
Lab 9 Rev 1.2 Synchronous Serial Communication

 - 1 -

9.1 Objectives:

Many devices use Serial Communication to communicate with each other. The advantage

of serial communication is that it uses relatively few lines to send large amounts of data.

Serial communication can come in many forms, I
2
C, SPI, UART, just to name a few.

This lab will demonstrate how to use SPI interface to control the Nokia 5110 LCD

screen.

In this lab, you will learn,

 How to setup the SSI peripheral of the TM4C.

 How to send data using the SPI interface.

 How to setup the Nokia 5110 LCD display.

 How to display images and characters on the LCD screen.

 How to debug serial communication using a logic analyzer.

 Related material to read:

 Chapter 22 in text, but only for basic concepts.

 TM4C Data Sheet, Chapters 14 and 15.

 Nokia 5110 Data Sheet

 Saleae 4-Channel Logic Analyzer Logic Guide and User Guide

SPI Serial Communication and

Nokia 5110 LCD Screen

9

Lab 9 Rev 1.2 Synchronous Serial Communication

 - 2 -

9.2 Synchronous Serial Interface in the TM4C:

The TM4C has four Synchronous Serial Interface modules (SSI). The SSI is used to send

synchronous serial communication to other devices, and can be configured to follow

various protocols. We will use SPI in this lab, which requires that we specify which

device will be sending data (Master), and which device(s) will be receiving data (Slave).

When sending, the data is sent loaded into a FIFO buffer, and sent out according to the

configured bit rate. Each FIFO buffer is 16 bits wide, and 8 locations deep. The size of

the data can be configured to be from 4 to 16 bits wide depending on your needs.

The pin connections for all SSI ports are labeled in Figure 9.1. When using Synchronous

Serial Communication, there are typically 4 pins (lines). See Figure 9.2.

 RX (MOSI) – Receiving data line

 TX (MISO) – Sending (transmitting) data

 Clk (SCLK) – The clock each bit is synched with

 Fss – Used to tell the slave that data is being sent

Figure 9.1: SSI associated pins

Lab 9 Rev 1.2 Synchronous Serial Communication

 - 3 -

Figure 9.2: How SPI signals change as data is sent.

9.3 GPIO Setup

Similar to ATD, the SSI needs to connect to the outside world using the GPIO pins.

Therefore, the GPIO needs to be setup to channel the SSI through the appropriate GPIO

pins. This lab will focus on SSI0 in Master mode, meaning it will output the data to other

devices. Therefore, PA2-PA5 will need to be configured to use the SSI. (Refer to Lab 5

or the datasheet for a reminder of GPIO registers). After the RCGCGPIO register has

been configured to enable port A (by setting bit 0), the Alternate Function register

(AFSEL) will need to be set for pins 2-5. The Alternate Function register tells the TM4C

that we will not be using PA2-PA5 as a simple on/off switch like we did in Lab 7, but

rather tells the TM4C that we would like to “connect” the associated pin with some other

peripheral in the TM4C. Since SSI0 uses PA2-PA5, set bits 2-5 in the AFSEL register

associated with port A. Now that we have told the TM4C that we would like to use the

pins as “some other function”, we now need to specify which function we would like use

(in this case, SSI). Referring to the PCTL table in the datasheet, we see that SSI0 requires

PCTL register to be set to 2 (see Figure 9.3). To see other settings, look up Table 23-5 in

the TM4C datasheet, page 1351.

Figure 9.3: A section of Table 23-5 showing the PCTL register settings.

Next, set the direction of PA2-PA5 to output by setting the bits of the DIR register. Set

all bits to output, as we will be using the other pins that will be explained later.

Finally, since we will be sending digital signals, we must disable analog by clearing the

AMSEL register.

Lab 9 Rev 1.2 Synchronous Serial Communication

 - 4 -

9.4 SSI Setup

Like the other peripherals, we need to start the clock for SSI0. To do this, we will set bit

1 of the RCGCSSI register (at the address 0x400F.E61C) to start the clock of SSI0.

Remember to allow a few clock cycles to pass to let the clock settle before continuing.

The base address for SSI0 is 0x4000.8000, and like other peripherals, the SSI must be

disabled before configuring the module. Enable and disable the module using the SSI

Control 1 register (SSICR1, offset 0x004). Setting bit 1 (the SSE bit) enables SSI0, and

clearing bit 0 disables SSI0.

The SSICR1 register is also used to set Master or Slave using the MS bit. Setting the MS

bit configures the SSI as Slave. Clear the MS bit to configure the SSI as Master. For this

lab we will be using the TM4C in Master mode.

Figure 9.4: SSI Control 1 register

Next, the data Bit Rate needs to be set. This will dictate the frequency of the clock signal.

Setting the bit rate requires setting all SSI Clock Prescale (SSICPSR, offset 0x010) , SSI

Clock Configuration (SSICC, offset 0xFC8), and the SSI Control 0 (SSICR0, offset

0x000) registers. The correct value for each register is determined by the equation:

Bit Rate = SysClk/(CPSDVSR * (1 + SCR))
 a) From section 15.3.1 of the datasheet.

Where:

SysClk is the frequency of the oscillator used. For this lab we will use the Precision

Internal OSCillator (PIOSC) which runs at 16 MHz. To select the PIOSC clock source,

set bits 3:0 of the SSICC to 0x5 (Figure 9.5).

CPSDVSR is bits 7:0 of the SSICPSR register (Figure 9.6).

SCR is bits 15:8 of the SSICR0 register (Figure 9.7).

For instance, to set a Bit Rate of 1 MHz set CPSDVSR to 0x08, and SCR to 0x01.

Lab 9 Rev 1.2 Synchronous Serial Communication

 - 5 -

Figure 9.5: SSI Clock Configuration

Figure 9.6: SSI Clock Prescale register

Figure 9.7: SSI Control 0 register

Next, the size of the data being sent needs to be specified. This is done using the DSS bits

of the SSICR0 register (Figure 9.7). The SSI supports data sizes 4 bits to 16 bits. The

DSS bits follow the equation DSS = Data Size -1. Meaning to select a data size of 4 bits,

set DSS to 0x03. Similarly, to select a data size of 16 bits, set DSS to 0x0F.

Lab 9 Rev 1.2 Synchronous Serial Communication

 - 6 -

Finally, the Frame Format needs to be specified. The Frame Format sets timings on when

the FSS logic flips, and the data is sent among other things. The devices you are trying to

interface with should specify these timings, so you will choose one that works for your

application. For this lab, we will use the Freescale SPI frame format. To select the

Freescale SPI frame format, clear bits 5:4 of the SSICR0 register.

After all registers have been configured, you can enable the SSI using the SSICR1

register.

9.5 The Nokia 5110

To demonstrate the use of Serial Communication, this lab will send text and images to a

Nokia 5110 48x84 pixel LCD screen. The Nokia 5110 uses SPI signals to receive

commands, text, and images to be displayed. As you may have noticed with the SPI

signals in Figure 9.2, there is only one data output signal. The Nokia, somehow, needs to

distinguish whether the data being sent is data meant to be displayed, or if it is a

command meant to control the screen. This is done not through the SPI module, but

“manually” through a GPIO pin. The Nokia screen has a pin named Data/Command

(DC). When the DC signal is low, the Nokia interprets the incoming SPI bits as a

command. Similarly, if the DC signal is high, the SPI bits are interpreted as data to be

displayed.

Figure 9.8: How the DC signal is timed with the SPI signals.

Note that it may look like in Figure 9.8 that the DC signal needs to be switched on the

last bit sent, however, the Nokia only reads the value of the DC signal on the last bit. The

DC signal can be set high or low long before the last bit is sent.

Also note that the names of the signals are different than in Figure 9.2. The names in

Figure 9.8 match the pins labels on the Nokia screen.

Lab 9 Rev 1.2 Synchronous Serial Communication

 - 7 -

Connecting the Nokia Screen

Signal Nokia TM4C Board

Power Vcc (Pin 1) 3.3V

Ground GND (Pin 2) GND

FSS SCE (Pin 3) PA3

Reset RST (Pin 4) PA7

Data/Command D/C (pin 5) PA6

MISO (TX) DN (Pin 6) PA5

Clock SCLK (Pin 7) PA2

Back Light LED (Pin 8) (Resistor)*

Table 9.1: Signal connections between TM4C development board and Nokia screen.
*Note the back lighting LED’s need to have their current limited to ~80mA

9.5.1 Testing your connections

To help you ensure that you connected your Nokia screen correctly, we have included the

file “NCT.hex” to download to your board. If your screen is connected correctly, you will

see “Hello from Nokia” displayed on your screen. After a couple of seconds, the

character V will be displayed repeatedly. This gives a perfect opportunity to view the

signals using a logic analyzer (explained below). A hex file is already compiled code

containing the actual ones and zeros the processor executes. The process for downloading

this file is different than what you are used to.

To download a hex file to your board:

1. Start a new project and select the appropriate processor and debugger.

2. Save the hex file in the Objects folder inside the project directory.

3. In the Options for Target window (Project-> Options for Target) choose the Output

tab and enter the name of the hex file into the “Name of Executable” text box.

4. You are now able to click the Download icon and hit the reset button on the board.

As mentioned, the LCD screen is 48x84 pixels. There are 48 rows of pixels, and 84

columns of pixels. However, the 48 pixels making up the rows are grouped into bunches

of 8. Meaning, for instance, pixels 0-7 in column 0 are one group of data at a specific

address, and pixels 8-15 of column 0 are another group. Each byte of data sent via SPI

correspond to the 8 pixels in each group (see Figure 9.9). You can specify which group of

pixels you control by specifying the address of the group. Since the rows are grouped in

bits of 8, the row addresses (Y addresses) are not 0-47, but rather 0-5 (48/8=6). However,

the column addresses (X addresses) are still 0-83.

Figure 9.9: The pixel and address configuration of the Nokia screen.

Lab 9 Rev 1.2 Synchronous Serial Communication

 - 8 -

Displaying any image is simply a matter of stepping through the addresses and sending a

byte of data that turns on the correct pixels at each address. Thankfully, the Nokia board

makes this even easier on you since the address automatically indexes the column address

after every byte sent. Therefore, all that is needed is a stream of data to display. Sending

text is just like an image, but typically one character is 8 pixels by 6 pixels. This means

the screen can hold 14 characters across and 6 characters down. (See Table 6 in the Nokia

5110 datasheet for good examples).

If you wanted to display the character “P”:

Send 0x1F to the first column to turn on all of the pixels in the first

column. (Note 0x1F because, in this example, the character is only 5

pixels high)

The address automatically indexes to the next column, so there is no

need to change the address. Simply send the next byte of data. In

this case 0x05.

Finally, send 0x07 to finish the character

Since the column address (X address) automatically increments, it is easy to quickly send

one byte after another. However, with a BR of only 4 MHz and with the processor

running at 16 MHz, the processor can easily fill the SSI FIFO buffer faster than the SSI

can empty it. Therefore, you must monitor the SSI Transmit FIFO Not Full (TNF) bit in

the SSI Status register (SSISR, offset 0x00C). When the FIFO is NOT full, the TNF bit is

a 1.

Similarly, the processor is fast enough to move on to other instructions before the SSI is

done transmitting. This is the most devastating when switching between Commands and

Data. If you were sending a series of commands to the Nokia with the DC bit low, and

then switch to send data to display by setting the DC bit high, the processor will switch

the DC bit high before the SSI is done sending commands. Therefore, you must monitor

the SSI Busy bit (BSY) of the SSI Status register. When the SSI is busy sending data, the

BSY bit is a 1.

Figure 9.10: SSI Status register.

Lab 9 Rev 1.2 Synchronous Serial Communication

 - 9 -

However, before data can be sent to be displayed, the screen needs to be initialized.

9.5.1 Nokia 5110 setup

To initialize the Nokia screen first toggle the Reset pin by holding it low for 100ms then

setting it high.

Set DC low and send the following commands:

Table 9.2: Nokia initialization instructions.

After the screen has been initialized, DC can be set high and data can be sent to be

displayed.

To change the address of the active pixels use the following instructions.

9.6 Logic Analyzer

If the screen doesn’t display correctly, or at all, it can be difficult to know what went

wrong. When viewing periodic analog signals, you use an oscilloscope. If you want to

see digital signals sent in the time domain, you use a Logic Analyzer. This lab will use

the Saleae 4 channel logic analyzer. This analyzer can sample up to 4 channels, so you

can view the clock, data, DC, and FSS signals at once.

Lab 9 Rev 1.2 Synchronous Serial Communication

 - 10 -

9.6.1 Logic Analyzer Setup

Open up the Saleae Logic software and connect the analyzer channels to the signals you

want to monitor. Double check that the orientation of the wiring harness inserted into

the logic analyzer is correct! In the upper left (the arrows next to the start button) you

can select the sampling frequency and sampling duration. Make sure the sampling

frequency is faster than (at least 2x) the SPI clock. Add an “Analyzer” by clicking the ‘+’

icon in the Analyzers window on the right. Select an SPI analyzer and choose settings

similar to Figure 9.11.

Note the channels you select for

MOSI, Clock, and Enable may be

different depending on which

channels you connected to these

signals. The rest of the settings

should remain the same. An

analyzer will decode the signals

being sent and adds labels to the

data signal translating each byte

sent into a decimal, binary, or hex

value. The settings for the analyzer

can be adjusted by clicking the

settings icon for the analyzer.

Figure 9.11: Analyzer settings.

9.6.2 Using the Logic Analyzer

Once the analyzer is setup, simply press start, and it will start recording. Alternatively,

you can tell the analyzer to wait for a trigger (rising or falling edge) on a selected channel

by selecting the Trigger Settings icon (next to the Channels Settings icon) on that

channel.

Figure 9.12: Zoomed out view of sampled signals.

Lab 9 Rev 1.2 Synchronous Serial Communication

 - 11 -

When the analyzer is done taking samples you will be presented with something similar

to Figure 9.12. Rolling the middle mouse wheel zooms in and out of the recorded signals.

Notice that when you zoom in, information about the signals become available (Figure

9.13). Any signal the cursor hovers over, the pulse width, frequency, and period are

given. Also notice the blue labels in the “data” channel (SPI MOSI) are translated into an

easy to read value.

Figure 9.13: Zoomed in view of sampled signals.

9.7 Procedure:

Before you come to the lab,

 a) Write the flow charts for the following procedures and

 b) Draw the time plot of the MISO/DN/PA5 data signal and the FSS/SCE/PA3 Nokia

select signal as the entire character display of “F” is being sent from the TM4C to the

Nokia. That is, 6 consecutive columns of bytes (8 bits) to produce the 48 bit, 6x8

character.

1. For 80% max credit - Connect the TM4C processor to the Nokia 5110 LCD screen

and run the binary program “NCT.hex” as described earlier. Now go through the

same process with the binary program “NokiaAlpha.hex” and you should see the

characters “FVFV”. Connect the Logic Analyzer to your system as described in

Section 9.6 above and view those four logic signals. Finally, show this display to

your TA, describing the meaning of each of the four signals and in particular the

content of the PA5 DATA/PSI MOSI signal used to create the character display, and

answering any TA questions about these signals.

2. For 100% max credit – Use the ASCII table provided in Figure 9.13 to display your

name on row 2 of the LCD screen or use and modify NokiaTest-Class-main.s,

Nokia5110-Class.s and StartupNokia.s files.

3. For 120% max credit – Use the InChar routine to echo the characters you type into

Terminte onto the LCD screen. Include extra routines for carriage return and

backspace. You may use and modify NokiaConnectTest.s, StartupNokia.s and

Nokia5110.s files.

Lab 9 Rev 1.2 Synchronous Serial Communication

 - 12 -

9.8 Questions:

1. Create the short code sequence needed to create a 100 KHz SSI Clock, using a 50

MHz System Clock and using index addressing for any SSI Registers used.

2. Draw a diagram of the 4 signals (not including RES*)used to transmit “F” (see ASCII

table below) from the TM4C to the Nokia 5110. These signals can be based on Fig.

12 in the Nokia Data Sheet, but with SCE* high for on clock period for each frame.

3. Write the Nokia commands to begin transmitting characters to the 4
th

 row and the 28
th

horizontal pixel position. Comment on whether it is valid to start a character on other

than a standard character position (where x-value is a multiple of 6). Explain when

this might be a useful feature (whether it is actually valid or not).

4. To display a stable screen of logic signals, explain which trigger conditions on the

logic analyzer worked best for you?

9.9 Lab report:

For the lab write up, include

1. Flowcharts and programs that you wrote before the lab.

2. A copy of your working .s files.

3. A brief discussion of the objectives of the lab and procedures performed in the lab.

4. Answers to any questions in the discussion, procedure, or question sections of the lab.

Image

DCB 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00

DCB 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x80, 0x40, 0x20

DCB 0x20, 0x90, 0x90, 0xC8, 0xC8, 0xE4, 0xE4, 0xE4, 0xF6, 0xF2, 0xF2,

0xF2, 0xF2, 0xF2

DCB 0xF2, 0xF2, 0xF2, 0xF2, 0xF2, 0xF6, 0xE4, 0xE4, 0xE4, 0xC8, 0xC8,

0x90, 0x90, 0x20

DCB 0x20, 0x40, 0x80, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00

DCB 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00

DCB 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00

DCB 0x00, 0x00, 0x00, 0x00, 0xC0, 0x70, 0x18, 0x0C, 0x06, 0x03, 0x81,

0x84, 0x82, 0x82

DCB 0x81, 0x81, 0x81, 0x81, 0x03, 0x03, 0x07, 0x07, 0x0F, 0x0F, 0x1F,

0x3F, 0x7F, 0xFF

DCB 0xFF, 0x7F, 0x3F, 0x1F, 0x0F, 0x0F, 0x07, 0x07, 0x03, 0x03, 0x81,

0x81, 0x81, 0x81

DCB 0x82, 0x82, 0x84, 0x81, 0x03, 0x06, 0x0C, 0x18, 0x70, 0xC0, 0x00,

0x00, 0x00, 0x00

DCB 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00

DCB 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00

DCB 0x00, 0x00, 0xF0, 0xFF, 0x03, 0x00, 0x00, 0x00, 0x01, 0x01, 0xC0,

0x21, 0x1B, 0x1F

DCB 0xDF, 0xDF, 0x87, 0x87, 0xCF, 0x3F, 0x3E, 0x3C, 0x78, 0xF0, 0xF0,

0xF8, 0xFC, 0xFF

Lab 9 Rev 1.2 Synchronous Serial Communication

 - 13 -

DCB 0xFF, 0xFC, 0xF8, 0xF0, 0xF0, 0x78, 0x3C, 0x3E, 0x3F, 0xCF, 0x87,

0x87, 0xDF, 0xDF

DCB 0x1F, 0x1B, 0x21, 0xC0, 0x01, 0x01, 0x00, 0x00, 0x00, 0x03, 0xFF,

0xF0, 0x00, 0x00

DCB 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00

DCB 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00

DCB 0x00, 0x00, 0x07, 0x7F, 0xC0, 0x00, 0x00, 0x00, 0x20, 0x40, 0x83,

0x9F, 0x3F, 0x3E

DCB 0x7E, 0xF8, 0x00, 0x0F, 0xF8, 0xC0, 0x01, 0x03, 0x06, 0x80, 0x61,

0x3B, 0x0B, 0x0F

DCB 0x0F, 0x0B, 0x3B, 0x61, 0x80, 0x06, 0x03, 0x01, 0xC0, 0xF8, 0x0F,

0x00, 0xF8, 0x7E

DCB 0x3E, 0x3F, 0x9F, 0x83, 0x40, 0x20, 0x00, 0x00, 0x00, 0xC0, 0x7F,

0x07, 0x00, 0x00

DCB 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00

DCB 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00

DCB 0x00, 0x00, 0x00, 0x00, 0x03, 0x07, 0x1C, 0x31, 0x62, 0xCC, 0x98,

0x21, 0x21, 0x66

DCB 0x7C, 0x78, 0x01, 0x87, 0xFF, 0xFF, 0xFF, 0xFE, 0xFC, 0xF8, 0xF0,

0xC2, 0xC2, 0xC6

DCB 0xC6, 0xC2, 0xC2, 0xF0, 0xF8, 0xFC, 0xFE, 0xFF, 0xFF, 0xFF, 0x87,

0x01, 0x78, 0x7C

DCB 0x66, 0x21, 0x21, 0x98, 0xCC, 0x62, 0x31, 0x1C, 0x07, 0x03, 0x00,

0x00, 0x00, 0x00

DCB 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00

DCB 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00

DCB 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x01,

0x03, 0x06, 0x04

DCB 0x0C, 0x09, 0x19, 0x13, 0x13, 0x37, 0x27, 0x27, 0x6F, 0x4F, 0x4F,

0x4F, 0x4F, 0x4F

DCB 0x4F, 0x4F, 0x4F, 0x4F, 0x4F, 0x6F, 0x27, 0x27, 0x37, 0x13, 0x13,

0x19, 0x09, 0x0C

DCB 0x04, 0x06, 0x03, 0x01, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00

DCB 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00,

0x00, 0x00, 0x00

Figure 9.13: Image to display for procedure 1.

Lab 9 Rev 1.2 Synchronous Serial Communication

 - 14 -

ASCII DCB 0x00, 0x00, 0x00, 0x00, 0x00 ;// 20

 DCB 0x00, 0x00, 0x5f, 0x00, 0x00 ;// 21 !

 DCB 0x00, 0x07, 0x00, 0x07, 0x00 ;// 22 "

 DCB 0x14, 0x7f, 0x14, 0x7f, 0x14 ;// 23 #

 DCB 0x24, 0x2a, 0x7f, 0x2a, 0x12 ;// 24 $

 DCB 0x23, 0x13, 0x08, 0x64, 0x62 ;// 25 %

 DCB 0x36, 0x49, 0x55, 0x22, 0x50 ;// 26 &

 DCB 0x00, 0x05, 0x03, 0x00, 0x00 ;// 27 '

 DCB 0x00, 0x1c, 0x22, 0x41, 0x00 ;// 28 (

 DCB 0x00, 0x41, 0x22, 0x1c, 0x00 ;// 29)

 DCB 0x14, 0x08, 0x3e, 0x08, 0x14 ;// 2a *

 DCB 0x08, 0x08, 0x3e, 0x08, 0x08 ;// 2b +

 DCB 0x00, 0x50, 0x30, 0x00, 0x00 ;// 2c ,

 DCB 0x08, 0x08, 0x08, 0x08, 0x08 ;// 2d -

 DCB 0x00, 0x60, 0x60, 0x00, 0x00 ;// 2e .

 DCB 0x20, 0x10, 0x08, 0x04, 0x02 ;// 2f /

 DCB 0x3e, 0x51, 0x49, 0x45, 0x3e ;// 30 0

 DCB 0x00, 0x42, 0x7f, 0x40, 0x00 ;// 31 1

 DCB 0x42, 0x61, 0x51, 0x49, 0x46 ;// 32 2

 DCB 0x21, 0x41, 0x45, 0x4b, 0x31 ;// 33 3

 DCB 0x18, 0x14, 0x12, 0x7f, 0x10 ;// 34 4

 DCB 0x27, 0x45, 0x45, 0x45, 0x39 ;// 35 5

 DCB 0x3c, 0x4a, 0x49, 0x49, 0x30 ;// 36 6

 DCB 0x01, 0x71, 0x09, 0x05, 0x03 ;// 37 7

 DCB 0x36, 0x49, 0x49, 0x49, 0x36 ;// 38 8

 DCB 0x06, 0x49, 0x49, 0x29, 0x1e ;// 39 9

 DCB 0x00, 0x36, 0x36, 0x00, 0x00 ;// 3a :

 DCB 0x00, 0x56, 0x36, 0x00, 0x00 ;// 3b ;

 DCB 0x08, 0x14, 0x22, 0x41, 0x00 ;// 3c <

 DCB 0x14, 0x14, 0x14, 0x14, 0x14 ;// 3d =

 DCB 0x00, 0x41, 0x22, 0x14, 0x08 ;// 3e >

 DCB 0x02, 0x01, 0x51, 0x09, 0x06 ;// 3f ?

 DCB 0x32, 0x49, 0x79, 0x41, 0x3e ;// 40 @

 DCB 0x7e, 0x11, 0x11, 0x11, 0x7e ;// 41 A

 DCB 0x7f, 0x49, 0x49, 0x49, 0x36 ;// 42 B

 DCB 0x3e, 0x41, 0x41, 0x41, 0x22 ;// 43 C

 DCB 0x7f, 0x41, 0x41, 0x22, 0x1c ;// 44 D

 DCB 0x7f, 0x49, 0x49, 0x49, 0x41 ;// 45 E

 DCB 0x7f, 0x09, 0x09, 0x09, 0x01 ;// 46 F

 DCB 0x3e, 0x41, 0x49, 0x49, 0x7a ;// 47 G

 DCB 0x7f, 0x08, 0x08, 0x08, 0x7f ;// 48 H

 DCB 0x00, 0x41, 0x7f, 0x41, 0x00 ;// 49 I

 DCB 0x20, 0x40, 0x41, 0x3f, 0x01 ;// 4a J

 DCB 0x7f, 0x08, 0x14, 0x22, 0x41 ;// 4b K

 DCB 0x7f, 0x40, 0x40, 0x40, 0x40 ;// 4c L

 DCB 0x7f, 0x02, 0x0c, 0x02, 0x7f ;// 4d M

 DCB 0x7f, 0x04, 0x08, 0x10, 0x7f ;// 4e N

 DCB 0x3e, 0x41, 0x41, 0x41, 0x3e ;// 4f O

 DCB 0x7f, 0x09, 0x09, 0x09, 0x06 ;// 50 P

 DCB 0x3e, 0x41, 0x51, 0x21, 0x5e ;// 51 Q

 DCB 0x7f, 0x09, 0x19, 0x29, 0x46 ;// 52 R

 DCB 0x46, 0x49, 0x49, 0x49, 0x31 ;// 53 S

 DCB 0x01, 0x01, 0x7f, 0x01, 0x01 ;// 54 T

 DCB 0x3f, 0x40, 0x40, 0x40, 0x3f ;// 55 U

 DCB 0x1f, 0x20, 0x40, 0x20, 0x1f ;// 56 V

 DCB 0x3f, 0x40, 0x38, 0x40, 0x3f ;// 57 W

 DCB 0x63, 0x14, 0x08, 0x14, 0x63 ;// 58 X

Lab 9 Rev 1.2 Synchronous Serial Communication

 - 15 -

 DCB 0x07, 0x08, 0x70, 0x08, 0x07 ;// 59 Y

 DCB 0x61, 0x51, 0x49, 0x45, 0x43 ;// 5a Z

 DCB 0x00, 0x7f, 0x41, 0x41, 0x00 ;// 5b [

 DCB 0x02, 0x04, 0x08, 0x10, 0x20 ;// 5c '\'

 DCB 0x00, 0x41, 0x41, 0x7f, 0x00 ;// 5d]

 DCB 0x04, 0x02, 0x01, 0x02, 0x04 ;// 5e ^

 DCB 0x40, 0x40, 0x40, 0x40, 0x40 ;// 5f _

 DCB 0x00, 0x01, 0x02, 0x04, 0x00 ;// 60 `

 DCB 0x20, 0x54, 0x54, 0x54, 0x78 ;// 61 a

 DCB 0x7f, 0x48, 0x44, 0x44, 0x38 ;// 62 b

 DCB 0x38, 0x44, 0x44, 0x44, 0x20 ;// 63 c

 DCB 0x38, 0x44, 0x44, 0x48, 0x7f ;// 64 d

 DCB 0x38, 0x54, 0x54, 0x54, 0x18 ;// 65 e

 DCB 0x08, 0x7e, 0x09, 0x01, 0x02 ;// 66 f

 DCB 0x0c, 0x52, 0x52, 0x52, 0x3e ;// 67 g

 DCB 0x7f, 0x08, 0x04, 0x04, 0x78 ;// 68 h

 DCB 0x00, 0x44, 0x7d, 0x40, 0x00 ;// 69 i

 DCB 0x20, 0x40, 0x44, 0x3d, 0x00 ;// 6a j

 DCB 0x7f, 0x10, 0x28, 0x44, 0x00 ;// 6b k

 DCB 0x00, 0x41, 0x7f, 0x40, 0x00 ;// 6c l

 DCB 0x7c, 0x04, 0x18, 0x04, 0x78 ;// 6d m

 DCB 0x7c, 0x08, 0x04, 0x04, 0x78 ;// 6e n

 DCB 0x38, 0x44, 0x44, 0x44, 0x38 ;// 6f o

 DCB 0x7c, 0x14, 0x14, 0x14, 0x08 ;// 70 p

 DCB 0x08, 0x14, 0x14, 0x18, 0x7c ;// 71 q

 DCB 0x7c, 0x08, 0x04, 0x04, 0x08 ;// 72 r

 DCB 0x48, 0x54, 0x54, 0x54, 0x20 ;// 73 s

 DCB 0x04, 0x3f, 0x44, 0x40, 0x20 ;// 74 t

 DCB 0x3c, 0x40, 0x40, 0x20, 0x7c ;// 75 u

 DCB 0x1c, 0x20, 0x40, 0x20, 0x1c ;// 76 v

 DCB 0x3c, 0x40, 0x30, 0x40, 0x3c ;// 77 w

 DCB 0x44, 0x28, 0x10, 0x28, 0x44 ;// 78 x

 DCB 0x0c, 0x50, 0x50, 0x50, 0x3c ;// 79 y

 DCB 0x44, 0x64, 0x54, 0x4c, 0x44 ;// 7a z

 DCB 0x00, 0x08, 0x36, 0x41, 0x00 ;// 7b {

 DCB 0x00, 0x00, 0x7f, 0x00, 0x00 ;// 7c |

 DCB 0x00, 0x41, 0x36, 0x08, 0x00 ;// 7d }

 DCB 0x10, 0x08, 0x08, 0x10, 0x08 ;// 7e ~

Figure 9.14: ASCII table for procedure 2.

