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Introduction to PIC Programming 

Baseline Architecture and Assembly Language 

 

by David Meiklejohn, Gooligum Electronics 

 

Lesson 11: Integer Arithmetic and Arrays 

 

 

In the last lesson, we saw how to read an analog input and display the “raw” result.  But in most cases the 

raw values aren‟t directly usable; normally they will need to be processed in some way before being 

displayed or used in decision making.  While advanced signal processing is beyond the capabilities of 

baseline and even midrange PICs, this lesson demonstrates that simpler post-processing, such as integer 

scaling and implementing simple filters such as a moving average, can be readily accomplished with even 

the lowest-end PICs. 

This lesson introduces some of the basic integer arithmetic operations.  For more complete coverage of this 

topic, refer to Microchip‟s application notes AN526: “PIC16C5X / PIC16CXXX Math Utility Routines”, and 

AN617: “Fixed Point Routines”, available at www.microchip.com. 

We‟ll also see how to use indirect addressing to implement arrays, illustrated by a simple moving average 

routine, used to filter noise from an analog signal. 

In summary, this lesson covers: 

 Multi-byte (including 16-bit and 32-bit) addition and subtraction 

 Two‟s complement representation of negative numbers 

 8-bit unsigned multiplication 

 Using indirect addressing to work with arrays 

 Calculating a moving average 

Integer Arithmetic 

At first sight, the baseline PICs seem to have very limited arithmetic capabilities: just a single 8-bit addition 

instruction (addwf) and a single 8-bit subtraction instruction (subwf). 

However, addition and subtraction can be extended to arbitrarily large numbers by using the carry flag (C, in 

the STATUS register), which indicates when a result cannot be represented in a single 8-bit byte. 

The addwf instruction sets the carry flag if the result overflows a single byte, i.e. is greater than 255. 

And as explained in lesson 5, the carry flag acts as a “not borrow” in a subtraction: the subwf instruction 

clears C to „0‟ if a borrow occurs, i.e. the result is negative. 

The carry flag allows us to cascade addition or subtraction operations when working with long numbers. 

Multi-byte variables 

To store values larger than 8-bits, you need to allocate multiple bytes of memory to each, for example: 

        UDATA 

a       res 2                   ; 16-bit variables "a" and "b" 

b       res 2  

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_10.pdf
http://www.microchip.com/
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_5.pdf


© Gooligum Electronics 2010  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 11: Integer Arithmetic and Arrays Page 2 

You must then decide how to order the bytes within the variable – whether to place the least significant byte 

at the lowest address in the variable (known as little-endian ordering) or the highest (big-endian). 

For example, to store the number 0x482C in variable “a”, the bytes 0x48 and 0x2C would be placed in 

memory as shown: 

Big-endian ordering has the advantage of making values easy to read 

in a hex dump, where increasing addresses are presented left to right.  

On the other hand, little-endian ordering makes a certain sense, 

because increasing addresses store increasingly significant bytes. 

Which ordering you chose is entirely up to you; both are valid.  This 

tutorial uses little-endian ordering, but the important thing is to be consistent. 

16-bit addition 

The following code adds the contents of the two 16-bit variables, “a” and “b”, so that b = b + a, assuming 

little-endian byte ordering: 

        movf    a,w        ; add LSB 

        addwf   b,f 

        btfsc   STATUS,C   ; increment MSB if carry 

        incf    b+1,f 

        movf    a+1,w      ; add MSB 

        addwf   b+1,f 

 

After adding the least significant bytes (LSB‟s), the carry flag is checked, and, if the LSB addition 

overflowed, the most significant byte (MSB) of the result is incremented, before the MSB‟s are added. 

Multi-byte (including 32-bit) addition 

It may appear that this approach would be easily extended to longer numbers by testing the carry after the 

final „addwf‟, and incrementing the next MSB of the result if carry was set.  But there‟s a problem.  What if 

the LSB addition overflows, while (b+1) contains $FF?  The „incf b+1,f‟ instruction will increment 

(b+1) to $00, which should result in a “carry”, but it doesn‟t, since „incf‟ does not affect the carry flag. 

By re-ordering the instructions, it is possible to use the „incfsz‟ instruction to neatly avoid this problem: 

        movf    a,w        ; add LSB 

        addwf   b,f 

        movf    a+1,w      ; get MSB(a) 

        btfsc   STATUS,C   ; if LSB addition overflowed, 

        incfsz  a+1,w      ;   increment copy of MSB(a) 

        addwf   b+1,f      ; add to MSB(b), unless MSB(a) is zero 

 

On completion, the carry flag will now be set correctly, allowing longer numbers to be added by repeating 

the final four instructions.  For example, for a 32-bit add: 

        movf    a,w        ; add byte 0 (LSB) 

        addwf   b,f 

        movf    a+1,w      ; add byte 1 

        btfsc   STATUS,C 

        incfsz  a+1,w 

        addwf   b+1,f  

        movf    a+2,w      ; add byte 2 

        btfsc   STATUS,C  

        incfsz  a+2,w      

        addwf   b+2,f        

        movf    a+3,w      ; add byte 3 (MSB) 

        btfsc   STATUS,C     

        incfsz  a+3,w       

        addwf   b+3,f        

 a a+1 

Little-endian 0x2C 0x48 

Big-endian 0x48 0x2C 
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Multi-byte (including 16-bit and 32-bit) subtraction 

Long integer subtraction can be done using a very similar approach. 

For example, to subtract the contents of the two 16-bit variables, “a” and “b”, so that b = b  a, assuming 

little-endian byte ordering: 

        movf    a,w        ; subtract LSB 

        subwf   b,f 

        movf    a+1,w      ; get MSB(a) 

        btfss   STATUS,C   ; if borrow from LSB subtraction, 

        incfsz  a+1,w      ;   increment copy of MSB(a) 

        subwf   b+1,f      ; subtract MSB(b), unless MSB(a) is zero 

 

This approach is readily extended to longer numbers, by repeating the final four instructions. 

For example, for a 32-bit subtraction: 

        movf    a,w        ; subtract byte 0 (LSB) 

        subwf   b,f 

        movf    a+1,w      ; subtract byte 1 

        btfss   STATUS,C 

        incfsz  a+1,w 

        subwf   b+1,f  

        movf    a+2,w      ; subtract byte 2 

        btfss   STATUS,C  

        incfsz  a+2,w      

        subwf   b+2,f        

        movf    a+3,w      ; subtract byte 3 (MSB) 

        btfss   STATUS,C     

        incfsz  a+3,w       

        subwf   b+3,f        

 

Two’s complement 

Microchip‟s application note AN526 takes a different approach to subtraction. 

Instead of subtracting a number, it is negated (made negative), and then added. That is, b  a = b + (a). 

Negating a binary number is also referred to as taking its two’s complement, since the operation is equivalent 

to subtracting it from a power of two. 

The two‟s complement of an n-bit number, “a”, is given by the formula 2
n
 – a. 

For example, the 8-bit two‟s complement of 10 is 2
8
 – 10 = 256 – 10 = 246. 

The two‟s complement of a number acts the same as a negative number would, in fixed-length binary 

addition and subtraction. 

For example, 10 + (10) = 0 is equivalent to 10 + 246 = 256, since in an 8-bit addition, the result (256) 

overflows, giving an 8-bit result of 0. 

Similarly, 10 + (9) = 1 is equivalent to 10 + 247 = 257, which overflows, giving an 8-bit result of 1. 

And 10 + (11) = 1 is equivalent to 10 + 245 = 255, which is the two‟s complement of 1. 

Thus, two‟s complement is normally used to represent negative numbers in binary integer arithmetic, 

because addition and subtraction continue to work the same way.  The only thing that needs to change is how 

the numbers being added or subtracted, and the results, are interpreted. 

For unsigned quantities, the range of values for an n-bit number is from 0 to 2
n
1. 

For signed quantities, the range is from 2
n-1

 to 2
n-1
1. 

For example, 8-bit signed numbers range from 128 to 127. 



© Gooligum Electronics 2010  www.gooligum.com.au 

Baseline PIC Assembler, Lesson 11: Integer Arithmetic and Arrays Page 4 

The usual method used to calculate the two‟s complement of a number is to take the ones‟ complement (flip 

all the bits) and then add one. 

This method is used in the 16-bit negate routine provided in AN526: 

neg_A   comf    a,f        ; negate a ( -a -> a ) 

        incf    a,f 

        btfsc   STATUS,Z 

        decf    a+1,f 

        comf    a+1,f 

 

There is a new instruction here: „comf f,d‟ – “complement register file”, which calculates the ones‟ 

complement of register „f‟, placing the result back into the register if the destination is „,f‟, or in W if the 

destination is „,w‟. 

 

One reason you may wish to negate a number is to display it, if it is negative. 

To test whether a two‟s complement signed number is negative, check its most significant bit, which acts as 

a sign bit: „1‟ indicates a negative number, „0‟ indicates non-negative (positive or zero). 

Unsigned multiplication 

It may seem that the baseline PICs have no multiplication or division instructions, but that‟s not quite true: 

the “rotate left” instruction (rlf) can be used to shift the contents of a register one bit to the left, which has 

the effect of multiplying it by two: 

Since the rlf instruction rotates bit 7 into the carry bit, 

and carry into bit 0, these instructions can be cascaded, 

allowing arbitrarily long numbers to be shifted left, and 

hence multiplied by two. 

For example, to multiply the contents of 16-bit variable “a” by two, assuming little-endian byte ordering: 

        ; left-shift 'a' (multiply by 2) 

        bcf     STATUS,C        ; clear carry 

        rlf     a,f             ; left shift LSB 

        rlf     a+1,f           ; then MSB (LSB<7> -> MSB<0> via carry) 

 

[Although we won‟t consider division here (see AN526 for details), a similar sequence of “rotate right” 

instructions (rrf) can be used to shift an arbitrarily long number to the right, dividing it by two.] 

You can see, then, that it is quite straightforward to multiply an arbitrarily long number by two.  Indeed, by 

repeating the shift operation, multiplying or dividing by any power of two is easy to implement. 

But that doesn‟t help us if we want to multiply by anything other than a power of two – or does it?  

Remember that every integer is composed of powers of two; that is how binary notation works 

For example, the binary representation of 100 is 01100100 – the „1‟s in the binary number corresponding to 

powers of two: 

100 = 64 + 32 + 4 = 2
6
 + 2

5
 + 2

2
. 

Thus, 100 × N = (2
6
 + 2

5
 + 2

2
) × N = 2

6
 × N + 2

5
 × N + 2

2
 × N 

In this way, multiplication by any integer can be broken down into a series of multiplications by powers of 

two (repeated left shifts) and additions. 

The general multiplication algorithm, then, consists of a series of shifts and additions, an addition being 

performed for each „1‟ bit in the multiplier, indicating a power of two that has to be added. 

See AN526 for a flowchart illustrating the process. 

register bits 

C 7 6 5 4 3 2 1 0 
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Here is the 8-bit unsigned multiplication routine from AN526: 

; Variables: 

;   mulcnd - 8 bit multiplicand 

;   mulplr - 8 bit multiplier 

;   H_byte - High byte of the 16 bit result 

;   L_byte - Low byte of the 16 bit result 

;   count  - loop counter 

; 

; ***************************** Begin Multiplier Routine 

mpy_S   clrf    H_byte          ; start with result = 0 

        clrf    L_byte 

        movlw   8               ;   count = 8 

        movwf   count 

        movf    mulcnd,w        ;   multiplicand in W 

        bcf     STATUS,C        ;   and carry clear 

loop    rrf     mulplr,f        ; right shift multiplier 

        btfsc   STATUS,C        ; if low-order bit of multiplier was set 

        addwf   H_byte,f        ;   add multiplicand to MSB of result 

        rrf     H_byte,f        ; right shift result 

        rrf     L_byte,f 

        decfsz  count,f         ; repeat for all 8 bits 

        goto    loop 

 

It may seem strange that rrf is being used here, instead of rlf.  This is because the multiplicand is being 

added to the MSB of the result, before being right shifted.  The multiplier is processed starting from bit 0.  

Suppose that bit 0 of the multiplier is a „1‟.  The multiplicand will be added to the MSB of the result in the 

first loop iteration.  After all eight iterations, it will have been shifted down (right) into the LSB.  Subsequent 

multiplicand additions, corresponding to higher multiplier bits, won‟t be shifted down as far, so their 

contribution to the final result is higher.  You may need to work an example on paper to see how it works… 

Example 1: Light meter with decimal output 

Lesson 10 included a simple light meter based on a light-dependent resistor, which displayed the 8-bit ADC 

output as a two-digit hexadecimal number, using 7-segement LED displays, as shown below: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_10.pdf
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That‟s adequate for demonstrating the operation of the ADC module, but it‟s not a very good light meter.  

Most people would find it easier to read the display if it was in decimal, not hex, with a scale from 0 – 99 

instead of 0 – FFh. 

 

To scale the ADC output from 0 – 255 to 0 – 99, it has to be multiplied by 99/255. 

Multiplying by 99 isn‟t difficult, but dividing by 255 is. 

The task is made much easier by using an approximation: instead of multiplying by 99/255, multiply by 

100/256.  That‟s a difference of 0.6%; not really significant, given that the ADC is only accurate to 2 lsb 

(2/256, or 0.8%) in any case. 

 

Dividing by 256 is trivial – to divide a 16-bit number by 256, the result is already there – it‟s simply the most 

significant byte, with the LSB being the remainder.  That gives a result which is always rounded down; if 

you want to round “correctly”, increment the result if the LSB is greater than 127 (LSB<7> = 1) .  For 

example: 

; Variables: 

;   a = 16-bit value (little endian) 

;   b = a / 256 (rounded)  

        movf    a+1,w           ; result = MSB 

        btfsc   a,7             ; if LSB<7> = 1 

        incf    a+1,w           ;   result = MSB+1 

        movwf   b               ; write result 

 

Note that, if MSB = 255 and LSB > 127, the result will “round” to zero; probably not what you want. 

And in this example, since we‟re scaling the output to 0 – 99, we wouldn‟t want to round the result up to 

100, since it couldn‟t be displayed in two digits.  We could check for that case and handle it, but it‟s easiest 

to simply ignore rounding, and that‟s valid, because the numbers displays on the light meter don‟t 

correspond to any “real” units, such as lumens, which would need to be accurately measured.  In other 

words, the display is in arbitrary units; regardless of the rounding, it will display higher numbers in brighter 

light, and that‟s all we‟re trying to do. 

 

To multiply the raw ADC result by 100, we can adapt the routine from AN526: 

        ; scale to 0-99: adc_dec = adc_out * 100 

        ;   -> MSB of adc_dec = adc_out * 100 / 256 

        clrf    adc_dec         ; start with adc_dec = 0 

        clrf    adc_dec+1 

        movlw   .8              ;   count = 8 

        movwf   mpy_cnt 

        movlw   .100            ;   multiplicand (100) in W 

        bcf     STATUS,C        ;   and carry clear 

l_mpy   rrf     adc_out,f       ; right shift multiplier 

        btfsc   STATUS,C        ; if low-order bit of multiplier was set 

        addwf   adc_dec+1,f     ;   add multiplicand (100) to MSB of result 

        rrf     adc_dec+1,f     ; right shift result 

        rrf     adc_dec,f 

        decfsz  mpy_cnt,f       ; repeat for all 8 bits 

        goto    l_mpy 

 

The 16-bit variable „adc_dec‟ now holds the raw ADC result multiplied by 100. 

This means that most significant byte of „adc_dec‟ (the value stored in the memory location 

„adc_dec+1‟) is equal to the raw ADC result × 100/256. 
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After scaling the ADC result, we need to extract the “tens” and “ones” digits from it. 

That can be done by repeated subtraction; the “tens” digit is determined by continually subtracting 10 from 

the original value, counting the subtractions until the remainder is less than 10.  The “ones” digit is then 

simply the remainder: 

        ; extract digits of result 

        movf    adc_dec+1,w     ; start with scaled result 

        movwf   ones            ;   in ones digit 

        clrf    tens            ; and tens clear 

l_bcd   movlw   .10             ; subtract 10 from ones 

        subwf   ones,w 

        btfss   STATUS,C        ; (finish if < 10) 

        goto    end_bcd 

        movwf   ones  

        incf    tens,f          ; increment tens 

        goto    l_bcd           ; repeat until ones < 10 

end_bcd 

 

The „ones‟ and „tens‟ variables now hold the two digits to be displayed. 

 

Complete program 

The rest of the program is essentially the same as the hexadecimal-output example from lesson 10.  Here is 

how the scaling and digit extraction routines, presented above, fit in: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 11, example 1                                * 

;                                                                       * 

;   Displays ADC output in decimal on 2x7-segment LED display           * 

;                                                                       * 

;   Continuously samples analog input, scales result to 0 - 99          * 

;   and displays as 2 x dec digits on multiplexed 7-seg displays        * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       AN0         = voltage to be measured (e.g. pot or LDR)          * 

;       RB5, RC0-5  = 7-segment display bus (common cathode)            * 

;       RB4         = tens enable (active high)                         * 

;       RB1         = ones enable                                       * 

;                                                                       * 

;************************************************************************ 

 

    list        p=16F506  

    #include    <p16F506.inc> 

 

    radix       dec 

 

 

;***** CONFIGURATION 

                ; ext reset, no code protect, no watchdog, 4MHz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF & _IOSCFS_OFF & _IntRC_OSC_RB4EN 

 

; pin assignments 

    #define TENS_EN     PORTB,4     ; tens enable 

    #define ONES_EN     PORTB,1     ; ones enable 

 

 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_10.pdf
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;***** VARIABLE DEFINITIONS 

VARS1   UDATA 

adc_out res 1                   ; raw ADC output 

adc_dec res 2                   ; scaled ADC output (LE 16 bit, 0-99 in MSB) 

mpy_cnt res 1                   ; multiplier count 

                                ; digits to be displayed: 

tens    res 1                   ;   tens 

ones    res 1                   ;   ones 

digit   res 1                   ; (temp storage used by set7seg) 

 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; update OSCCAL with factory cal value  

        pagesel start 

        goto    start           ; jump to main program 

 

;***** SUBROUTINE VECTORS 

set7seg                         ; display digit on 7-segment display 

        pagesel set7seg_R        

        goto    set7seg_R 

 

 

;***** MAIN PROGRAM ***************************************************** 

MAIN    CODE 

 

;***** Initialisation 

start    

        ; configure ports    

        clrw                    ; configure PORTB and PORTC as all outputs 

        tris    PORTB 

        tris    PORTC 

        clrf    CM1CON0         ; disable Comparator 1 (RB0, RB1, RB2 usable) 

        clrf    CM2CON0         ; disable Comparator 2 (RC0, RC1, RC4 usable) 

        clrf    VRCON           ; disable CVref (RC2 usable) 

        ; configure ADC 

        movlw   b'10110001' 

                ; 10------        AN0, AN2 analog (ANS = 10) 

                ; --11----        clock = INTOSC/4 (ADCS = 11) 

                ; ----00--        select channel AN0 (CHS = 00) 

                ; -------1        turn ADC on (ADON = 1) 

        movwf   ADCON0     

        ; configure timer 

        movlw   b'11010111'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) -> RC5 usable 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----111          prescale = 256 (PS = 111)             

        option                  ;   -> increment every 256 us         

                                ;      (TMR0<2> cycles every 2.048ms) 

 

 

;***** Main loop 

main_loop 

        ; sample input 

        bsf     ADCON0,GO       ; start conversion 

w_adc   btfsc   ADCON0,NOT_DONE ; wait until conversion complete 

        goto    w_adc 

        movf    ADRES,w         ; save ADC result 

        banksel adc_out 

        movwf   adc_out 
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        ; scale to 0-99: adc_dec = adc_out * 100 

        ;   -> MSB of adc_dec = adc_out * 100 / 256 

        clrf    adc_dec         ; start with adc_dec = 0 

        clrf    adc_dec+1 

        movlw   .8              ;   count = 8 

        movwf   mpy_cnt 

        movlw   .100            ;   multiplicand (100) in W 

        bcf     STATUS,C        ;   and carry clear 

l_mpy   rrf     adc_out,f       ; right shift multiplier 

        btfsc   STATUS,C        ; if low-order bit of multiplier was set 

        addwf   adc_dec+1,f     ;   add multiplicand (100) to MSB of result 

        rrf     adc_dec+1,f     ; right shift result 

        rrf     adc_dec,f 

        decfsz  mpy_cnt,f       ; repeat for all 8 bits 

        goto    l_mpy 

 

        ; extract digits of result 

        movf    adc_dec+1,w     ; start with scaled result 

        movwf   ones            ;   in ones digit 

        clrf    tens            ; and tens clear 

l_bcd   movlw   .10             ; subtract 10 from ones 

        subwf   ones,w 

        btfss   STATUS,C        ; (finish if < 10) 

        goto    end_bcd 

        movwf   ones  

        incf    tens,f          ; increment tens 

        goto    l_bcd           ; repeat until ones < 10 

end_bcd 

 

        ; display tens digit for 2.048ms 

w10_hi  btfss   TMR0,2          ; wait for TMR0<2> to go high 

        goto    w10_hi 

        movf    tens,w          ; output tens digit 

        pagesel set7seg 

        call    set7seg  

        pagesel $    

        bsf     TENS_EN         ; enable "tens" display 

w10_lo  btfsc   TMR0,2          ; wait for TMR<2> to go low 

        goto    w10_lo 

 

        ; display ones digit for 2.048ms 

w1_hi   btfss   TMR0,2          ; wait for TMR0<2> to go high 

        goto    w1_hi 

        banksel ones            ; output ones digit 

        movf    ones,w 

        pagesel set7seg 

        call    set7seg   

        pagesel $     

        bsf     ONES_EN         ; enable ones display 

w1_lo   btfsc   TMR0,2          ; wait for TMR<2> to go low 

        goto    w1_lo 

 

        ; repeat forever 

        goto    main_loop 

 

 

;***** LOOKUP TABLES **************************************************** 

TABLES  CODE    0x200           ; locate at beginning of a page 

 

; Lookup pattern for 7 segment display on port B 

; RB5 = G 
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get7sB  addwf   PCL,f 

        retlw   b'000000'       ; 0 

        retlw   b'000000'       ; 1 

        retlw   b'100000'       ; 2 

        retlw   b'100000'       ; 3 

        retlw   b'100000'       ; 4 

        retlw   b'100000'       ; 5 

        retlw   b'100000'       ; 6 

        retlw   b'000000'       ; 7 

        retlw   b'100000'       ; 8 

        retlw   b'100000'       ; 9 

 

; Lookup pattern for 7 segment display on port C 

; RC5:0 = ABCDEF  

get7sC  addwf   PCL,f 

        retlw   b'111111'       ; 0 

        retlw   b'011000'       ; 1 

        retlw   b'110110'       ; 2 

        retlw   b'111100'       ; 3 

        retlw   b'011001'       ; 4 

        retlw   b'101101'       ; 5 

        retlw   b'101111'       ; 6 

        retlw   b'111000'       ; 7 

        retlw   b'111111'       ; 8 

        retlw   b'111101'       ; 9 

 

; Display digit passed in W on 7-segment display 

set7seg_R 

        banksel digit 

        movwf   digit           ; save digit 

        call    get7sB          ; lookup pattern for port B 

        movwf   PORTB           ;   then output it 

        movf    digit,w         ; get digit  

        call    get7sC          ;   then repeat for port C 

        movwf   PORTC 

        retlw   0 

 

 

        END 

 

Moving Averages, Indirect Addressing and Arrays 

Moving averages 

We saw in lesson 10 that a problem with the light meter, as developed so far, is that the display can become 

unreadable in fluorescent light, because fluorescent lights flicker (too fast for the human eye to notice), and 

since the meter reacts very quickly (244 samples per second), the display changes too fast to follow. 

One solution would be to reduce the sampling rate, to say one sample per second, so that the changes become 

slow enough for a human to see.  But that‟s not a good solution; the display would still jitter significantly, 

since some samples would be taken when the illumination was high and others when it was low. 

Instead of using a single raw sample, it is often better to smooth the results by implementing a filter based on 

a number of samples over time (a time series).  Many filter algorithms exist, with various characteristics. 

One that is particularly easy to implement is the simple moving average, also known as a box filter.  This is 

simply the mean value of the last N samples.  It is important to average enough samples to produce a smooth 

result, and to maintain a fast response time, a new average should be calculated every time a new sample is 

read.  For example, you could keep the last ten samples, and then to calculate the simple moving average by 

adding all the sample values and then dividing by ten.  Whenever a new sample is read, it is added to the list, 

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_10.pdf
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the oldest sample is discarded, and the calculation is repeated.  In fact, it is not necessary to repeat all the 

additions; it is only necessary to subtract the oldest value (the sample being discarded) and to add the new 

sample value. 

Sometimes it makes more sense to give additional weight to more recent samples, so that the moving average 

more closely tracks the most recent input.  A number of forms of weighting can be used, including arithmetic 

and exponential, which require more calculation.  But a simple moving average is sufficient for our purpose 

here. 

Indirect addressing and arrays 

The section above on moving averages referred to a list of samples, but normally this would be described as 

an array. 

An array is a contiguous set of variables which can be accessed through a numeric index. 

For example, to calculate an average in C, you might write something like: 

int s[10];      /* array of samples */ 

int avg;        /* sample average */ 

int i; 

 

avg = 0;                    

for (i = 0; i < 10; i++)    /* add all the samples */ 

    avg = avg + s[i]; 

avg = avg / 10;             /* divide by 10 to calculate average */ 

 

But how could we do that in PIC assembler? 

You could define a series of variables: s0, s1, s2, … , s9, but there is then no way to add them in a loop, since 

each variable would have to be referred to by its own block of code.  That would make for a long, and 

difficult to maintain program. 

There is of course a way: the baseline PICs support indirect addressing (making array indexing possible), 

through the FSR and INDF registers. 

 

The INDF (indirect file) “register” acts as a window, through which the contents of any register can be 

accessed. 

The FSR (file select register) holds the address of the register which will be accessed through INDF. 

 

For example, if FSR = 08h, INDF accesses the register at address 08h, which is CM1CON0 on the 

PIC16F506.  So, on the PIC16F506, if FSR = 08h, reading or writing INDF is the same as reading or writing 

CM1CON0. 

Recall that the bank selection bits form the upper bits of the FSR register. 

When you write a value into FSR, INDF will access the register at the address given by that value, 

irrespective of banking.  That is, indirect addressing allows linear, un-banked access to the register file. 

For example, if FSR = 54h, INDF will access the register at address 54h; this happens to be in bank 2, but 

that‟s not a consideration when using indirect addressing. 

Note: When FSR is updated for indirect register access, the bank selection bits will be overwritten. 
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The PIC12F510/16F506 data sheet includes the following code to clear registers 10h – 1Fh: 

        movlw   0x10      ; initialize pointer to RAM 

        movwf   FSR   

next    clrf    INDF      ; indirectly clear register (pointed to by FSR) 

        incf    FSR,f     ; inc pointer 

        btfsc   FSR,4     ; all done? 

        goto    next      ; NO, clear next 

continue 

                          ; YES, continue 

 

The „clrf INDF‟ instruction clears the register pointed to by FSR, which is incremented from 10h to 1Fh. 

Note that at the test at the end of the loop, „btfsc FSR,4‟, finishes the loop when the end of bank 0 (1Fh) 

has been reached.  In fact, this test can be used for the end of any bank, not just bank 0. 

Example 2: Light meter with smoothed decimal output 

To effectively smooth the light meter‟s output, so that it doesn‟t jitter under fluorescent lighting, a simple 

moving average is quite adequate – assuming that the sample window (the time that samples are averaged 

over) is longer than the variations to be smoothed. 

The electricity supply, and hence the output of most A/C lighting, cycles at 50 or 60 Hz in most places.  A 50 

Hz cycle is 20 ms long, so the sample window needs to be longer than that.  The light meter program we 

developed above samples every 4 ms, so at least five samples need to be averaged (5 x 4 ms = 20 ms) to 

smooth a 50 Hz cycle.  But a longer window would be better; two or three times the cycle time would ensure 

that cyclic variations are smoothed out. 

We have seen that the data memory on any baseline PIC with multiple data memory banks is not contiguous.  

The 16F506 has four banked 16-byte general purpose register (GPR) regions (the “top half” of each of the 

four banks), plus one 3-byte non-banked (or shared) GPR region.  Thus, the largest contiguous block of 

memory that can be allocated on the 16F506 is 16 bytes. Arrays need to be contiguous, so the largest single 

array we can define is 16 bytes – which happens to be a good size for the sample array (or buffer) for this 

application. 

 

Since each data section has to fit within a single data memory region, and the largest available data memory 

region on a PIC16F506 is 16 bytes, if you try something like: 

        UDATA 

adc_dec res 2                   ; scaled ADC output (LE 16 bit, 0-99 in MSB) 

mpy_cnt res 1                   ; multiplier count 

smp_buf res 16                  ; array of samples for moving average 

 

you will get a “'.udata' can not fit the section” error from the linker, because we have tried to 

reserve a total of 19 bytes in a single UDATA section.  Unnamed UDATA sections are given the default name 

„.udata‟, so the error message is telling us that this section, which is named „.udata‟, is too big. 

 

So we need to split the variable definitions into two (or more) UDATA sections, with no more than 16 bytes 

in each section.  To declare more than one UDATA section, they have to have different names, for example: 

VARS1   UDATA 

adc_dec res 2                   ; scaled ADC output (LE 16 bit, 0-99 in MSB) 

mpy_cnt res 1                   ; multiplier count 

 

ARRAY1  UDATA 

smp_buf res 16                  ; array of samples for moving average 
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Although we don‟t know which bank the array will be placed in, we do know that it will fill the whole of one 

of the 16-byte banked GPR memory regions, forming the top half of whichever bank it is in. 

That means that to clear the array, we can adapt the code from the data sheet: 

        ; clear sample buffer 

        movlw   smp_buf 

        movwf   FSR 

l_clr   clrf    INDF            ; clear each byte 

        incf    FSR,f 

        btfsc   FSR,4           ; until end of bank is reached 

        goto    l_clr 

 

This approach wouldn‟t work if the array was any smaller than 16 bytes, in which case we would need to use 

a subtraction or XOR to test for FSR reaching the end of the array. 

 

Since the 16-byte array uses all the banked data space in one bank, there is no additional room in that bank to 

store any other variables we may need to access while working with the array, such as the running total of 

sample values in the array.  In the baseline architecture, accessing variables in other banks is very awkward 

when using indirect memory access, because selecting another bank means changing FSR, which is being 

used to access the array. 

To reduce the number of bank selection changes necessary, and the need to save/restore FSR after each one, 

it makes sense to place variables associated with the array in shared memory, wherever possible. 

For example: 

SHR1    UDATA_SHR 

adc_sum res 2                   ; sum of samples (LE 16-bit), for average 

adc_avg res 1                   ; average ADC output 

 

It was ok to work directly with FSR in the “clear sample buffer” loop above, since it is short and no bank 

selection occurs within it.  But it‟s not practical to remove the need for banking altogether throughout the 

sampling loop, where we read a sample, update the moving average calculation, scale the result, convert it to 

decimal and then display it, before moving on to the next sample.  So we need to save the pointer to the 

“current” sample in a variable („smp_idx‟) which will not be overwritten when a bank is selected. 

 

Updating and calculating the total of the samples (stored in a 16-bit variable called „adc_sum‟) is done as 

follows: 

        banksel smp_idx 

        movf    smp_idx,w       ; set FSR to current sample buffer index 

        movwf   FSR 

        movf    INDF,w          ; subtract old sample from running total 

        subwf   adc_sum,f 

        btfss   STATUS,C 

        decf    adc_sum+1,f 

        movf    ADRES,w         ; save new sample (ADC result) 

        movwf   INDF 

        addwf   adc_sum,f       ; and add to running total 

        btfsc   STATUS,C 

        incf    adc_sum+1,f 

 

This total then has to be divided by 16 (the number of samples) to give the moving average. 

As we‟ve seen, dividing by any power of two can be simply done through a series of right-shifts.  In this 

case, since we need to keep „adc_sum‟ intact from one loop iteration to the next (to maintain the running 

total), we would need to take a copy of it and right-shift the copy four times (to divide by 16).  Since 
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„adc_sum‟ is a 16-bit quantity, both the MSB and LSB would have to be right-shifted, so we‟d need eight 

right-shifts in total, plus a few instructions to copy „adc_sum‟ – around a dozen instructions in total. 

But since we need to right-shift by four bits, and the swapf instruction swaps the nybbles (four bits) in a 

byte, shifting the upper nybble right by four bits, we can use it to divide by 16 more efficiently. 

Suppose the running total in „adc_sum‟ is 0ABCh.  (The upper nybble will always be zero because the 

result of adding 16 eight-bit numbers is a twelve-bit number; the sum can never be more than 0FFFh). 

The result we want (0ABCh divided by 16, or right-shifted four times) is ABh. 

Swapping the nybbles in the LSB gives CBh.  Next we need to clear the high nybble to remove the „C‟, 

which as we saw in lesson 8, can be done through a masking operation, using AND, leaving 0Bh. 

Swapping the nybbles in the MSB gives A0h. 

Finally we need to combine the upper nybble in the MSB (A0h) with the lower nybble in the LSB (0Bh).  

This can be done with an inclusive-or, since any bit ORed with „0‟ remains unchanged, while any bit ORed 

with „1‟ is set to „1‟.  That is: 

 n OR 0 = n 

 n OR 1 = 1 

So, for example, A0h OR 0Bh = ABh.  (In binary, 1010 0000 OR 0000 1011 = 1010 1011.) 

The baseline PICs provide two “inclusive-or” instructions: 

 iorwf – “inclusive-or W with register file” 

 iorlw – “inclusive-or literal with W” 

These are used in the same way as the exclusive-or instructions we‟ve seen before. 

For completeness, the baseline PICs provide one more logic instruction we haven‟t covered so far: 

 andwf – “and W with register file” 

 

We can use „swapf‟ to rearrange the nybbles, „andlw‟ to mask off the unwanted nybble, and „iorwf‟ to 

combine the bytes, creating an efficient “divide by 16” routine, as follows: 

        swapf   adc_sum,w       ; divide total by 16 

        andlw   0x0F 

        movwf   adc_avg 

        swapf   adc_sum+1,w 

        iorwf   adc_avg,f 

 

The result is the moving average, which can be scaled, converted to decimal and displayed as before. 

 

Complete program 

Here is the complete “light meter with smoothed decimal display” program, showing how all these parts fit 

together: 

;************************************************************************ 

;                                                                       * 

;   Description:    Lesson 11, example 2                                * 

;                                                                       * 

;   Demonstrates use of indirect addressing                             * 

;   to implement a simple moving average filter                         * 

;                                                                       * 

;   Displays ADC output in decimal on 2x7-segment LED display           * 

;                                                                       * 
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;   Continuously samples analog input, averages last 16 samples,        * 

;   scales result to 0 - 99 and displays as 2 x dec digits              * 

;   on multiplexed 7-seg displays                                       * 

;                                                                       * 

;************************************************************************ 

;                                                                       * 

;   Pin assignments:                                                    * 

;       AN0         = voltage to be measured (e.g. pot or LDR)          * 

;       RB5, RC0-5  = 7-segment display bus (common cathode)            * 

;       RB4         = tens enable (active high)                         * 

;       RB1         = ones enable                                       * 

;                                                                       * 

;************************************************************************ 

 

    list        p=16F506  

    #include    <p16F506.inc> 

 

    radix       dec 

 

 

;***** CONFIGURATION 

                ; ext reset, no code protect, no watchdog, 4MHz int clock 

    __CONFIG    _MCLRE_ON & _CP_OFF & _WDT_OFF & _IOSCFS_OFF & _IntRC_OSC_RB4EN 

 

; pin assignments 

    #define TENS_EN     PORTB,4     ; tens enable 

    #define ONES_EN     PORTB,1     ; ones enable 

 

 

;***** VARIABLE DEFINITIONS 

VARS1   UDATA 

adc_dec res 2                   ; scaled ADC output (LE 16 bit, 0-99 in MSB) 

mpy_cnt res 1                   ; multiplier count 

smp_idx res 1                   ; index into sample array 

                                ; digits to be displayed: 

tens    res 1                   ;   tens 

ones    res 1                   ;   ones 

digit   res 1                   ; (temp storage used by set7seg) 

 

ARRAY1  UDATA 

smp_buf res 16                  ; array of samples for moving average 

 

SHR1    UDATA_SHR 

adc_sum res 2                   ; sum of samples (LE 16-bit), for average 

adc_avg res 1                   ; average ADC output 

 

 

;***** RESET VECTOR ***************************************************** 

RESET   CODE    0x000           ; effective reset vector 

        movwf   OSCCAL          ; update OSCCAL with factory cal value  

        pagesel start 

        goto    start           ; jump to main program 

 

;***** SUBROUTINE VECTORS 

set7seg                         ; display digit on 7-segment display 

        pagesel set7seg_R        

        goto    set7seg_R 

 

 

;***** MAIN PROGRAM ***************************************************** 

MAIN    CODE 
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;***** Initialisation 

start    

        ; configure ports  

        clrw                    ; configure PORTB and PORTC as all outputs 

        tris    PORTB 

        tris    PORTC 

        clrf    CM1CON0         ; disable Comparator 1 (RB0, RB1, RB2 usable) 

        clrf    CM2CON0         ; disable Comparator 2 (RC0, RC1, RC4 usable) 

        clrf    VRCON           ; disable CVref (RC2 usable) 

        ; configure ADC 

        movlw   b'10110001' 

                ; 10------        AN0, AN2 analog (ANS = 10) 

                ; --11----        clock = INTOSC/4 (ADCS = 11) 

                ; ----00--        select channel AN0 (CHS = 00) 

                ; -------1        turn ADC on (ADON = 1) 

        movwf   ADCON0     

        ; configure timer 

        movlw   b'11010111'     ; configure Timer0: 

                ; --0-----          timer mode (T0CS = 0) -> RC5 usable 

                ; ----0---          prescaler assigned to Timer0 (PSA = 0) 

                ; -----111          prescale = 256 (PS = 111)             

        option                  ;   -> increment every 256 us         

                                ;      (TMR0<2> cycles every 2.048ms) 

 

        ; clear variables 

        clrf    adc_sum         ; sample buffer total = 0 

        clrf    adc_sum+1 

 

        ; clear sample buffer 

        movlw   smp_buf 

        movwf   FSR 

l_clr   clrf    INDF            ; clear each byte 

        incf    FSR,f 

        btfsc   FSR,4           ; until end of bank is reached 

        goto    l_clr 

 

 

;***** Main loop 

main_loop 

        ; set index to start of sample buffer 

        movlw   smp_buf          

        banksel smp_idx  

        movwf   smp_idx 

 

; *** repeat for each sample in buffer 

l_smp_buf    

 

        ; sample input 

        bsf     ADCON0,GO       ; start conversion 

w_adc   btfsc   ADCON0,NOT_DONE ; wait until conversion complete 

        goto    w_adc 

 

        ; calculate moving average 

        banksel smp_idx 

        movf    smp_idx,w       ; set FSR to current sample buffer index 

        movwf   FSR 

        movf    INDF,w          ; subtract old sample from running total 

        subwf   adc_sum,f 

        btfss   STATUS,C 

        decf    adc_sum+1,f 

        movf    ADRES,w         ; save new sample (ADC result) 
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        movwf   INDF 

        addwf   adc_sum,f       ; and add to running total 

        btfsc   STATUS,C 

        incf    adc_sum+1,f 

        swapf   adc_sum,w       ; divide total by 16 

        andlw   0x0F 

        movwf   adc_avg 

        swapf   adc_sum+1,w 

        iorwf   adc_avg,f 

 

        ; scale to 0-99: adc_dec = adc_avg * 100 

        ;   -> MSB of adc_dec = adc_avg * 100 / 256 

        banksel adc_dec 

        clrf    adc_dec         ; start with adc_dec = 0 

        clrf    adc_dec+1 

        movlw   .8              ;   count = 8 

        movwf   mpy_cnt 

        movlw   .100            ;   multiplicand (100) in W 

        bcf     STATUS,C        ;   and carry clear 

l_mpy   rrf     adc_avg,f       ; right shift multiplier 

        btfsc   STATUS,C        ; if low-order bit of multiplier was set 

        addwf   adc_dec+1,f     ;   add multiplicand (100) to MSB of result 

        rrf     adc_dec+1,f     ; right shift result 

        rrf     adc_dec,f 

        decfsz  mpy_cnt,f       ; repeat for all 8 bits 

        goto    l_mpy 

 

        ; extract digits of result 

        movf    adc_dec+1,w     ; start with scaled result 

        movwf   ones            ;   in ones digit 

        clrf    tens            ; and tens clear 

l_bcd   movlw   .10             ; subtract 10 from ones 

        subwf   ones,w 

        btfss   STATUS,C        ; (finish if < 10) 

        goto    end_bcd 

        movwf   ones  

        incf    tens,f          ; increment tens 

        goto    l_bcd           ; repeat until ones < 10 

end_bcd 

 

        ; display tens digit for 2.048ms 

w10_hi  btfss   TMR0,2          ; wait for TMR0<2> to go high 

        goto    w10_hi 

        movf    tens,w          ; output tens digit 

        pagesel set7seg 

        call    set7seg  

        pagesel $    

        bsf     TENS_EN         ; enable "tens" display 

w10_lo  btfsc   TMR0,2          ; wait for TMR<2> to go low 

        goto    w10_lo 

 

        ; display ones digit for 2.048ms 

w1_hi   btfss   TMR0,2          ; wait for TMR0<2> to go high 

        goto    w1_hi 

        banksel ones            ; output ones digit 

        movf    ones,w 

        pagesel set7seg 

        call    set7seg   

        pagesel $     

        bsf     ONES_EN         ; enable ones display 

w1_lo   btfsc   TMR0,2          ; wait for TMR<2> to go low 
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        goto    w1_lo 

 

        ; end sample buffer loop 

        banksel smp_idx         ; increment sample buffer index 

        incf    smp_idx,f 

        btfsc   smp_idx,4       ; repeat loop until end of buffer 

        goto    l_smp_buf 

 

        ; repeat main loop forever 

        goto    main_loop 

 

 

;***** LOOKUP TABLES 

TABLES  CODE    0x200           ; locate at beginning of a page 

 

; Lookup pattern for 7 segment display on port B 

; RB5 = G 

get7sB  addwf   PCL,f 

        retlw   b'000000'       ; 0 

        retlw   b'000000'       ; 1 

        retlw   b'100000'       ; 2 

        retlw   b'100000'       ; 3 

        retlw   b'100000'       ; 4 

        retlw   b'100000'       ; 5 

        retlw   b'100000'       ; 6 

        retlw   b'000000'       ; 7 

        retlw   b'100000'       ; 8 

        retlw   b'100000'       ; 9 

 

; Lookup pattern for 7 segment display on port C 

; RC5:0 = ABCDEF  

get7sC  addwf   PCL,f 

        retlw   b'111111'       ; 0 

        retlw   b'011000'       ; 1 

        retlw   b'110110'       ; 2 

        retlw   b'111100'       ; 3 

        retlw   b'011001'       ; 4 

        retlw   b'101101'       ; 5 

        retlw   b'101111'       ; 6 

        retlw   b'111000'       ; 7 

        retlw   b'111111'       ; 8 

        retlw   b'111101'       ; 9 

 

; Display digit passed in W on 7-segment display 

set7seg_R 

        banksel digit 

        movwf   digit           ; save digit 

        call    get7sB          ; lookup pattern for port B 

        movwf   PORTB           ;   then output it 

        movf    digit,w         ; get digit  

        call    get7sC          ;   then repeat for port C 

        movwf   PORTC 

        retlw   0 

 

 

        END 

 

 

You should find that the resulting display is stable, even under fluorescent lighting, and yet still responds 

quickly to changing light levels. 
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This tutorial series has now introduced every baseline PIC instruction and every special function register 

(except those associated with EEPROM access on those few baseline PICs with EEPROMs). 

That concludes our introduction to the baseline PIC architecture and assembly programming. 

 

The material in these lessons is revisited in a tutorial series on programming baseline PICs in C. 

In that series it becomes apparent that some tasks are more easily expressed in C than assembler, especially 

the most recent topic of arithmetic and arrays, but that C can be relatively inefficient.  It is also seen that 

different C compilers take different approaches – with pros and cons that become apparent as the various 

examples are implemented in each. 

 

Now that you have a basic understanding of programming baseline PICs in assembler (and C, if you go 

through the baseline C tutorial series), you may wish to move on to the midrange PIC architecture and 

assembler tutorials, where you will be introduced to the more flexible and capable midrange PIC core, and 

some of its diverse range of peripherals.  These lessons are also followed up by a series on programming 

midrange PICs in C. 

 

Enjoy! 
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