the correct RAM bank is a complicated task due to how a
user programs code. PICDIS-LITE will display the 1st RAM bank if it is a
RAM register, or a possible set of registers if it is an I/O register.

EEPROM/FLASH: This is the non-voltile rewrite memory size for this Processor.

(a) 12-bit processor structure suggests 2048 x 12 is allowed as maximum.
14-bit processor structure suggests 8096 x 14 is allowed as maximum.
PICDIS-LITE is limited to 2048 words.

(b) CE parts do not appear to have a way to program EEPROM via HEX files.
This is for your information. HEX files expected not to contain CE data.

(c) PICDIS-LITE expects a maximum of 64 x 8 bytes of EEPROM and will
verify that the EEPROM data fits within limits.

PICDIS-LITE 30

PROCESSOR PINS I/O PROGRAM
MEMORY

USER
RAM

EEPROM
FLASH

pic10f200 6 4 256 x 12 16

pic10f202 6 4 512 x 12 24

pic10f204 6 4 256 x 12 16

pic10f206 6 4 512 x 12 24

pic10f20x 6 4 512 x 12 n/a

pic12c508 8 6 512 x 12 25 x 8

pic12c509 8 6 1024 x 12 41 x 8

pic12c5xx 8 6 2048 x 12 (a) n/a

pic12ce518 8 6 512 x 12 25 x 8 16 x 8 (b)

pic12ce519 8 6 1024 x 12 41 x 8 16 x 8 (b)

pic12ce5xx 8 6 2048 x 12 (a) n/a 16 x 8 (b)

pic16c505 14 11 1024 x 12 72 x 8

pic16c52 18 12 384 x 12 25 x 8

pic16c54 18 12 512 x 12 25 x 8

pic16c55 28 20 512 x 12 24 x 8

pic16c56 18 12 1024 x 12 25 x 8

pic16c57 28 20 2048 x 12 72 x 8

pic16c58 18 12 2048 x 12 73 x 8

pic16c5x n/a n/a 2048 x 12 (a) n/a

pic16cxx n/a n/a 2048 x 14 (a) n/a

pic16c554 18 13 512 x 14 80 x 8

pic16c556 18 13 1024 x 14 80 x 8

pic16c558 18 13 2048 x 14 128 x 8

pic16c55x 18 13 2048 x 14 (a) n/a

pic16c620 18 13 512 x 14 80 x 8

PICDIS-LITE 31

PROCESSOR PINS I/O PROGRAM
MEMORY

USER
RAM

EEPROM
FLASH

pic16c621 18 13 1024 x 14 80 x 8

pic16c622 18 13 2048 x 14 128 x 8

pic16c62x 18 13 2048 x 14 (a) n/a

pic16c61 18 13 1024 x 14 36 x 8

pic16c62 28 22 2048 x 14 128 x 8

pic16c63 28 22 4096 x 14 (a) 192 x 8

pic16c64 40 33 2048 x 14 128 x 8

pic16c65 40 33 4096 x 14 (a) 192 x 8

pic16c6x n/a n/a 2048 x 14 (a) n/a

pic16c83 18 13 512 x 14 36 x 8 64 x 8

pic16c84 18 13 1024 x 14 36 x 8 64 x 8

pic16f83 18 13 512 x 14 36 x 8 64 x 8

pic16f84 18 13 1024 x 14 68 x 8 64 x 8

pic16f8x 18 13 2048 x 14 (a) 68 x 8 64 x 8 (c)

eeprom8 n/a n/a 4096 x 8 (a) n/a n/a

eeprom16 n/a n/a 2048 x 16 (a) n/a n/a

Note: Normally the last [-p] command takes effect for processor selection,
but [-peeprom8] and [-peeprom16] have priority over the other processor values
to keep PICDIS-LITE compatible with MPLAB 4x and 5x.

Joe's Cat Software
11280 Westminster Hwy
Richmond, BC, Canada, V6X-1B3
http://www.JoesCat.com/micro/picchip.htm

