Cconstructional Frojecr

PIC-AGORA
WHEELIE

METER

JOHN BECKER

Part 1——

Flux-gate sensing and PIC
microcontrolling combine to
bring yvou the (nearly) ultimate
N wheeled-distance
measurement and display.

FGM-3 magnetic sensor, and the

author’s desire to update an existing
6502-based bicycle computer, this design
offers the opportunity to measure the
distance covered by almost any wheeled
vehicle, from a golf trolley to. a bicycle
and beyond. Wheel diameters up to about
three metres can be catered for (... want
to electronify your Penny-Farthing or
Traction Engine?) at speeds of up to about
100 m.p.h.

The controlling heart of the design is the
now-familiar PIC16C84 microcontroller,
and its readout is on a readily available
intelligent liquid crystal display (l.c.d.).
Whilst the software is complex (though
that needn’t concern you), the design is
simple to build and install.

Wheel rotation sensing is done using a
magnetic field sensor in conjunction with a
small magnet. The sensor is attached to
the frame of the bike or other vehicle; the
magnet can be secured to any convenient
part of the wheel.

A further option is open to adventurous
experimenters — you could, perhaps, be
inspired to try modifing the design for use
with sail-boards and the like!

As to the Title? There’s a tale to tell, but
we’ll keep it short, at the end!

MAGNETIC SENSOR

Any type of magnetic sensor could have
been the starting point for the design.
All have their merits; all can have their
problems. When contemplating the design
of PIC-Agoras, though, it seemed an inter-
esting idea to use the new FGM-3 mag-
netic field sensor from Speake & Co.

Its response has proved to be excellent
and obviously has many other applications
in which it can be used. Its only problem

INSPIRED by the recently introduced

264

in this application was the need to convert
the modulations of its frequency output to
decoded single pulses.

The FGM-3 device is a very high sen-
sitivity magnetic field sensor operating in
the +0-5 Oersted (=50 microtesla) range.
Its operation is based on the flux-gate prin-
ciple in which the strength of a magnetic
field determines the frequency response of
one or more coils.

Flux-gates are commonly found in the
miniature electronic compasses which are
now in widespread use amongst the small-
boat (and large) community. Go to any
yachting chandler and you will probably
see many examples.

In the past, flux-gates as ready-made
individual components have not been avail-

able to the hobbyist electronic market.
Regrettably, the precision with which the
coils need to be wound does not allow them
to be easily constructed in the average
workshop. Certainly not in the author’s, and
he’s tried! Thus it was with considerable
interest that the FGM-3 was received.

SELF-CONTAINED

This device requires no adjustment on
the part of the user. It is totally self-con-
tained. The induction coil and all the fre-
quency-generating electronics are enclosed
in a tube about 65mm long by 16mm in
diameter. The tube is transparent and looks
like glass, though scraping it reveals that it
is a plastic material. Its strength has not
been put to the test (1) but it is probably
wise to treat it with respect.

Three wires are the only connections
that need to be made, two for power at
5V (7V absolute maximum), and one for
the signal output. The output signal is a
robust 5V rectangular pulse train whose
frequency varies inversely with the mag-
netic field strength detected (giving a pulse
period which is directly proportional to
the field strength). This signal is ideally

Completed Wheelie Meter with FGM-3 magnetic field sensor.

Everyday Practical Electronics, April 1997

suited to interfacing to a computer, or (
microcontroller, or other digital electronic Eeia . e
circuit. Hecn ©)
Typically, the frequency swing is from SENSOR o |
50kHz to 120kHz for a field strength rang-
ing between +0-5 Oersted. You do not g
need to be concerned about field strengths) PCA IN
in this application, however. Suffice to e PCBIN
say that the frequency swing caused by 98 vcom

moving a variety of small magnets past the
sensor at several tens of millimetres dis-
tance is very detectable.

The sensitivity of the FGM-3 is such
that even the earth’s magnetic field can be
detected, making the sensor usable
in electronic compass applications. Be
aware, though, that actually designing
an electronic compass involves good
knowledge of some quite high mathe-
matics and the use of a microcontroller or
similar which can cope with all the code
involved!

The sensor’s temperature sensitivity is
excellent, at 0-003%/°C at 25°C.

The magnet chosen for use with the sen-
sor was a small disc type removed from
a plastic ““fridge magnet’” that typically
holds kitchen notes to the side of a domes-
tic fridge.

SENSOR
INTERFACE CIRCUIT

First thoughts may suggest that since the
FGM-3 outputs a well-shaped 5V pulse
train, the changes in frequency when a
magnet passes close by could be readily
analysed by a PIC microcontroller. In
principle, the PIC can be programmed to

analyse them. The drawback is that it’

would need to spend most of its time
analysing and not have much time to
process the results.

There is a lot of processing to be done,
as will be seen later. Consequently, an
electronic interface is needed to do a bit of
real-time pre-processing. We are not inter-
ested in the actual frequency of the pulse
train. It is the change in frequency when
the magnet passes that is of interest. All
we need to know is whether or not the
magnet is close or distant, a simple binary
logic situation; Logic 1, the magnet is
near; Logic 0, the magnet is distant, or
vice-versa.

This conversion from frequency change
to logic level could be done in several
ways. Here it is done using a phase locked
loop (p.ll) chip, the familiar CMOS
4046 device. The details in Fig. 1 show
the frequency-to-logic conversion circuit
diagram, the Sensor circuit.

The FGM-3 magnetic field sensor is
shown as component X1, and the p.LlL is
IC1. The output from the sensor is fed into
IC1’s first phase comparator input, PCA
IN at pin 14. The second phase comparator
input is PCB IN at pin 3, which is coupled
to the chip’s voltage controlled oscillator
output, VCO OUT at pin 4.

The basic oscillator frequency of the
VCO is determined by the values of
capacitor C1 and the joint action of
resistors R2 and R3, plus preset poten-
tiometer VRI. Variation in the voltage
level on IC1 pin 9, VCO IN, causes
the VCO output frequency to change
accordingly.

Within IC1, circuitry compares the dif-
ference in phase between the two signals

e % o g ¥ S N & y

8
BLACK [
7

PL1/4
SK1/4

IC1
rAReelelly

)

o TN

Fig. 1. Circuit diagram for the Sensor Interface frequency-to-logic section.

on the phase comparator inputs. Any dif-
ference in the phase causes a change in the
voltage output at PC2 OUT, pin 13. Be-
tween them, resistor R4 and capacitor C2
smooth this output voltage and feed it back
to the VCO IN input, pin 9. IC1 then does
its best to change its VCO frequency and
phase so that it equals that coming in from
the sensor X1.

In this application, the VCO frequency
range is set so that the sensor frequency
and the VCO frequency never do need to
match. Instead, the output voltage at PC2
OUT (pin 13) is forced to be at maximum
when the sensor frequency is fast, and at
minimum when it is slow. These maxi-
mum and minimum (requencies/voltages
correspond to the magnet being close or
distant to the sensor.

Converting the maximum and minimum
voltages to cleanly changing Logic 1 and
Logic 0 signals is done by the twin
Schmitt inverter gates [C2a and IC2b. It is
the output from IC2b pin 10 which
provides the sharp logic level change
which the microcontroller then needs to
detect.

MICROCONTROLLER
CIRCUIT

How the microcontroller processes the
logic signal from the Sensor Interface
will be discussed presently. Before it is,
though, let’s consider the general process-
ing and display circuit in Fig. 2.

There are two active components in Fig.
2, the PIC16C84 microcontroller, IC3,
and the intelligent liquid crystal display
(l.c.d.), X3, which is based on the Hitachi
HD44780 control chip. In-depth discus-
sions of both these devices have appeared
in previous issues of EPE; the lc.d.
module in February and March '97 issues
(How to Use Intelligent L.C.D.s), and
the PIC in several issues over the last
year or so, notably February ’96 (Simple
PIC16C84 Programmer).

To briefly recap on the PIC16C84, it has
one kilobyte (1KB) of EEPROM (electri-
cally programmable read only memory)
program memory, 64 bytes of EEPROM
long-term data memory, and 36 volatile
general-purpose data registers (SRAM —
static random access memory). There are

PIC-Agoras Wheelie Meter installed on the handle-bars of a bicycle.

Vs 1 A~

two bidirectional ports, the 5-bit Port RA
and the 8-bit Port RB. The device includes
its own master clock generator (oscillator)
whose frequency is set externally either
by a quartz crystal network or an RC
(resistor/capacitor) network. There are four
modes of clock operation:

RC Resistor/capacitor oscillator
XT Standard crystal oscillator

HS High speed crystal/resonator
LP Power saving, low frequency crystal

For this application, the XT mode is
used with a 3-2768MHz crystal, X2, in
conjunction with capacitors C3, C4 and
resistor R8.

Also included in this microcontroller are
a Watchdog Timer (WDT), and an edge-
sensitive interrupt pin at Port INT/RBO
(pin 6). Program memory can be loaded
serially while in-circuit, Port CLK/RB6
(pin 12) being the clock input, and Port
DIO/RB7 (pin 13) the serial data input.

When not in use for loading program
data, both the latter pins are available for
normal data input/output.

To set the device into program loading
mode, input MCLR (pin 4) has to be set to
a voltage of between + 12V and +14V.
This input also .serves as the Reset line,
being taken to OV to activate the in-chip
reset routines. Normally, it is held at about
the same positive voltage as supplies the
chip’s power, between +4V and +6V.

Switches S2, S3 and S5, resistors R6,
R16, R17 and R9, and diode D2 are all
associated with the programming mode
and will be discussed when programming
is described.

MODE SELECTION

Switch S4 is a panel mounted rotary
4-bit binary switch of which only the
first three bits are used, providing eight
modes (16 lines of display) that can be
set via Port pins RAO, RA1l and RAZ2.
The software program constantly monitors
these pins and takes the appropriate action
depending on the mode selected.

The modes are:

0 Show trip elapsed time and distance in
kilometres

1 Show current speed and trip average
speed in kilometres

2 Show trip peak speed and absolute dis-
tance since unit’s first use, in kilometres

3 Show trip elapsed time and distance in
miles

4 Show current speed and trip average
speed in miles

5 Show trip peak speed and absolute dis-
tance since unit’s first use, in miles

6 Show number of wheel rotations
detected per second and average per 10
seconds

7 Reset all trip counters to zero

Switch S4 has only one pole (P), conse-
quently only the selected ““way’” (pin 1, 2
or 4) can be held at a specific logic level
via the pole. To keep the unselected pins at
a known logic level requires them to be
held at that level via biasing resistors, in
this case R13 to R15.

The pole of the switch is put under pro-
gram control, via Port pin DIO/RB7 (13).
Only when the switch needs to be read is
this line taken high. At all other times it is
held low.

DISPLAY MODULE

The l.c.d. module X3 has two lines
each of eight groups of display pixels (a
2-line 8-character unit). As discussed in
EPE Feb ’97, any of the module’s in-
ternal library of alphanumeric characters
and other symbols can be routed to any of
the 16 display positions under software
control.

Routing the data to be displayed from
the microcontroller IC3 to the l.c.d. X3
requires the data code to be set up on the
l.c.d. data pins and the appropriate tog-
gling of two control lines, RS and E (pins
4 and 6). The l.c.d. can be operated in 8-bit
or 4-bit mode. In the latter mode, data is
only applied to data pins D4 to D7 (pins 11
to 14), pins DO to D3 (pins 7 to 10) being
left unconnected.

Data can be sent to the module either
as Control commands or Character display
data. The Control commands available are
numerous, and can include such things as
which line and pixel area the characters
are to be displayed at; where the cursor
sits; whether data is to be scrolled and in
what direction; etc. To set Control com-
mand mode, line RS is taken to Logic 0.
Setting RS to Logic 1 puts the display into
Character transfer mode.

Control and Character data transfer are
actioned when line E is taken low, to
Logic 0.

There is a third control line, R/W (pin
5), This controls whether the l.c.d. is to
receive data (Write mode, Logic 0), or
supply it back to the outside world (Read
mode, Logic 1). In this application, only
Write mode is required, so the R/W pin is
tied to the OV line.

SK13
+5V/6V) HYE
Sia o O
o1 . 1
R7 o! +
100k w1 s o
50 6Vd.c zzoouT
. - . . l
K
PIN 10 D3
1N4148 D4
R10 Fmg a 1N4148
1006 1k kg a2
L fg2 o e ..]
G5 - C7 l
B2
 iN4148 o == MODE] 54 2 1
K c3 +VE 17 4 1
15p RAO [
+12v : 6 18 Z z |
! I OSC1/CLKIN RA1 ﬁ‘]: el —
ISEETERE o | o = 4 PO 9 7 +VE
L RA2 [l g0 N.C. ==l DO
- G4 3o76RMHz =2 RA3 5 8 NG =H b1
b .C.
[PROGRAM] - 15p . -
 (SEE TEXT) TOCKI/RA4 N.C. = D2
INT/RBO [E ne A os
IC3 7 11
R RB1 D4
A6 1k8 PIC16C84 " v X3 I
1k RB2 D5 LCD
9 13 MODULE
RB3 — s VR
. 5 10 14 il
0SC2/CLKOUT ~ RB4 D7
o1 V= 11 4 3 4
z RB5 RS -vefF—|
48— 12 6
MCLR CLK/RB6 - ISR B
13 | I 5
DIO/RB7 el RW
A5 o Ro GND GND
83 5 1
1K \, 33K . L
: R12 R13 R14 R15
: RESET|O 100k <= 100k 100k 100k
SKi/4 Ta
ov —0 0V
RESET % sBa
e A A — Y"'o———ol DATA
1 PROGRAM
Pt
= o LK
(SEE TEXT)
[=
Fig. 2. Circuit diagram for the general Processing and Display stages of PIC-Agoras.
266 Everyday Practical Electronics, April 1997

The l.c.d. module needs a negative volt-
age for screen contrast biasing. A simple
negative inverter circuit is used, comprising
capacitors C5, C7, diodes D3, D4, and pre-
set potentiometer VR2. When IC3 is not
actually transferring data to the l.c.d., Port
RBI (pin 7) is programmed to constantly
toggle this line up and down. The resulting
waveform is a.c. coupled by C5, negatively
rectified by D3 and D4, and smoothed by
C7. Preset VR2 sets the negative bias volt-
age for the desired screen contrast.

(The need for this negative bias is much
bemoaned! Why couldn’t the manufacturer
allow this version of the 1.c.d. to be biased
to the OV line instead, as is the case for
other versions?)

AUTOMATIC SAVING

The PIC-Agoras system has been
designed and programmed so that at the
moment of switching off its power (by
switch S1), the program automatically
stores the current trip data — time elapsed,
distance covered and peak speed — into the
chip’s EEPROM data memory. Next time
the unit is switched on, this data is
automatically recalled. You can thus go off
for refreshments during a trip without
wasting battery power!

While the unit is switched on, capacitor
C6 (having a fairly high value) is held
charged at close to full battery voltage
level. Port pin TOCKI/RA4 (pin 3) is held
high via resistor R11, and IC3 itself is
powered via R10.

When S1 switches off the battery, IC3
and the display are powered by the
charge held in C6. Port TOCKI/RA4,
though, is immediately biased to a Logic
0 level via switch S1b. The program
responds to this logic change and
immediately jumps into the data-save
routine. This routine is speedy and is
completed before the charge on C6 has
decayed below the voltage at which IC3
can continue to function.

Resistor R12 prevents TOCKI/RA4
from being indeterminately biased at the
moment when the pole of S1b shifts
between its other two contacts (it is a
break-before-make switch, a make-before-
break switch would cause the battery to be
shorted to OV by Slb during this
transition).

NO CONFUSION

Resistor R7 continues to discharge C6
to a zero volts level after IC3 has ceased to
function. A couple of minutes or so should
be allowed to elapse before switching the
unit on again. Failure to do this could
confuse the microcontroller if its supply
voltage from C6 has not fallen sufficiently
and the chip is still being powered at an
acceptable level. Such confusion could in-
terfere with the EEPROM data storage
values, and prevent the program restarting
when power is switched on again.

The purpose of resistor R10 in IC3’s
positive power line is to limit the current it
tries to draw from C6 during power-down.

Much thought and experimentation were
put into the automatic saving problem, but
no better solution could be envisaged.
The reason for wanting automatic storage
at switch-off was to overcome human
memory loss!

Working data totals are held in volatile
memory since there is a finite limit of

Everyday Practical Electronics, April 1997

times that the EEPROM data memory can
be written to (typically 1,000,000 times).
Consequently, it cannot be used as an
active writable working memory during
normal high-speed processing.

Obviously, then, a mere human would
have to remember to switch the unit to
another mode in order to store the trip data
prior to switching off; an action all too
easy to forget after a lengthy, tiring ride!

RESETTING
BY CHOICE

It is possible to store the trip data by a
switched action if you prefer. Switch S4
Mode 7 is the Reset mode. Switching
to this mode triggers a 10-second
countdown timer routine, during which
Port RA3 activates the warning buzzer,
WDI1, accompanied by a display of
the countdown seconds remaining. (The
buzzer also ‘‘beeps’’ when power is
switched off.)

At the end of the countdown, the
EEPROM trip-data storage routine is ac-
tioned; current trip data is stored into the
EEPROM memory and running totals
(distance covered since first-ever use of
the unit) are updated. The ordinary work-
ing memory areas for the trip are then reset
to zero. Normally, this routine is selected
at the start of a trip.

During the countdown, Reset mode can
be aborted so that if you inadvertently
switch to it you can switch to another
mode without updating the EEPROM and
resetting trip data.

The buzzer is included to give ade-
quate warning that Reset mode has been
selected. Switching out of Reset mode
resets the countdown timer so that next
time this mode is selected, the count
period is again set to start from 10
seconds.

TOTAL RESET

There is a further Reset facility
provided, the ability to totally reset a/l the
totals in the EEPROM memory back to
zero. For data safety reasons, this facility
is not accessible from outside the unit,
which needs to be opened. In the circuit
diagram of Fig. 2 are two points alongside

Completed display unit showing
readout window and Mode switch.

resistor R12 marked A and B. With the
unit’s power switched off, these two points
should have a link wire soldered across
them, connecting Port TOCKI/RA4 to the
0V line.

The power is then switched on and
during the program’s initialisation routine,
the fact that Port TOCKI/RA4 is held
low will be detected by the software.
The program then jumps to the Total
Reset routine, zeroing all EEPROM data
memory locations. The program then goes
into a catatonic state, refusing to do
anything further.

Following Total Reset, power should be
switched off and the A — B link removed.
The unit can now be closed up, switched
on again and used in the normal way.

SOFTWARE

The controlling software program is
complex! Indeed, it’s too complex to
describe in detail, so only a brief run-down
can be given. It is also lengthy, occupying
nearly all available program memory loca-
tions (three bytes to spare!).

Finished control unit showing power/signal socket, on/off switch and cycle mount-

ing clamp.

267

alll Ulatl OHC O 1H101C 1UllCLiofls woulu 1iaveo
to be dropped. However, programmers
love challenges and ways were found!

The program source code was written
for assembly by TASM software, the
program discussed in the earlier mentioned
Simple PIC16C84 Programmer of Feb
’96. That code is available as advised in
Shop Talk.

Readers having assemblers other than
TASM (MPASM, for example), should be
able to translate the code without too much
difficulty.

The program starts off with two in-
itialisation routines. The first sets up
various parameters in memory and on the
Ports, and retrieves stored data from the
EEPROM memory. The other is for the
l.c.d. module, setting it into 4-bit 2-line
control mode. During this sequence of
events, the need for Total Reset is ex-
amined and actioned accordingly.

The main program now starts, from
within an interrupt detection loop. This
looped routine examines the status of an
internal timer and that of the internal
register on Port INT/RBO (pin 6). This is
the line that is connected to the final output
of the Sensor circuit at IC2b pin 10.

If a wheel rotation has been detected (an
internal register flag is automatically trig-
gered without program intervention), two
wheel-count counters are incremented. The
maximum pulse count rate is 25Hz (25
wheel revolutions per second).

TIME - OUT

If the time-out flag of the timer has
not been set, the program remains in the
interrupt loop. If the flag has been set,
which automatically occurs every 1/25th
of a second, the first elapsed-time clock
counter is incremented and the program
jumps to the main calculation and display
routine.

The first procedure in this routine is to
read the value of the first elapsed-time
counter. If it has received 25 pulses (=
one second), the elapsed seconds, minutes
and hours counters are incremented ap-
propriately. If the time reaches 24 hours,
all four elapsed-time counters are reset to
zero. (An actual time of day clock facility
is not included.)

Each time the seconds counter reaches a
multiple of 10 seconds, the second wheel
rotation counter has its information trans-
ferred to an averaging counter. The count
value is also compared against a peak
value counter; if the present count is
greater than the peak value already stored,
the peak value becomes the present count
and stored in EEPROM memory.

When these 10-second procedures have
been completed, the second wheel rotation
counter is reset to zero.

Every one second, though, the contents
of the first wheel rotation counter are
added to a distance counter and then reset.
Incrementing the distance counter is quite
a complicated process since it has to take
into account the size of the wheel to which
the rotation count refers. Setting of the
wheel size value is covered later.

Wheel size is stored in two bytes as part
of the program itself. The data is retrieved
by two sub-routine calls, one for each
byte.

268

wgeticl alud - sStoicdd il oo dcditdiod
registers as a 24-bit binary number. This
value represents the distance travelled
during the present trip.

MODE STATUS

The program next reads the status of
Mode switch S4. The route that the program
now takes depends on the Mode detected,
but all routes are accompanied by an updat-
ing of the display screen in some manner.

In any Mode, though, only one line of
the l.c.d. is updated at a time. The program
alternates between the two lines, and this
alternation occurs every 25th of a second,
so the data is effectively always seen as a
real-time value. Each line of the display
has eight bytes of data sent to it, which
comprise an appropriate mixture of al-
phanumeric characters and blanks. These
bytes are sent as a consecutive sequence of
16 nibbles (2 nibbles = 1 byte) as required
by the 4-bit l.c.d. control mode.

The Mode procedures and displays are
as follows:

MODE 0

Display Line 1: Trip elapsed time
routine. Converts seconds, minutes and
hours data from its 3-byte decimal storage
format to 8-byte l.c.d. display format with
colon and decimal point inserted; 24-hour
clock. ‘

Display Line 2: Trip distance in
kilometres routine. Converts distance data
from 3-byte binary format to 8-byte l.c.d.
display format, to two decimal places of
accuracy, inserting decimal point and
identity letters KD (Kilometres/Distance).

01:23.05
KDO031.53

Typical display:

MODE 1

Display Line 1: Current speed in
kilometres routine. Evaluates speed from
10-second wheel rotation counter average
data, converting answer to 8-byte l.c.d.
display format, to two decimal places of
accuracy, inserting decimal point and
identity letters KV (Kilometres/Velocity).
The 10-second averaging of the rotation
count helps to smooth out small distracting
variations in the displayed answer caused
by the rate of the sampling process.

Display Line 2: Average speed in
kilometres routine. Evaluates average
speed from distance and elapsed time data,
converting answer to 8-byte l.c.d. display
format, to two decimal places of accuracy,
inserting decimal point and identity letters
KA (Kilometres/Average).

Typical display: KV047.31
KA022.79

MODE 2

Display Line 1: Peak speed in
kilometres routine. Evaluates peak speed
from peak wheel rotation count data,
converting answer to 8-byte l.c.d. display
format, to two decimal places of accuracy,
inserting decimal point and identity letters
KP (Kilometres/Peak).

Display Line 2: Total distance (ever
covered) in kilometres routine. Evaluates
total distance covered from current distance
travelled and previous absolute distance
travelled as held in EEPROM, converting
answer to 8-byte l.c.d. display format, to

Typical display: KP053.73
K0431.53

MODE 3

Display Line 1: Trip elapsed time
routine. Identical to Mode O, Line 1.

Display Line 2: Trip distance in miles
routine. Follows kilometre conversion
routine of Mode O Line 2, then converts
answer to miles equivalent in 8-byte l.c.d.
format, to two decimal places of accuracy,
inserting decimal point and identity letters
MD (Miles/Distance).

01:23.05
MDO014.24

Typical display:

MODE 4

Display Line 1: Current speed in miles
routine. Follows kilometres conversion
routine of Mode 1 Line 1 then converts
answer to equivalent miles value in 8-byte
l.c.d. format, to two decimal places of
accuracy, inserting decimal point and
identity letters MV (Miles/Velocity). One
kilometre is taken as five-eighths (5/8) of a
mile (in all Modes 4, 5, 6 calculations).

Display Line 2: Average speed in miles
routine. Follows kilometres routine of
Mode 1 Line 2 then converts answer to
equivalent miles value in 8-byte l.c.d.
format, to two decimal places of accuracy,
inserting decimal point and identity letters
MA (Miles/Average).

Typical display: MV029.56
MAO014.24

MODE 5

Display Line 1: Peak speed in miles
routine. Follows kilometres routine of
Mode 2 Line 1 then converts answer to
equivalent miles value in 8-byte l.c.d.
format, to two decimal places of accuracy,
inserting decimal point and identity letters
MP (Miles/Peak).

Display Line 2: Total distance (ever
covered) in miles routine. Follows
kilometre routine of Mode 2 Line 2 then
converts answer to equivalent miles value
in 8-byte l.c.d. format, to two decimal
places of accuracy, inserting decimal point
and identity letter M.

Typical display: MP033.58
M0269.70

MODE 6

Display Line 1: Current wheel rota-
tion count during one second routine.
Converts immediate wheel turns count
to 8-byte l.c.d. format, inserting letters
TL (Turns/total.), three blanks and three
digits. The count value is that since the last
reset of the counter and so is seen to
increment from zero to total one-second
count, and then back to zero, and so on. A
useful routine when aligning sensor and
magnet on the vehicle.

Display Line 2: As for Mode 6 Line
1, but is an averaged value for ten
second period, with prefix letters TA
(Turns/Average).

Typical display: TL 005
TA 018

MODE 7

Display Line 1: Visual warning of
RESET countdown in progress with
seconds remaining count displayed; buzzer
sounds. Remains at zero count and buzzer

Everyday Practical Electronics, April 1997

continues to sound until Mode is changed.
Display Line 2: As for Mode 7 Line 1.

Typical display: RESET!7
RESET! 7

ARITHMETIC

Most of the above Mode routines use
repeated accesses to multiplication and
division routines, which not only are too
difficult to explain briefly, but also
extremely lengthy, consuming much of the
1KByte program space available. Regret-
tably, PIC microcontrollers do not have
these routines built into their command
structure and so they have had to be
written as blow-by-blow sub-routines.
What a hassle!

Writing the routines proved how accus-
tomed one can become to programming

languages which do have the routines built

in — with the 80486 and even the much
earlier 8086 microprocessors, for example,

. programmers have a much easier time of it
in this. respect, though without some of the
other benefits that a PIC microcontroller
can offer.

POWER SUPPLY

It is intended that this design should be
powered by a ‘‘heavy duty” 6V battery; a
supply between 4V and 6V is acceptable.
The absolute maximum is 7V and this must
NOT be sustained or exceeded.

Current consumption at 5V is approxi-
mately 14-5mA.

CONSTRUCTION

Full details of the printed circuit board
(p.c.b.) assembly and wiring to other com-
ponents are shown in Fig. 3, as is the track
layout for the copper foil pattern. This
board is available from the EPE PCB
Service, code 141.

If you do not intend to program your
own PIC16C84 (see later), or if you
already have a PIC programmer, then
resistors R5, R16 and R17, le.d. D1,
switches S2, S3 and S5, and computer
connector PL2 can be omitted. Similarly,
you can ignore further references to any
aspect relating to on-board programming
of IC3.

Experienced constructors will, of
course, assemble the p.c.b. in whatever
order they like. Other readers may prefer
to follow the order in which the author
assembled his prototype:

First, insert the link wire shown above
1C3, and then the i.c. sockets. Do not try to
save money by omitting the latter; it is
much easier to just pull out an i.c. rather
than have to unsolder it, should you ever
need to replace it.

Next, insert the resistors and diodes,
followed by the preset potentiometers and
the capacitors. Note that capacitor C6 and
preset VR2 are mounted on the rear of the
board (trackside). Mount crystal X2 so that
it lies horizontally above capacitor C3 and
resistor R14. Now insert 1mm terminal
pins where needed for connecting wires to
off-board parts. Finally, solder in switch
S4.

Make doubly-sure that the polarity of
the diodes and electrolytic capacitors are
observed, as well as the orientation of
switch S4 (check this with a meter if you
are not sure, though it should be marked
underneath).

Everyday Practical Electronics, April 1997

POWER

WD1

=0 +12V

BLACK

*OPTIONAL
(SEE TEXT)

+VE
BATTERY

+VE
WHITE RED

*PL2 PC

0V (GND)

PARALLEL
PORT
(PIN VIEW)

/o

0000000000

000000000 @

)

25

O
L

to

(©

D7 » D6

X3
LCD MODULE

D5 @ D4

e D3
e D1

e D2

e DO

X1
SENSOR

B e AW

RS \ —VE

N.B. C6 MOUNTED FLAT ON REAR OF BOARD
XTAL X2 MOUNTED FLAT ABOVE C3 TO R14
POINTS A/B SEE TEXT

(o)

FE e oV

7

%IEL%%
5]
9

o 1.2

@=L
o

[o]
o

e

Fig. 3. Printed circuit b
master for PIC-Agoras.

p.c.b.

oard component layout, interwiring an
Note that C6 and VR1 are mounted on the track side of the

d full size copper foil

269

Layout of components on the prototype
printed circuit board.

CASE DRILLING
AND FITTING

Before wiring the p.c.b. to anything
else, drill out the lid of the recommended
case to accept the mounting bush of switch
S4. The l.c.d. requires an oblong cut out in
the lid, cut so that only the display area is
visible. The time-honoured technique of
multiple perimeter hole drilling is sug-
gested for this, pushing out the unwanted
section and filing down the edges to full
smoothness.

Drill out one end of the other part of the
case to accept socket SK1 and switch S1.
Ultimately, this end of the case will be at
the same end as the display.

The l.c.d. module in the prototype was
not bolted to the case. Fortuitously, its
width made it a snug fit between the side
walls of the case. The buzzer was then
stuck to one wall with double-sided ad-
hesive tape immediately above the l.c.d.,
so holding the latter in position.

The p.c.b. is secured inside the box by
means of switch S4’s bush and nut as-
sembly. It may be necessary to trim the
board’s corners.

WIRING-UP

Before you mount the 1.c.d., buzzer and
p.c.b., carry out all the inter-component
wiring. Keep leads fairly short but long
enough so that you can manipulate things
during the process. Connect the wires fo
their terminal pins at the rear of the p.c.b.;
with the l.c.d., push the tinned ends of the
wires through its p.c.b. holes and solder
them on the display side.

If you are going to program your own
PIC16C84, now wire-up switches S2, S3
and S5, and the three wires to computer
connector PL2. The latter wires should be
long enough so that PL2 can be plugged
into the parallel printer port of your
PC-compatible computer. The author’s
wires were about two metres long and
no problems were experienced with data
transfer.

Temporarily wire the FGM-3 sensor to
DIN plug PLI, using the sensor’s own
leads. Also connect the battery-clip wires

270

©D7 13eD6
D5 11eD4
®D3 9eD2
eD1 7eDo
®E 5@ RW
®RS 3@ -VE

® +VE 1@V

o)

1e)BIINTLICID ||,
*IMOIDIUILIE])|

)

L

Fig. 4. Pinout
information for
the l.c.d. 2-line
8-character
module.

Resistors See
e B SIHOP
R16,R17 ko) TALK
R2, R4, R7, age

Pag
R12to R15 100k (7 off)
R3 10k
R9 33k
R10 10002
All 0-25W 5% carbon film

Potentiometers
VR1, VR2 100k min. round cermet
preset (2 off)

Capacitors
C1 1n polyester

c2 15n polyester

G3,C4 15p polystyrene (2 off)

C5 1w radial elect. 63V

C6 2200y radial elect. 16V

C7 . 22p radial elect. 16V

Semiconductors

D1 red l.e.d. (see text)

D2 to D4 1N4148 signal diode (3 off)

IC1 4046 phase locked loop

IC2 4584 hex Schmitt inverter

IC3 PIC16C84, pre-programmed,
see text

Miscellaneous

X1 FGM-3 magnetic field
sensor

X2 3-:2768MHz crystal

X3 2-line 8-character l.c.d.
module (HD44780
compatible)

S1 min d.p.d.t. toggle switch

82,85 min. d.p.s.t. toggle switch
(3 off)

S3 min. s.p.s.t. toggle switch

S4 4-bit binary, rotary switch

PL1 4-pin DIN line plug
PL2 25-pin parallel printer port
connector

SKA1 4-pin DIN chassis socket

WD1 6V active buzzer

Printed circuit board, available from
the EPE PCB Service, code 141; 14-pin
d.il. socket (2 off); 16-pin d.i.l. socket;
collet knob for 84 (3:2mm shaft) and

‘coloured insert; min. 2-way terminal

block; small disc magnet; heavy-duty 6V
battery and clip; Tmm terminal pins;
2-tone plastic case, 120mm x 66mm x
30mm (I x w x h); cable ties; connect-
ing wire; solder, etc.

Approx Cost
Guidance Only

excl. programming parts

£39

to this plug. Connect switch S2 to a + 12V
(or up to +14V) power supply. From this
supply also make a OV connection to SK1
pin 4. Observe the correct polarity of all
these connections.

FIRST CHECKS

Leave all the i.c.s out of their sockets
for the moment and do not plug PL2 into
the computer.

Thoroughly check all your soldered con-
nections, both on the p.c.b. and on all other
parts, preferably using a close-up magnify-
ing glass.

When satisfied, plug PL1 into SKI,
switch off programing switches S2, S3 and
S5. Switch on both the normal 5V/6V
supply and the 12V programming supply.

Referring to the circuit diagrams in Fig.
I and Fig. 2, take a few readings around
the p.c.b. to check that the positive supply
is reaching the parts that it should, e.g. IC1
pin 16, IC2 pin 14, IC3 pin 14, l.c.d. (X3)
pin 2, and IC3 pin 4. At the latter pin, the
voltage will be about half a volt below
the 5V/6V supply line voltage due to the
presence of diode D2 and resistors R6 and
RO.

If you have an oscilloscope, check that
there is an output frequency signal from
the Sensor at IC1 pin 14.

Switch off the main power supply
switch S1 and switch on Program switch
S2. Immediately check that the +12V
supply is not reaching IC3 pin 14. (If it is,
diode D2 is in the wrong way round;
switch off and change it.) The l.e.d. D1
should light up and IC3 pin 4 should now
be at the 12V level. Switch on Reset
switch S3 and check that IC3 pin 4 is now
at the OV level.

Switch off both power supplies, in-
sert all three i.c.s., observing the usual
static-prevention precautions. Perform the
above tests again from the beginning. An
oscilloscope check at IC3 pins 15 and 16
should confirm that the clock generator
around crystal X2 is functioning (only a
scope can confirm this easily). At present,
unless you are using a pre-programmed
IC3, it is unlikely that the l.c.d. screen
will show any detail, remaining totally
blank.

SENSOR CHECKING

The Sensor circuit can be checked with-
out IC3 having been programmed. Tape
the sensor X1 to the workbench and con-
nect a multimeter to test point TP1. Set the
meter to a 5V d.c. (or greater) range.

Pass a small magnet back and forth
past the sensor and observe the meter
response as you do so. It will be found
that a greater response is likely to occur
nearer to one end of the sensor than the
other, depending on which side of the

Everyday Practical Electronics, April 1997

magnet faces the sensor. Note these facts
in some way on both items (e.g. sticky
label or Chinagraph pencil).

While passing the magnet, experiment
with various settings of preset VR1 and jot
down the resulting observed voltage dif-
ferences. Don’t be too fussy about these
tests since more accurate setting up will be
done once everything is mounted on the
vehicle and its wheel.

However, you should establish that
there are magnet positions and settings of
VR1 which cause the output from IC2b pin
10 to swing between logic level extremes
(OV and +5V).

SOFTWARE
DIFFERENCES

There is a slight difference in the
software for those who are doing their own
programming and that supplied in the
pre-programmed chips. The difference al-
lows home-programmers to preset the
wheel size from within the software.
Pre-programmed chips can only have the
wheel diameter set externally, by the user,
via a signal generator. This is due to the
complexities of having chips pre-pro-
grammed commercially to meet individual
wheel diameter requirements.

In the software for the pre-programmed
chips, diameter parameters can be set
according to the frequency fed into the
unit from the signal generator. These
parameters are stored in the EEPROM
data memory, and not in the program
memory.

Home-programmers may use either
technique. For the latter method, the
software is used without modification. For
the preset internal method (which, it has to
be said, is the simplest way if you have the
equipment), the following changes must be
made:

Delete source code lines 173 to 175:

PAGE1
BCF TRISA,3
PAGEO

Delete source code lines 191 to 195:

btfss PORTA,3
GOTO WHEEL
PAGE1

BCF TRISA,3
PAGEO

Delete all source code lines from 1301
to 1317 inclusive. You MUST retain the
final line of the software (.end)

All ‘comments’ following the colon (;)
in all the above deletion lines (not shown
here) should also be deleted.

Source code lines 295 and 296 must
be reinstated by deleting the colon (;)
immediately in front of them (they are
inoperative in the unmodified software):

SIZE1: retlw 45
SIZE2: retlw 56

There must be no blanks in front of
these commands.

Having modified the lines via a text
editor, such as the MS-DOS ‘EDIT’
software found on most recent PCs, save
the software as an ASCII file (NO format-
ting commands specific to many word
processors must be contained in this file).
The software is then ready for assembly.

Everyday Practical Electronics, April 1997

Layout of components in the interior of the case. The buzzer holds the display

module in place.

SOFTWARE
PROGRAMMING

Assuming all is well, IC3 can be pro-
grammed on-board by the computer. Load
the software into the computer via an
appropriate PIC16C84 software assembly
program (e.g. TASM). The software must
have been assembled as a binary file with
extension .com. Plug connector PL2 into
the parallel printer port.

The PIC16C84 first needs to be
initialised with its basic operational
parameters. Switch on Reset switch S3
(Reset mode). Switch on S2 (Program
mode — le.d. on). Switch on Program
Input switch S5, connecting the PIC to the
computer’s printer port. Switch off Reset
switch S3. Run the initialisation routine
provided with the PIC programming
software package, and at the computer
screen prompts:

Set the Clock for crystal XT mode (up
to 4MHz)

Set Watchdog Timer OFF

Set Power-on-reset ON

The programming software may advise
different orders of switching the Reset and

Program switches, if so, follow its in-
structions. Note, though, that any switch
numbers referred to in the programming
software are unlikely to correspond to the
switch numbers of PIC-Agoras.

Having completed the initialisation, the
main software can be downloaded to the
PIC16C84. Assume for the moment that
the wheel size data has already been set to
the required value. If it has not, don’t
worry, it can be done later and the PIC
can be reprogrammed with the revised
software. You can reprogram the PIC at
least 100,000 times if you wish, and prob-
ably more. The default wheel size values
are those used by the author, for a 27-5
inch diameter wheel.

Leaving Program switch S2 on, again
set Reset switch S3 on, and then off. Run
the downloading software package and fol-
low screen prompts (also following any
switch setting requirements, if different).

When downloading is complete, as ad-
vised on-screen, switch on S3, switch off
S2, switch off S5, in that order.

Set Mode switch S4 to Mode 1 (fully
anti-clockwise if the switch rotation is
lugged; if it’s not, just guess, no harm will
come).

Next month: First Display
Run; Downloading
Failure; Setting
Wheel Size and
Alternative
Sensing etc.

	NPSCN_001.pdf
	NPSCN_001(1).pdf
	NPSCN_001(2).pdf
	NPSCN_001(3).pdf
	NPSCN_001(4).pdf
	NPSCN_001(5).pdf
	NPSCN_001(6).pdf
	NPSCN_001(7).pdf

