
© Gooligum Electronics 2010 www.gooligum.com.au

Baseline PIC Assembler, Lesson 11: Integer Arithmetic and Arrays Page 1

Introduction to PIC Programming

Baseline Architecture and Assembly Language

by David Meiklejohn, Gooligum Electronics

Lesson 11: Integer Arithmetic and Arrays

In the last lesson, we saw how to read an analog input and display the “raw” result. But in most cases the

raw values aren‟t directly usable; normally they will need to be processed in some way before being

displayed or used in decision making. While advanced signal processing is beyond the capabilities of

baseline and even midrange PICs, this lesson demonstrates that simpler post-processing, such as integer

scaling and implementing simple filters such as a moving average, can be readily accomplished with even

the lowest-end PICs.

This lesson introduces some of the basic integer arithmetic operations. For more complete coverage of this

topic, refer to Microchip‟s application notes AN526: “PIC16C5X / PIC16CXXX Math Utility Routines”, and

AN617: “Fixed Point Routines”, available at www.microchip.com.

We‟ll also see how to use indirect addressing to implement arrays, illustrated by a simple moving average

routine, used to filter noise from an analog signal.

In summary, this lesson covers:

 Multi-byte (including 16-bit and 32-bit) addition and subtraction

 Two‟s complement representation of negative numbers

 8-bit unsigned multiplication

 Using indirect addressing to work with arrays

 Calculating a moving average

Integer Arithmetic

At first sight, the baseline PICs seem to have very limited arithmetic capabilities: just a single 8-bit addition

instruction (addwf) and a single 8-bit subtraction instruction (subwf).

However, addition and subtraction can be extended to arbitrarily large numbers by using the carry flag (C, in

the STATUS register), which indicates when a result cannot be represented in a single 8-bit byte.

The addwf instruction sets the carry flag if the result overflows a single byte, i.e. is greater than 255.

And as explained in lesson 5, the carry flag acts as a “not borrow” in a subtraction: the subwf instruction

clears C to „0‟ if a borrow occurs, i.e. the result is negative.

The carry flag allows us to cascade addition or subtraction operations when working with long numbers.

Multi-byte variables

To store values larger than 8-bits, you need to allocate multiple bytes of memory to each, for example:

 UDATA

a res 2 ; 16-bit variables "a" and "b"

b res 2

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_10.pdf
http://www.microchip.com/
http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_5.pdf

© Gooligum Electronics 2010 www.gooligum.com.au

Baseline PIC Assembler, Lesson 11: Integer Arithmetic and Arrays Page 2

You must then decide how to order the bytes within the variable – whether to place the least significant byte

at the lowest address in the variable (known as little-endian ordering) or the highest (big-endian).

For example, to store the number 0x482C in variable “a”, the bytes 0x48 and 0x2C would be placed in

memory as shown:

Big-endian ordering has the advantage of making values easy to read

in a hex dump, where increasing addresses are presented left to right.

On the other hand, little-endian ordering makes a certain sense,

because increasing addresses store increasingly significant bytes.

Which ordering you chose is entirely up to you; both are valid. This

tutorial uses little-endian ordering, but the important thing is to be consistent.

16-bit addition

The following code adds the contents of the two 16-bit variables, “a” and “b”, so that b = b + a, assuming

little-endian byte ordering:

 movf a,w ; add LSB

 addwf b,f

 btfsc STATUS,C ; increment MSB if carry

 incf b+1,f

 movf a+1,w ; add MSB

 addwf b+1,f

After adding the least significant bytes (LSB‟s), the carry flag is checked, and, if the LSB addition

overflowed, the most significant byte (MSB) of the result is incremented, before the MSB‟s are added.

Multi-byte (including 32-bit) addition

It may appear that this approach would be easily extended to longer numbers by testing the carry after the

final „addwf‟, and incrementing the next MSB of the result if carry was set. But there‟s a problem. What if

the LSB addition overflows, while (b+1) contains $FF? The „incf b+1,f‟ instruction will increment

(b+1) to $00, which should result in a “carry”, but it doesn‟t, since „incf‟ does not affect the carry flag.

By re-ordering the instructions, it is possible to use the „incfsz‟ instruction to neatly avoid this problem:

 movf a,w ; add LSB

 addwf b,f

 movf a+1,w ; get MSB(a)

 btfsc STATUS,C ; if LSB addition overflowed,

 incfsz a+1,w ; increment copy of MSB(a)

 addwf b+1,f ; add to MSB(b), unless MSB(a) is zero

On completion, the carry flag will now be set correctly, allowing longer numbers to be added by repeating

the final four instructions. For example, for a 32-bit add:

 movf a,w ; add byte 0 (LSB)

 addwf b,f

 movf a+1,w ; add byte 1

 btfsc STATUS,C

 incfsz a+1,w

 addwf b+1,f

 movf a+2,w ; add byte 2

 btfsc STATUS,C

 incfsz a+2,w

 addwf b+2,f

 movf a+3,w ; add byte 3 (MSB)

 btfsc STATUS,C

 incfsz a+3,w

 addwf b+3,f

 a a+1

Little-endian 0x2C 0x48

Big-endian 0x48 0x2C

© Gooligum Electronics 2010 www.gooligum.com.au

Baseline PIC Assembler, Lesson 11: Integer Arithmetic and Arrays Page 3

Multi-byte (including 16-bit and 32-bit) subtraction

Long integer subtraction can be done using a very similar approach.

For example, to subtract the contents of the two 16-bit variables, “a” and “b”, so that b = b  a, assuming

little-endian byte ordering:

 movf a,w ; subtract LSB

 subwf b,f

 movf a+1,w ; get MSB(a)

 btfss STATUS,C ; if borrow from LSB subtraction,

 incfsz a+1,w ; increment copy of MSB(a)

 subwf b+1,f ; subtract MSB(b), unless MSB(a) is zero

This approach is readily extended to longer numbers, by repeating the final four instructions.

For example, for a 32-bit subtraction:

 movf a,w ; subtract byte 0 (LSB)

 subwf b,f

 movf a+1,w ; subtract byte 1

 btfss STATUS,C

 incfsz a+1,w

 subwf b+1,f

 movf a+2,w ; subtract byte 2

 btfss STATUS,C

 incfsz a+2,w

 subwf b+2,f

 movf a+3,w ; subtract byte 3 (MSB)

 btfss STATUS,C

 incfsz a+3,w

 subwf b+3,f

Two’s complement

Microchip‟s application note AN526 takes a different approach to subtraction.

Instead of subtracting a number, it is negated (made negative), and then added. That is, b  a = b + (a).

Negating a binary number is also referred to as taking its two’s complement, since the operation is equivalent

to subtracting it from a power of two.

The two‟s complement of an n-bit number, “a”, is given by the formula 2
n
 – a.

For example, the 8-bit two‟s complement of 10 is 2
8
 – 10 = 256 – 10 = 246.

The two‟s complement of a number acts the same as a negative number would, in fixed-length binary

addition and subtraction.

For example, 10 + (10) = 0 is equivalent to 10 + 246 = 256, since in an 8-bit addition, the result (256)

overflows, giving an 8-bit result of 0.

Similarly, 10 + (9) = 1 is equivalent to 10 + 247 = 257, which overflows, giving an 8-bit result of 1.

And 10 + (11) = 1 is equivalent to 10 + 245 = 255, which is the two‟s complement of 1.

Thus, two‟s complement is normally used to represent negative numbers in binary integer arithmetic,

because addition and subtraction continue to work the same way. The only thing that needs to change is how

the numbers being added or subtracted, and the results, are interpreted.

For unsigned quantities, the range of values for an n-bit number is from 0 to 2
n
1.

For signed quantities, the range is from 2
n-1

 to 2
n-1
1.

For example, 8-bit signed numbers range from 128 to 127.

© Gooligum Electronics 2010 www.gooligum.com.au

Baseline PIC Assembler, Lesson 11: Integer Arithmetic and Arrays Page 4

The usual method used to calculate the two‟s complement of a number is to take the ones‟ complement (flip

all the bits) and then add one.

This method is used in the 16-bit negate routine provided in AN526:

neg_A comf a,f ; negate a (-a -> a)

 incf a,f

 btfsc STATUS,Z

 decf a+1,f

 comf a+1,f

There is a new instruction here: „comf f,d‟ – “complement register file”, which calculates the ones‟

complement of register „f‟, placing the result back into the register if the destination is „,f‟, or in W if the

destination is „,w‟.

One reason you may wish to negate a number is to display it, if it is negative.

To test whether a two‟s complement signed number is negative, check its most significant bit, which acts as

a sign bit: „1‟ indicates a negative number, „0‟ indicates non-negative (positive or zero).

Unsigned multiplication

It may seem that the baseline PICs have no multiplication or division instructions, but that‟s not quite true:

the “rotate left” instruction (rlf) can be used to shift the contents of a register one bit to the left, which has

the effect of multiplying it by two:

Since the rlf instruction rotates bit 7 into the carry bit,

and carry into bit 0, these instructions can be cascaded,

allowing arbitrarily long numbers to be shifted left, and

hence multiplied by two.

For example, to multiply the contents of 16-bit variable “a” by two, assuming little-endian byte ordering:

 ; left-shift 'a' (multiply by 2)

 bcf STATUS,C ; clear carry

 rlf a,f ; left shift LSB

 rlf a+1,f ; then MSB (LSB<7> -> MSB<0> via carry)

[Although we won‟t consider division here (see AN526 for details), a similar sequence of “rotate right”

instructions (rrf) can be used to shift an arbitrarily long number to the right, dividing it by two.]

You can see, then, that it is quite straightforward to multiply an arbitrarily long number by two. Indeed, by

repeating the shift operation, multiplying or dividing by any power of two is easy to implement.

But that doesn‟t help us if we want to multiply by anything other than a power of two – or does it?

Remember that every integer is composed of powers of two; that is how binary notation works

For example, the binary representation of 100 is 01100100 – the „1‟s in the binary number corresponding to

powers of two:

100 = 64 + 32 + 4 = 2
6
 + 2

5
 + 2

2
.

Thus, 100 × N = (2
6
 + 2

5
 + 2

2
) × N = 2

6
 × N + 2

5
 × N + 2

2
 × N

In this way, multiplication by any integer can be broken down into a series of multiplications by powers of

two (repeated left shifts) and additions.

The general multiplication algorithm, then, consists of a series of shifts and additions, an addition being

performed for each „1‟ bit in the multiplier, indicating a power of two that has to be added.

See AN526 for a flowchart illustrating the process.

register bits

C 7 6 5 4 3 2 1 0

© Gooligum Electronics 2010 www.gooligum.com.au

Baseline PIC Assembler, Lesson 11: Integer Arithmetic and Arrays Page 5

Here is the 8-bit unsigned multiplication routine from AN526:

; Variables:

; mulcnd - 8 bit multiplicand

; mulplr - 8 bit multiplier

; H_byte - High byte of the 16 bit result

; L_byte - Low byte of the 16 bit result

; count - loop counter

;

; ***************************** Begin Multiplier Routine

mpy_S clrf H_byte ; start with result = 0

 clrf L_byte

 movlw 8 ; count = 8

 movwf count

 movf mulcnd,w ; multiplicand in W

 bcf STATUS,C ; and carry clear

loop rrf mulplr,f ; right shift multiplier

 btfsc STATUS,C ; if low-order bit of multiplier was set

 addwf H_byte,f ; add multiplicand to MSB of result

 rrf H_byte,f ; right shift result

 rrf L_byte,f

 decfsz count,f ; repeat for all 8 bits

 goto loop

It may seem strange that rrf is being used here, instead of rlf. This is because the multiplicand is being

added to the MSB of the result, before being right shifted. The multiplier is processed starting from bit 0.

Suppose that bit 0 of the multiplier is a „1‟. The multiplicand will be added to the MSB of the result in the

first loop iteration. After all eight iterations, it will have been shifted down (right) into the LSB. Subsequent

multiplicand additions, corresponding to higher multiplier bits, won‟t be shifted down as far, so their

contribution to the final result is higher. You may need to work an example on paper to see how it works…

Example 1: Light meter with decimal output

Lesson 10 included a simple light meter based on a light-dependent resistor, which displayed the 8-bit ADC

output as a two-digit hexadecimal number, using 7-segement LED displays, as shown below:

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_10.pdf

© Gooligum Electronics 2010 www.gooligum.com.au

Baseline PIC Assembler, Lesson 11: Integer Arithmetic and Arrays Page 6

That‟s adequate for demonstrating the operation of the ADC module, but it‟s not a very good light meter.

Most people would find it easier to read the display if it was in decimal, not hex, with a scale from 0 – 99

instead of 0 – FFh.

To scale the ADC output from 0 – 255 to 0 – 99, it has to be multiplied by 99/255.

Multiplying by 99 isn‟t difficult, but dividing by 255 is.

The task is made much easier by using an approximation: instead of multiplying by 99/255, multiply by

100/256. That‟s a difference of 0.6%; not really significant, given that the ADC is only accurate to 2 lsb

(2/256, or 0.8%) in any case.

Dividing by 256 is trivial – to divide a 16-bit number by 256, the result is already there – it‟s simply the most

significant byte, with the LSB being the remainder. That gives a result which is always rounded down; if

you want to round “correctly”, increment the result if the LSB is greater than 127 (LSB<7> = 1) . For

example:

; Variables:

; a = 16-bit value (little endian)

; b = a / 256 (rounded)

 movf a+1,w ; result = MSB

 btfsc a,7 ; if LSB<7> = 1

 incf a+1,w ; result = MSB+1

 movwf b ; write result

Note that, if MSB = 255 and LSB > 127, the result will “round” to zero; probably not what you want.

And in this example, since we‟re scaling the output to 0 – 99, we wouldn‟t want to round the result up to

100, since it couldn‟t be displayed in two digits. We could check for that case and handle it, but it‟s easiest

to simply ignore rounding, and that‟s valid, because the numbers displays on the light meter don‟t

correspond to any “real” units, such as lumens, which would need to be accurately measured. In other

words, the display is in arbitrary units; regardless of the rounding, it will display higher numbers in brighter

light, and that‟s all we‟re trying to do.

To multiply the raw ADC result by 100, we can adapt the routine from AN526:

 ; scale to 0-99: adc_dec = adc_out * 100

 ; -> MSB of adc_dec = adc_out * 100 / 256

 clrf adc_dec ; start with adc_dec = 0

 clrf adc_dec+1

 movlw .8 ; count = 8

 movwf mpy_cnt

 movlw .100 ; multiplicand (100) in W

 bcf STATUS,C ; and carry clear

l_mpy rrf adc_out,f ; right shift multiplier

 btfsc STATUS,C ; if low-order bit of multiplier was set

 addwf adc_dec+1,f ; add multiplicand (100) to MSB of result

 rrf adc_dec+1,f ; right shift result

 rrf adc_dec,f

 decfsz mpy_cnt,f ; repeat for all 8 bits

 goto l_mpy

The 16-bit variable „adc_dec‟ now holds the raw ADC result multiplied by 100.

This means that most significant byte of „adc_dec‟ (the value stored in the memory location

„adc_dec+1‟) is equal to the raw ADC result × 100/256.

© Gooligum Electronics 2010 www.gooligum.com.au

Baseline PIC Assembler, Lesson 11: Integer Arithmetic and Arrays Page 7

After scaling the ADC result, we need to extract the “tens” and “ones” digits from it.

That can be done by repeated subtraction; the “tens” digit is determined by continually subtracting 10 from

the original value, counting the subtractions until the remainder is less than 10. The “ones” digit is then

simply the remainder:

 ; extract digits of result

 movf adc_dec+1,w ; start with scaled result

 movwf ones ; in ones digit

 clrf tens ; and tens clear

l_bcd movlw .10 ; subtract 10 from ones

 subwf ones,w

 btfss STATUS,C ; (finish if < 10)

 goto end_bcd

 movwf ones

 incf tens,f ; increment tens

 goto l_bcd ; repeat until ones < 10

end_bcd

The „ones‟ and „tens‟ variables now hold the two digits to be displayed.

Complete program

The rest of the program is essentially the same as the hexadecimal-output example from lesson 10. Here is

how the scaling and digit extraction routines, presented above, fit in:

;**

; *

; Description: Lesson 11, example 1 *

; *

; Displays ADC output in decimal on 2x7-segment LED display *

; *

; Continuously samples analog input, scales result to 0 - 99 *

; and displays as 2 x dec digits on multiplexed 7-seg displays *

; *

;**

; *

; Pin assignments: *

; AN0 = voltage to be measured (e.g. pot or LDR) *

; RB5, RC0-5 = 7-segment display bus (common cathode) *

; RB4 = tens enable (active high) *

; RB1 = ones enable *

; *

;**

 list p=16F506

 #include <p16F506.inc>

 radix dec

;***** CONFIGURATION

 ; ext reset, no code protect, no watchdog, 4MHz int clock

 __CONFIG _MCLRE_ON & _CP_OFF & _WDT_OFF & _IOSCFS_OFF & _IntRC_OSC_RB4EN

; pin assignments

 #define TENS_EN PORTB,4 ; tens enable

 #define ONES_EN PORTB,1 ; ones enable

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_10.pdf

© Gooligum Electronics 2010 www.gooligum.com.au

Baseline PIC Assembler, Lesson 11: Integer Arithmetic and Arrays Page 8

;***** VARIABLE DEFINITIONS

VARS1 UDATA

adc_out res 1 ; raw ADC output

adc_dec res 2 ; scaled ADC output (LE 16 bit, 0-99 in MSB)

mpy_cnt res 1 ; multiplier count

 ; digits to be displayed:

tens res 1 ; tens

ones res 1 ; ones

digit res 1 ; (temp storage used by set7seg)

;***** RESET VECTOR ***

RESET CODE 0x000 ; effective reset vector

 movwf OSCCAL ; update OSCCAL with factory cal value

 pagesel start

 goto start ; jump to main program

;***** SUBROUTINE VECTORS

set7seg ; display digit on 7-segment display

 pagesel set7seg_R

 goto set7seg_R

;***** MAIN PROGRAM ***

MAIN CODE

;***** Initialisation

start

 ; configure ports

 clrw ; configure PORTB and PORTC as all outputs

 tris PORTB

 tris PORTC

 clrf CM1CON0 ; disable Comparator 1 (RB0, RB1, RB2 usable)

 clrf CM2CON0 ; disable Comparator 2 (RC0, RC1, RC4 usable)

 clrf VRCON ; disable CVref (RC2 usable)

 ; configure ADC

 movlw b'10110001'

 ; 10------ AN0, AN2 analog (ANS = 10)

 ; --11---- clock = INTOSC/4 (ADCS = 11)

 ; ----00-- select channel AN0 (CHS = 00)

 ; -------1 turn ADC on (ADON = 1)

 movwf ADCON0

 ; configure timer

 movlw b'11010111' ; configure Timer0:

 ; --0----- timer mode (T0CS = 0) -> RC5 usable

 ; ----0--- prescaler assigned to Timer0 (PSA = 0)

 ; -----111 prescale = 256 (PS = 111)

 option ; -> increment every 256 us

 ; (TMR0<2> cycles every 2.048ms)

;***** Main loop

main_loop

 ; sample input

 bsf ADCON0,GO ; start conversion

w_adc btfsc ADCON0,NOT_DONE ; wait until conversion complete

 goto w_adc

 movf ADRES,w ; save ADC result

 banksel adc_out

 movwf adc_out

© Gooligum Electronics 2010 www.gooligum.com.au

Baseline PIC Assembler, Lesson 11: Integer Arithmetic and Arrays Page 9

 ; scale to 0-99: adc_dec = adc_out * 100

 ; -> MSB of adc_dec = adc_out * 100 / 256

 clrf adc_dec ; start with adc_dec = 0

 clrf adc_dec+1

 movlw .8 ; count = 8

 movwf mpy_cnt

 movlw .100 ; multiplicand (100) in W

 bcf STATUS,C ; and carry clear

l_mpy rrf adc_out,f ; right shift multiplier

 btfsc STATUS,C ; if low-order bit of multiplier was set

 addwf adc_dec+1,f ; add multiplicand (100) to MSB of result

 rrf adc_dec+1,f ; right shift result

 rrf adc_dec,f

 decfsz mpy_cnt,f ; repeat for all 8 bits

 goto l_mpy

 ; extract digits of result

 movf adc_dec+1,w ; start with scaled result

 movwf ones ; in ones digit

 clrf tens ; and tens clear

l_bcd movlw .10 ; subtract 10 from ones

 subwf ones,w

 btfss STATUS,C ; (finish if < 10)

 goto end_bcd

 movwf ones

 incf tens,f ; increment tens

 goto l_bcd ; repeat until ones < 10

end_bcd

 ; display tens digit for 2.048ms

w10_hi btfss TMR0,2 ; wait for TMR0<2> to go high

 goto w10_hi

 movf tens,w ; output tens digit

 pagesel set7seg

 call set7seg

 pagesel $

 bsf TENS_EN ; enable "tens" display

w10_lo btfsc TMR0,2 ; wait for TMR<2> to go low

 goto w10_lo

 ; display ones digit for 2.048ms

w1_hi btfss TMR0,2 ; wait for TMR0<2> to go high

 goto w1_hi

 banksel ones ; output ones digit

 movf ones,w

 pagesel set7seg

 call set7seg

 pagesel $

 bsf ONES_EN ; enable ones display

w1_lo btfsc TMR0,2 ; wait for TMR<2> to go low

 goto w1_lo

 ; repeat forever

 goto main_loop

;***** LOOKUP TABLES **

TABLES CODE 0x200 ; locate at beginning of a page

; Lookup pattern for 7 segment display on port B

; RB5 = G

© Gooligum Electronics 2010 www.gooligum.com.au

Baseline PIC Assembler, Lesson 11: Integer Arithmetic and Arrays Page 10

get7sB addwf PCL,f

 retlw b'000000' ; 0

 retlw b'000000' ; 1

 retlw b'100000' ; 2

 retlw b'100000' ; 3

 retlw b'100000' ; 4

 retlw b'100000' ; 5

 retlw b'100000' ; 6

 retlw b'000000' ; 7

 retlw b'100000' ; 8

 retlw b'100000' ; 9

; Lookup pattern for 7 segment display on port C

; RC5:0 = ABCDEF

get7sC addwf PCL,f

 retlw b'111111' ; 0

 retlw b'011000' ; 1

 retlw b'110110' ; 2

 retlw b'111100' ; 3

 retlw b'011001' ; 4

 retlw b'101101' ; 5

 retlw b'101111' ; 6

 retlw b'111000' ; 7

 retlw b'111111' ; 8

 retlw b'111101' ; 9

; Display digit passed in W on 7-segment display

set7seg_R

 banksel digit

 movwf digit ; save digit

 call get7sB ; lookup pattern for port B

 movwf PORTB ; then output it

 movf digit,w ; get digit

 call get7sC ; then repeat for port C

 movwf PORTC

 retlw 0

 END

Moving Averages, Indirect Addressing and Arrays

Moving averages

We saw in lesson 10 that a problem with the light meter, as developed so far, is that the display can become

unreadable in fluorescent light, because fluorescent lights flicker (too fast for the human eye to notice), and

since the meter reacts very quickly (244 samples per second), the display changes too fast to follow.

One solution would be to reduce the sampling rate, to say one sample per second, so that the changes become

slow enough for a human to see. But that‟s not a good solution; the display would still jitter significantly,

since some samples would be taken when the illumination was high and others when it was low.

Instead of using a single raw sample, it is often better to smooth the results by implementing a filter based on

a number of samples over time (a time series). Many filter algorithms exist, with various characteristics.

One that is particularly easy to implement is the simple moving average, also known as a box filter. This is

simply the mean value of the last N samples. It is important to average enough samples to produce a smooth

result, and to maintain a fast response time, a new average should be calculated every time a new sample is

read. For example, you could keep the last ten samples, and then to calculate the simple moving average by

adding all the sample values and then dividing by ten. Whenever a new sample is read, it is added to the list,

http://www.gooligum.com.au/tutorials/baseline/PIC_Base_A_10.pdf

© Gooligum Electronics 2010 www.gooligum.com.au

Baseline PIC Assembler, Lesson 11: Integer Arithmetic and Arrays Page 11

the oldest sample is discarded, and the calculation is repeated. In fact, it is not necessary to repeat all the

additions; it is only necessary to subtract the oldest value (the sample being discarded) and to add the new

sample value.

Sometimes it makes more sense to give additional weight to more recent samples, so that the moving average

more closely tracks the most recent input. A number of forms of weighting can be used, including arithmetic

and exponential, which require more calculation. But a simple moving average is sufficient for our purpose

here.

Indirect addressing and arrays

The section above on moving averages referred to a list of samples, but normally this would be described as

an array.

An array is a contiguous set of variables which can be accessed through a numeric index.

For example, to calculate an average in C, you might write something like:

int s[10]; /* array of samples */

int avg; /* sample average */

int i;

avg = 0;

for (i = 0; i < 10; i++) /* add all the samples */

 avg = avg + s[i];

avg = avg / 10; /* divide by 10 to calculate average */

But how could we do that in PIC assembler?

You could define a series of variables: s0, s1, s2, … , s9, but there is then no way to add them in a loop, since

each variable would have to be referred to by its own block of code. That would make for a long, and

difficult to maintain program.

There is of course a way: the baseline PICs support indirect addressing (making array indexing possible),

through the FSR and INDF registers.

The INDF (indirect file) “register” acts as a window, through which the contents of any register can be

accessed.

The FSR (file select register) holds the address of the register which will be accessed through INDF.

For example, if FSR = 08h, INDF accesses the register at address 08h, which is CM1CON0 on the

PIC16F506. So, on the PIC16F506, if FSR = 08h, reading or writing INDF is the same as reading or writing

CM1CON0.

Recall that the bank selection bits form the upper bits of the FSR register.

When you write a value into FSR, INDF will access the register at the address given by that value,

irrespective of banking. That is, indirect addressing allows linear, un-banked access to the register file.

For example, if FSR = 54h, INDF will access the register at address 54h; this happens to be in bank 2, but

that‟s not a consideration when using indirect addressing.

Note: When FSR is updated for indirect register access, the bank selection bits will be overwritten.

© Gooligum Electronics 2010 www.gooligum.com.au

Baseline PIC Assembler, Lesson 11: Integer Arithmetic and Arrays Page 12

The PIC12F510/16F506 data sheet includes the following code to clear registers 10h – 1Fh:

 movlw 0x10 ; initialize pointer to RAM

 movwf FSR

next clrf INDF ; indirectly clear register (pointed to by FSR)

 incf FSR,f ; inc pointer

 btfsc FSR,4 ; all done?

 goto next ; NO, clear next

continue

 ; YES, continue

The „clrf INDF‟ instruction clears the register pointed to by FSR, which is incremented from 10h to 1Fh.

Note that at the test at the end of the loop, „btfsc FSR,4‟, finishes the loop when the end of bank 0 (1Fh)

has been reached. In fact, this test can be used for the end of any bank, not just bank 0.

Example 2: Light meter with smoothed decimal output

To effectively smooth the light meter‟s output, so that it doesn‟t jitter under fluorescent lighting, a simple

moving average is quite adequate – assuming that the sample window (the time that samples are averaged

over) is longer than the variations to be smoothed.

The electricity supply, and hence the output of most A/C lighting, cycles at 50 or 60 Hz in most places. A 50

Hz cycle is 20 ms long, so the sample window needs to be longer than that. The light meter program we

developed above samples every 4 ms, so at least five samples need to be averaged (5 x 4 ms = 20 ms) to

smooth a 50 Hz cycle. But a longer window would be better; two or three times the cycle time would ensure

that cyclic variations are smoothed out.

We have seen that the data memory on any baseline PIC with multiple data memory banks is not contiguous.

The 16F506 has four banked 16-byte general purpose register (GPR) regions (the “top half” of each of the

four banks), plus one 3-byte non-banked (or shared) GPR region. Thus, the largest contiguous block of

memory that can be allocated on the 16F506 is 16 bytes. Arrays need to be contiguous, so the largest single

array we can define is 16 bytes – which happens to be a good size for the sample array (or buffer) for this

application.

Since each data section has to fit within a single data memory region, and the largest available data memory

region on a PIC16F506 is 16 bytes, if you try something like:

 UDATA

adc_dec res 2 ; scaled ADC output (LE 16 bit, 0-99 in MSB)

mpy_cnt res 1 ; multiplier count

smp_buf res 16 ; array of samples for moving average

you will get a “'.udata' can not fit the section” error from the linker, because we have tried to

reserve a total of 19 bytes in a single UDATA section. Unnamed UDATA sections are given the default name

„.udata‟, so the error message is telling us that this section, which is named „.udata‟, is too big.

So we need to split the variable definitions into two (or more) UDATA sections, with no more than 16 bytes

in each section. To declare more than one UDATA section, they have to have different names, for example:

VARS1 UDATA

adc_dec res 2 ; scaled ADC output (LE 16 bit, 0-99 in MSB)

mpy_cnt res 1 ; multiplier count

ARRAY1 UDATA

smp_buf res 16 ; array of samples for moving average

© Gooligum Electronics 2010 www.gooligum.com.au

Baseline PIC Assembler, Lesson 11: Integer Arithmetic and Arrays Page 13

Although we don‟t know which bank the array will be placed in, we do know that it will fill the whole of one

of the 16-byte banked GPR memory regions, forming the top half of whichever bank it is in.

That means that to clear the array, we can adapt the code from the data sheet:

 ; clear sample buffer

 movlw smp_buf

 movwf FSR

l_clr clrf INDF ; clear each byte

 incf FSR,f

 btfsc FSR,4 ; until end of bank is reached

 goto l_clr

This approach wouldn‟t work if the array was any smaller than 16 bytes, in which case we would need to use

a subtraction or XOR to test for FSR reaching the end of the array.

Since the 16-byte array uses all the banked data space in one bank, there is no additional room in that bank to

store any other variables we may need to access while working with the array, such as the running total of

sample values in the array. In the baseline architecture, accessing variables in other banks is very awkward

when using indirect memory access, because selecting another bank means changing FSR, which is being

used to access the array.

To reduce the number of bank selection changes necessary, and the need to save/restore FSR after each one,

it makes sense to place variables associated with the array in shared memory, wherever possible.

For example:

SHR1 UDATA_SHR

adc_sum res 2 ; sum of samples (LE 16-bit), for average

adc_avg res 1 ; average ADC output

It was ok to work directly with FSR in the “clear sample buffer” loop above, since it is short and no bank

selection occurs within it. But it‟s not practical to remove the need for banking altogether throughout the

sampling loop, where we read a sample, update the moving average calculation, scale the result, convert it to

decimal and then display it, before moving on to the next sample. So we need to save the pointer to the

“current” sample in a variable („smp_idx‟) which will not be overwritten when a bank is selected.

Updating and calculating the total of the samples (stored in a 16-bit variable called „adc_sum‟) is done as

follows:

 banksel smp_idx

 movf smp_idx,w ; set FSR to current sample buffer index

 movwf FSR

 movf INDF,w ; subtract old sample from running total

 subwf adc_sum,f

 btfss STATUS,C

 decf adc_sum+1,f

 movf ADRES,w ; save new sample (ADC result)

 movwf INDF

 addwf adc_sum,f ; and add to running total

 btfsc STATUS,C

 incf adc_sum+1,f

This total then has to be divided by 16 (the number of samples) to give the moving average.

As we‟ve seen, dividing by any power of two can be simply done through a series of right-shifts. In this

case, since we need to keep „adc_sum‟ intact from one loop iteration to the next (to maintain the running

total), we would need to take a copy of it and right-shift the copy four times (to divide by 16). Since

© Gooligum Electronics 2010 www.gooligum.com.au

Baseline PIC Assembler, Lesson 11: Integer Arithmetic and Arrays Page 14

„adc_sum‟ is a 16-bit quantity, both the MSB and LSB would have to be right-shifted, so we‟d need eight

right-shifts in total, plus a few instructions to copy „adc_sum‟ – around a dozen instructions in total.

But since we need to right-shift by four bits, and the swapf instruction swaps the nybbles (four bits) in a

byte, shifting the upper nybble right by four bits, we can use it to divide by 16 more efficiently.

Suppose the running total in „adc_sum‟ is 0ABCh. (The upper nybble will always be zero because the

result of adding 16 eight-bit numbers is a twelve-bit number; the sum can never be more than 0FFFh).

The result we want (0ABCh divided by 16, or right-shifted four times) is ABh.

Swapping the nybbles in the LSB gives CBh. Next we need to clear the high nybble to remove the „C‟,

which as we saw in lesson 8, can be done through a masking operation, using AND, leaving 0Bh.

Swapping the nybbles in the MSB gives A0h.

Finally we need to combine the upper nybble in the MSB (A0h) with the lower nybble in the LSB (0Bh).

This can be done with an inclusive-or, since any bit ORed with „0‟ remains unchanged, while any bit ORed

with „1‟ is set to „1‟. That is:

 n OR 0 = n

 n OR 1 = 1

So, for example, A0h OR 0Bh = ABh. (In binary, 1010 0000 OR 0000 1011 = 1010 1011.)

The baseline PICs provide two “inclusive-or” instructions:

 iorwf – “inclusive-or W with register file”

 iorlw – “inclusive-or literal with W”

These are used in the same way as the exclusive-or instructions we‟ve seen before.

For completeness, the baseline PICs provide one more logic instruction we haven‟t covered so far:

 andwf – “and W with register file”

We can use „swapf‟ to rearrange the nybbles, „andlw‟ to mask off the unwanted nybble, and „iorwf‟ to

combine the bytes, creating an efficient “divide by 16” routine, as follows:

 swapf adc_sum,w ; divide total by 16

 andlw 0x0F

 movwf adc_avg

 swapf adc_sum+1,w

 iorwf adc_avg,f

The result is the moving average, which can be scaled, converted to decimal and displayed as before.

Complete program

Here is the complete “light meter with smoothed decimal display” program, showing how all these parts fit

together:

;**

; *

; Description: Lesson 11, example 2 *

; *

; Demonstrates use of indirect addressing *

; to implement a simple moving average filter *

; *

; Displays ADC output in decimal on 2x7-segment LED display *

; *

© Gooligum Electronics 2010 www.gooligum.com.au

Baseline PIC Assembler, Lesson 11: Integer Arithmetic and Arrays Page 15

; Continuously samples analog input, averages last 16 samples, *

; scales result to 0 - 99 and displays as 2 x dec digits *

; on multiplexed 7-seg displays *

; *

;**

; *

; Pin assignments: *

; AN0 = voltage to be measured (e.g. pot or LDR) *

; RB5, RC0-5 = 7-segment display bus (common cathode) *

; RB4 = tens enable (active high) *

; RB1 = ones enable *

; *

;**

 list p=16F506

 #include <p16F506.inc>

 radix dec

;***** CONFIGURATION

 ; ext reset, no code protect, no watchdog, 4MHz int clock

 __CONFIG _MCLRE_ON & _CP_OFF & _WDT_OFF & _IOSCFS_OFF & _IntRC_OSC_RB4EN

; pin assignments

 #define TENS_EN PORTB,4 ; tens enable

 #define ONES_EN PORTB,1 ; ones enable

;***** VARIABLE DEFINITIONS

VARS1 UDATA

adc_dec res 2 ; scaled ADC output (LE 16 bit, 0-99 in MSB)

mpy_cnt res 1 ; multiplier count

smp_idx res 1 ; index into sample array

 ; digits to be displayed:

tens res 1 ; tens

ones res 1 ; ones

digit res 1 ; (temp storage used by set7seg)

ARRAY1 UDATA

smp_buf res 16 ; array of samples for moving average

SHR1 UDATA_SHR

adc_sum res 2 ; sum of samples (LE 16-bit), for average

adc_avg res 1 ; average ADC output

;***** RESET VECTOR ***

RESET CODE 0x000 ; effective reset vector

 movwf OSCCAL ; update OSCCAL with factory cal value

 pagesel start

 goto start ; jump to main program

;***** SUBROUTINE VECTORS

set7seg ; display digit on 7-segment display

 pagesel set7seg_R

 goto set7seg_R

;***** MAIN PROGRAM ***

MAIN CODE

© Gooligum Electronics 2010 www.gooligum.com.au

Baseline PIC Assembler, Lesson 11: Integer Arithmetic and Arrays Page 16

;***** Initialisation

start

 ; configure ports

 clrw ; configure PORTB and PORTC as all outputs

 tris PORTB

 tris PORTC

 clrf CM1CON0 ; disable Comparator 1 (RB0, RB1, RB2 usable)

 clrf CM2CON0 ; disable Comparator 2 (RC0, RC1, RC4 usable)

 clrf VRCON ; disable CVref (RC2 usable)

 ; configure ADC

 movlw b'10110001'

 ; 10------ AN0, AN2 analog (ANS = 10)

 ; --11---- clock = INTOSC/4 (ADCS = 11)

 ; ----00-- select channel AN0 (CHS = 00)

 ; -------1 turn ADC on (ADON = 1)

 movwf ADCON0

 ; configure timer

 movlw b'11010111' ; configure Timer0:

 ; --0----- timer mode (T0CS = 0) -> RC5 usable

 ; ----0--- prescaler assigned to Timer0 (PSA = 0)

 ; -----111 prescale = 256 (PS = 111)

 option ; -> increment every 256 us

 ; (TMR0<2> cycles every 2.048ms)

 ; clear variables

 clrf adc_sum ; sample buffer total = 0

 clrf adc_sum+1

 ; clear sample buffer

 movlw smp_buf

 movwf FSR

l_clr clrf INDF ; clear each byte

 incf FSR,f

 btfsc FSR,4 ; until end of bank is reached

 goto l_clr

;***** Main loop

main_loop

 ; set index to start of sample buffer

 movlw smp_buf

 banksel smp_idx

 movwf smp_idx

; *** repeat for each sample in buffer

l_smp_buf

 ; sample input

 bsf ADCON0,GO ; start conversion

w_adc btfsc ADCON0,NOT_DONE ; wait until conversion complete

 goto w_adc

 ; calculate moving average

 banksel smp_idx

 movf smp_idx,w ; set FSR to current sample buffer index

 movwf FSR

 movf INDF,w ; subtract old sample from running total

 subwf adc_sum,f

 btfss STATUS,C

 decf adc_sum+1,f

 movf ADRES,w ; save new sample (ADC result)

© Gooligum Electronics 2010 www.gooligum.com.au

Baseline PIC Assembler, Lesson 11: Integer Arithmetic and Arrays Page 17

 movwf INDF

 addwf adc_sum,f ; and add to running total

 btfsc STATUS,C

 incf adc_sum+1,f

 swapf adc_sum,w ; divide total by 16

 andlw 0x0F

 movwf adc_avg

 swapf adc_sum+1,w

 iorwf adc_avg,f

 ; scale to 0-99: adc_dec = adc_avg * 100

 ; -> MSB of adc_dec = adc_avg * 100 / 256

 banksel adc_dec

 clrf adc_dec ; start with adc_dec = 0

 clrf adc_dec+1

 movlw .8 ; count = 8

 movwf mpy_cnt

 movlw .100 ; multiplicand (100) in W

 bcf STATUS,C ; and carry clear

l_mpy rrf adc_avg,f ; right shift multiplier

 btfsc STATUS,C ; if low-order bit of multiplier was set

 addwf adc_dec+1,f ; add multiplicand (100) to MSB of result

 rrf adc_dec+1,f ; right shift result

 rrf adc_dec,f

 decfsz mpy_cnt,f ; repeat for all 8 bits

 goto l_mpy

 ; extract digits of result

 movf adc_dec+1,w ; start with scaled result

 movwf ones ; in ones digit

 clrf tens ; and tens clear

l_bcd movlw .10 ; subtract 10 from ones

 subwf ones,w

 btfss STATUS,C ; (finish if < 10)

 goto end_bcd

 movwf ones

 incf tens,f ; increment tens

 goto l_bcd ; repeat until ones < 10

end_bcd

 ; display tens digit for 2.048ms

w10_hi btfss TMR0,2 ; wait for TMR0<2> to go high

 goto w10_hi

 movf tens,w ; output tens digit

 pagesel set7seg

 call set7seg

 pagesel $

 bsf TENS_EN ; enable "tens" display

w10_lo btfsc TMR0,2 ; wait for TMR<2> to go low

 goto w10_lo

 ; display ones digit for 2.048ms

w1_hi btfss TMR0,2 ; wait for TMR0<2> to go high

 goto w1_hi

 banksel ones ; output ones digit

 movf ones,w

 pagesel set7seg

 call set7seg

 pagesel $

 bsf ONES_EN ; enable ones display

w1_lo btfsc TMR0,2 ; wait for TMR<2> to go low

© Gooligum Electronics 2010 www.gooligum.com.au

Baseline PIC Assembler, Lesson 11: Integer Arithmetic and Arrays Page 18

 goto w1_lo

 ; end sample buffer loop

 banksel smp_idx ; increment sample buffer index

 incf smp_idx,f

 btfsc smp_idx,4 ; repeat loop until end of buffer

 goto l_smp_buf

 ; repeat main loop forever

 goto main_loop

;***** LOOKUP TABLES

TABLES CODE 0x200 ; locate at beginning of a page

; Lookup pattern for 7 segment display on port B

; RB5 = G

get7sB addwf PCL,f

 retlw b'000000' ; 0

 retlw b'000000' ; 1

 retlw b'100000' ; 2

 retlw b'100000' ; 3

 retlw b'100000' ; 4

 retlw b'100000' ; 5

 retlw b'100000' ; 6

 retlw b'000000' ; 7

 retlw b'100000' ; 8

 retlw b'100000' ; 9

; Lookup pattern for 7 segment display on port C

; RC5:0 = ABCDEF

get7sC addwf PCL,f

 retlw b'111111' ; 0

 retlw b'011000' ; 1

 retlw b'110110' ; 2

 retlw b'111100' ; 3

 retlw b'011001' ; 4

 retlw b'101101' ; 5

 retlw b'101111' ; 6

 retlw b'111000' ; 7

 retlw b'111111' ; 8

 retlw b'111101' ; 9

; Display digit passed in W on 7-segment display

set7seg_R

 banksel digit

 movwf digit ; save digit

 call get7sB ; lookup pattern for port B

 movwf PORTB ; then output it

 movf digit,w ; get digit

 call get7sC ; then repeat for port C

 movwf PORTC

 retlw 0

 END

You should find that the resulting display is stable, even under fluorescent lighting, and yet still responds

quickly to changing light levels.

© Gooligum Electronics 2010 www.gooligum.com.au

Baseline PIC Assembler, Lesson 11: Integer Arithmetic and Arrays Page 19

This tutorial series has now introduced every baseline PIC instruction and every special function register

(except those associated with EEPROM access on those few baseline PICs with EEPROMs).

That concludes our introduction to the baseline PIC architecture and assembly programming.

The material in these lessons is revisited in a tutorial series on programming baseline PICs in C.

In that series it becomes apparent that some tasks are more easily expressed in C than assembler, especially

the most recent topic of arithmetic and arrays, but that C can be relatively inefficient. It is also seen that

different C compilers take different approaches – with pros and cons that become apparent as the various

examples are implemented in each.

Now that you have a basic understanding of programming baseline PICs in assembler (and C, if you go

through the baseline C tutorial series), you may wish to move on to the midrange PIC architecture and

assembler tutorials, where you will be introduced to the more flexible and capable midrange PIC core, and

some of its diverse range of peripherals. These lessons are also followed up by a series on programming

midrange PICs in C.

Enjoy!

http://www.gooligum.com.au/tut_baseline_C.html
http://www.gooligum.com.au/tut_baseline_C.html
http://www.gooligum.com.au/tut_midrange.html
http://www.gooligum.com.au/tut_midrange.html
http://www.gooligum.com.au/tut_midrange_C.html
http://www.gooligum.com.au/tut_midrange_C.html

	Introduction to PIC Programming
	Baseline Architecture and Assembly Language
	Lesson 11: Integer Arithmetic and Arrays
	Integer Arithmetic
	Multi-byte variables
	16-bit addition
	Multi-byte (including 32-bit) addition
	Multi-byte (including 16-bit and 32-bit) subtraction
	Two’s complement

	Unsigned multiplication
	Example 1: Light meter with decimal output
	Complete program

	Moving Averages, Indirect Addressing and Arrays
	Moving averages
	Indirect addressing and arrays
	Example 2: Light meter with smoothed decimal output
	Complete program

