IZTECH

ABSTRACT

In this Project, our main purpose is to design an ECG circuit with three electrodes. These electrodes are used to perceive the signals on human body produces by heart. As can be guessed, the electrical signals on human body is very small (1mV-5mV). In order to amplify these small signals, a special amplifiers are used, which are called "Instrumentation amplifier". These amplifiers have very high open loop gain, common mode rejection ratio(CMRR) and also very low noise. Thanks to the these properties, human body signals can be amplified. To get the ECG signal, a special filter circuit must be designed. Moreover if we want to perform pure ECG signal, we must design 50Hz noise filter circuit.

GENERAL INFORMATION ABOUT ECG

\succ WHAT IS ECG?

An electrocardiogram (ECG) is a test that checks for problems with the electrical activity of heart. An ECG translates the heart's electrical activity .The spikes and dips in the line tracings are called special P-Q-R-S-T waves. Figure-1 shows that ECG components and internals.

Figure-1 Structure of ECG signal

> HOW DOES HEART GENERATE THE ECG SIGNAL?

The heart has four chambers. The two upper chambers are called atria (the right atrium and the left atrium), and the two lower chambers are called ventricles.

Figure-2 Electrical activity of heart

- 1. Atrium begins to depolarize.
- 2. Atrium depolarizes.
- 3. Ventricles begin to depolarize at apex. Atrium repolarizes.
- 4. Ventricles depolarize.
- 5. Ventricles begin to repolarize at apex.
- 6. Ventricles repolarize.

P-Q-R-S-T WAVES PROPERITIES

Normal ECG signal (P-Q-R-S-T waves) must be similar to given Figure 1 and also have the following properities (for adults);

> P wave must be above the reference duration changes 0.8-0.11 seconds

> **PR interval** duration changes 0.12-0.20 seconds

> **PR segment** duration changes 50 to 120 ms

ELECTROCARDIOGRAM (ECG) MEASUREMENT CIRCUIT DESIGN

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING IZMIR INSTITUTE OF TECHNOLOGY, URLA\IZMIR\TURKEY

- QRS complex duration changes 0.8-0.12 seconds
- > **ST segment** duration changes 80 to 120 ms
- > *T* wave duration changes 150-160ms
- > ST internal duration changes 300-320ms

REFERENCE EXAMINATION?

Figure-3 Structure of instrumentation amplifier

In this project, AD620 is used as the instrumentation amplifier. Gain of AD620 up to 1000 and its CMRR is 80-130 dB. In this amplifier R1=24.7KΩ and R2=R3=10K Ω.Therefore we can calculate easily gain of this amplifier by using following formula; $G=(1+(49.4k\Omega/R_{aain}))$

As can be seen from the formula we can adjust gain, just changing R_{gain} . This is also simplicity of instrumentation amplifiers. We choose $R_{aain} = 560\Omega$ so, our gain is nearly equal to 90.

➢ FILTER & GAIN CIRCUITS

HIGH PASS & LOW PASS FILTERS

In this part of project we use passive RC high pass and low pass filters. High pass cut-off frequncy is nearly 0.03Hz and low pass filter cut-off frequency is nearly 160Hz. The high frequency limit 160Hz ensures that tracing allow assessment QRS complex. The low frequency limit allows representation of P and T wave morphology and ST segment analysis.

MERT KEMAL TAN

Supervisor: Asisst. Prof. Mehmet Zübeyir ÜNLÜ

		IZTECH
c ll r	For the high pass filter R=5.6K and C=1000uF. For the low pass filter R=10K and C=1uF	$\begin{array}{c} \mathbf{R} \\ \mathbf{V} \\ $
Figure-4 High pass filter		Figure-5 Low pass filter
GAIN		

In this Project, an ECG signal is performed. It is difficult part is that, we cannot simulate on computer because ECG signal is a special wave which cannot simulated on simulating programs. Therefore we studied in real life and sometimes we damaged instrumentation amplifier because of some connected mistakes. Figure-9 is shown my own ECG signal and it is nearly like an standart ECG signal. We made some tests on other people and most of them have nearly standart ECG signal. To sum up, ECG signal is produced by our circuit and it can measure all parts of P-Q-R-S-T waveform.

R
http://en.wikipedia.org/wiki/Electre
MICROELECTRONICS Circuit A
http://engineerslabs.com/2012/01
http://en.wikipedia.org/wiki/Instru

Special Thanks to Assist. Prof. Dr. M. Zübeyir ÜNLÜ, Assist. Prof. Dr. Barbaros ÖZDEMİREL,Yunus Emre ÜRGÜN, Candeğer AVŞAR

INIL

											-																				
	1.5	20	10	12		0.2			1.5	-	-	-	10	12		12	12	22	100	1		12			120		100		10.1	12	1
		•						•		•	Т	•	•			•		•			•			•		•		•	•		
											1																				
										-		÷	9	ν	١.																
										_	-	_																			
						۰.									2							۰.									2
				- 22							2		1	ι.		1.				- 20											
									~																						
	1			1					1	>	4	1		Ξ.			1			1			2					1			1
	0	0		2	1	2	-3			1		5	1	2	Т															2	
										-				~	1						1		3	2						2	1
								5		Ĥ	Δ		71	1.4	2	~	-	6	-	1		1	-		2			50		8	
			1						1	~	-		14		0	-	-	50	1.2		125	1	Т		1	٦	10	DL	it.	8	1
				-			-2							-	-											0				8	
Ī	1	13		T		22				3	-	~	-				1			1	÷.			÷	1			1		8	1
										~	T																				•
	1				•		•	1	-		1.	1			1	1	3			1	ं			1	1	•	1	1	1	1	1
	•	•	•		•		•	•	•		19	•	•		•	•	•	•	•	•	•	1		•	•	•		•	•	1	1
	•		•			2	1		•		L.	•		2	5	1	•		•	•	•	2		2	•	•		•	1	2	1
	•	•	•		•		•	•	•		-	•				•	•	•	•	•	•			1	•	•	•	•	•		
	•	۰.	•		•	•	•	•	•	•			-5		v	•	•	•	•	•	•	•		•	•	•		•		•	1
	•	•	•		•	•	•	•	•	-	T	-	•	•	•	•	•	•	•	•	•	•		•	•	•	•	•	•	•	•
		•	•		•	•	•	•		•		•	•	•	•	•		•	•		•	•		•		•	•	•	•		1
											T.															•					
	1	2				12			12	-	_		10	12			12	22	10	20	1	12		5	1	2	10	1	100	12	1
		•	•		•			•		•	-	•		•	•	•					•	•		•		•	•	•	•		
	•			L	-	_	_		_	_	-	-^	N	A	5	-	_		_	_	-	_			•	•					
					•		•		•				٠.		٠.			4	•		•				•	•	•				
													P	3																	
														_																	

The aim of using this filter is that filtering noise where comes from electrical devices. We

	2	1	2	1	84	20	1	.3	20	2.	20	1	22		24	20	1	27		8.	4	4	22			1	4	27	3	.3		4	20	3
	•	•	•	•	1	•	•	•	•		•	•	•	•	-			•	•		•		•	•	•	•		•		•	•	1	•	•
K.										۰.				•	F	٤.,	•																	
\sim	5	-				_	+	_					-	_	\sim	\sim	5	-	_						•	•		•	05	•	•	1	2	1
• •	•	•	•	•	•			•		•	•	•			•	•				•					•	•		•	•	•	•		•	
				•		-			3	0	÷											•				•								
•	•		•			-	1	-	~	C	•			•		•	•	•	•		•	•			•					V	in		•	
		•																					٠	_						Y	U	u	L	
			•	•		•		•			•	1	•			•		•		2	•			~	•	•		•		1	•		•	1
• •	•	•	•	•	•	-	-	-	•	•	•	•	•	•	•	•		•		•	•				•	•		•	•	•	•		•	•
100	33	12	1	853	35	1	1	10	1	35	33	12	53	1	35	33	83	53	10	1	1			120	12	853	83	53	32	12	1	12	30	12
11	•	•	•	•	10	•	•	•	•		•			•	1	1	•		•		•	•			•	•	•	•		•	•		•	
11	_	-				_	٠						-	-	-	E		-					_		•	•	•	•		•				
••	1	•	•	•		•		•			•		•	1		•	3	•	1	2			•	1	•		3	•		-	•	1	•	1
C	•	•	•	•	•	•	5	• •	•	•	•	•	•	•	C	• •	•	•	•	•		•	•		•	•	•	•	•	•	•		•	
- .	3	1		8		1	>	R	1:	2	3		•	1	-			•	1	1	1		•	1				•				3	1	
	•	1	3	•	2	•	>					1	1	•	1	•		1	•	1			•	•	1	•		•	1	1	•		1	1
							J.		•																	•								
	1		- 53	1	11	1		- 53	1	8	1		1	1	8	1	1	1	1	8	1	1	1	1	- 53	1		1		- 53	1	1	1	1
• • •							-	-															•					•						
	3		-	1	1	1			1		1		1		1	1	1								1			1		3		3	1	
	3					i.			_		-							10					10					10						
			-	F	=	1	1	(2	TT	R	1	:)																					
			J	C			1	1.	-				-)		8	1				1					- 23					- 33				
	- 20					- 2.5	1.2		100		- 2.1	1.21	÷.,	100		- 2.1			100		100													121

Figure-9 output of our circuit

CONCLUSION

EFERENCES

ocardiography alysis and Design third edition

mentation_amplifier