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Abstract— We present a synthesis of techniques for rotorcraft
UAV navigation through unknown environments which may
contain obstacles. D* Lite and Probabilistic Roadmaps are
combined for path planning, together with stereo vision for
obstacle detection and dynamic path updating. A 3D occupancy
map is used to represent the environment, and is updated on-
line using stereo data. The target application is autonomous
helicopter-based structure inspections, which require the UAV
to fly safely close to the structures it is inspecting. Results
are presented from simulation and with real flight hardware
mounted onboard a cable array robot, demonstrating successful
navigation through unknown environments containing obstacles.

Index Terms— UAV, autonomous helicopter, power line in-
spection, stereo vision, obstacle detection, path planning

I. INTRODUCTION

The use of Unmanned Aerial Vehicles (UAVs) is becoming
increasingly widespread, especially in military applications.
We are interested in furthering the use of UAVs in civil ap-
plications, and in particular for airborne structure inspections
(e.g., inspecting power lines, pipelines, cooling towers and
bridges). Traditionally, aerial inspections of power lines are
carried out with manned helicopters, a costly and dangerous
exercise. Williams et al [1] give a number of reasons (besides
safety) why rotorcraft UAVs are well-suited to power line
inspections. They also highlight the ability to sense obstacles
in the environment as one of the biggest challenges in using
UAVs for this task. The UAV is required to fly at close
quarters to the structure it is inspecting, and is therefore
at risk of a collision. The problem is particularly hard for
inspections carried out beyond line-of-sight of the UAV
operator, as is the case when inspecting long power lines.

The power line inspection task also requires the UAV to fly
to a goal or a number of subgoals, for example to visit a set
of transmission towers which have been roughly surveyed.
Since the precise locations of the towers and other obstacles
in the environment are not known a priori, the UAV would
need to detect these as it flew to the goal, and potentially
modify the planned path.

We detect obstacles by using stereo vision to build a 3D
occupancy map. Path planning is done using Probabilistic
Roadmaps (PRMs) [2], with D* Lite [3] to search for the
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shortest collision-free path. The roadmap is updated based on
occupancy information stored in the occupancy map. Tradi-
tionally, the same 3D grid is used for occupancy mapping and
planning. The proposed technique however, permits the use
of a high resolution occupancy map with a lower resolution
planning graph, reducing the planning state space and cost.

Since we utilize existing techniques for sensing, map
building and path planning, our contribution is not so much
to these individual fields, but rather one of combining these
techniques in a novel way to facilitate 3D navigation of
a rotorcraft UAV in unknown environments. This paper
describes how we integrate these techniques, and presents
insights learned in the process. Results are presented from
experiments in 3D simulation and on the CSIRO Air Vehicle
Simulator (AVS) cable array robot.

In Section II we review the related work in this area, in
Section III we detail the stereo-based occupancy mapping
technique and in Section IV we outline the path planning
technique. Experimental results are presented in Section V
and conclusions are drawn in Section VI.

Fig. 1. CSIRO / UAV Vision mini-helicopter flying close to a power line
to demonstrate its potential inspection capability.



II. RELATED WORK

Obstacle detection and avoidance for UAVs has been
widely studied recently, and a number of techniques have
been presented. The use of optic flow has been presented
in [4]-[6], and has been shown to be effective for reactive
obstacle avoidance. Its major drawback is its relience on
translational motion of the camera to generate flow fields,
so it cannot be used on a rotorcraft UAV that is hovering or
moving slowly. Also, this technique cannot produce absolute
range measurements and is therefore not suitable for the
structure inspection application where the UAV is often
hovering, and needs accurate range measurements to the
structures it is inspecting.

Likewise, the method presented by Watanabe [7] using
monocular vision produces impressive simulation results for
vision-based obstacle avoidance on a rotorcraft UAV, but
this technique does not give absolute range measures to the
obstacles. If the camera motion is known, Structure From
Motion (SFM) can be used to measure depth in a scene. Small
errors in motion estimation can lead to large range errors
however. For a fixed-wing UAV in stable flight it is plausible
to measure camera motion with inertial sensors, as the motion
is essentially constrained to one dimension. This is not the
case with a rotorcraft UAV however, as the camera motion
can be unconstrained. Call et al. [8] present a structure
from motion-based approach for UAV obstacle avoidance,
and show results from 3D simulation. Although they assume
the camera motion is known, large errors in range readings
still result due to correspondence miss-matches.

Results for laser range finder-based obstacle detection and
dynamic replanning on rotorcraft UAVs are presented by
Scherer et al. [9] and Shim er al. [10]. In both cases a
Yamaha R-Max UAV was used, which is able to lift this type
of sensor. We propose the use of stereo vision for obstacle
detection, and in Section III we mention a few advantages
of stereo vision over laser range finders for use on mini
UAVs (weight, power efficiency etc.), and also some of the
challenges to using this technique. Stereo has previously been
used on rotorcraft UAVs for height and motion estimates
[11], detecting safe landing sites [12], terrain mapping and
obstacle avoidance [13]. Overall, stereo seems to offer the
most suitable solution for obstacle avoidance on mini UAVs
that cannot carry heavy laser range finders, yet still require
absolute range measurements to features in the environment.

3D Path planning for UAVs has been addressed by [14],
[15]. Also, motion planning for UAVs has been addressed by
[16]. For the inspection application, a UAV will typically fly
at low speeds (< 5m/s) or hover while acquiring inspection
images. We therefore do not address the problem of perform-
ing aggressive maneuvers or high-speed flight. Also, since a
helicopter can hover and turn in place, it can fly point-to-
point type trajectories planned for holonomic vehicles. Prob-
abilistic Roadmaps (PRMs) [2] therefore provide a suitable

planning solution for this application.

Yan et al. [17] address the replanning problem for a UAV
using PRMs. Our approach is similar to this, however we use
D* Lite [3] to find paths in the PRM graph. Carsten et al.
[18] present a 3D extension to the Field D* algorithm which
would also produce trajectories suitable for our application.
Their planning is done on a regular 3D grid however, so
the size of the state space for the planner is coupled to the
resolution of the occupancy map used. By using a PRM, we
can reduce the state space of the planner independently of
the occupancy map resolution.

From this brief literature review we see that many tech-
niques have been developed to tackle the independent com-
ponents needed for safe UAV navigation in unknown environ-
ments. We have hand picked a selection of these that, when
combined, offer what we believe is the best solution for the
power line inspection task with the constraints imposed by
the use of mini rotorcraft UAV.

ITII. STEREO-BASED OCCUPANCY MAPPING

Stereo vision has the advantage that cameras are passive
sensors, and relatively lightweight, power efficient and in-
expensive compared to scanning lasers. Also, cameras do
not have the sensitive mirrors and optics found in scanning
lasers, and are therefore more robust to vibration and shock.
Stereo does however rely on adequate texture and lighting of
features in the scene for correlation matching. Also, the range
accuracy decreases with distance squared from the camera.
Stereo vision has however been widely used for obstacle
detection on ground-based robots. Some indicative values of
what stereo is capable of outdoors are given by Rankin et al
[19]. They show that a 30cm baseline stereo system with an
image resolution of 320x240 pixels is able to detect narrow
PVC poles up to 25m away, and bushes up to 20m away. This
type of performance is adequate for the power line inspection
task.

A. Stereo Hardware

We use a 90mm baseline stereo camera from Videre
Design with 8mm lenses to give a field of view (FOV) of
45(H)x34(V) degrees. The unit includes Stereo On Chip
(STOC) technology, which performs the stereo correspon-
dence calculations onboard using 640x480 images at 25Hz.
We utilise the Small Vision System (SVS) library [20] to pro-
duce 3D point clouds from the disparity images. A 1.6GHz
Pentium M-based embedded computer, is used for vision
processing and path planning. Note that this combination
of baseline and lens produced sufficiently accurate range
readings for the scaled-down AVS environment with features
up to 10m away, but is not necessarily optimal for a full-
scale power line inspection application. We are currently
performing a thorough evaluation of various baselines (from
9 - 50cm) and lenses in outdoor environments to determine
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which will be suitable for detecting obstacles during a power
line inspection.

B. 3D occupancy mapping

We use the probabilistic occupancy map framework [21]
and extend this to 3D. For a typical scene, the stereo system
generates roughly 30 000 range points from each image pair.
We uniformly sub-sample the point cloud by taking every
10" point, sacrificing range data for the sake of processing
speed. The point cloud is translated from camera to world
coordinate systems using the pose estimated at the time of
capturing the images. We currently do not incorporate pose
uncertainty in the map generation, but plan to do so in the
future. For each stereo pair, the point cloud is binned into
cubic voxels, and bins which exceed a binning threshold are
seen as ‘hit’ voxels for that image pair. Voxel size is set
depending on the required resolution for a given environment.

The inverse sensor model P(m; | x(k),y(k)) gives the
probability that voxel m; is occupied given measurement
y(k) and robot state (k). We use a simple inverse sensor
model (shown in (1)) where the probability of the voxel in
which the measurement falls is increased by l,.., and all
other voxels along the ray R between the sensor origin and
the hit voxel are decreased by y,.ce:

{

where r; is the distance along R from the sensor origin
to the center of voxel m;, and ry(y) is the distance along R
to the center of the hit voxel. The values of loc. and lfyee
determine how quickly the map will adapt to changes in the
environment and to new observations. In our case, values of
loce = 0.7 and lf,c. = 0.1 were chosen empirically.

Probabilities are stored in log odds representation as this
simplifies the Bayesian update rule. The Log Odds Inverse
Sensor Model (LOISM) is defined as:

P(m; | z(k),y(k))
1= P(m; | z(k),y(k))

One approach to occupancy mapping is to update the
probabilities for all voxels in the sensor field of view after an
observation. When working in 3D, determining which voxels
are within the FOV is an expensive operation, and when
using stereo there are many areas in the FOV for which no
new information is gained due to unmatched correlations. We
therefore only update voxels through which the set of rays
R pass, where each R € R is a ray from the sensor origin to
a hit voxel. To find the voxels that each ray passes through,
we use a 3D version of Bresenham’s line drawing algorithm
[22]. A ray is traced from the sensor origin to the hit voxel,
and the probabilities of the voxels are updated according to
(3) as they are visited by the algorithm.

lei =li—1,; + LOISM(mi, xk, yk) — lo

lOCC

_lf'ree

Ti = Ty(k)
Ti < Ty(k),

P(mi | z(k),y(k)) (D

LOISM (m;,xy,yx) = log ()

3)
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Where I, ; is the log odds representation of probability
for voxel m; and time ¢, and [y is the initial occupancy
represented as a log odds ratio:

0g p(mt:O,i)
1 — p(mi=o,i)

We assume the initial probabilities of all voxels
P(m¢=0,) = 0.5, indicating their occupancy is unknown to
begin with. Fig. 2 shows the stages in creating an occupancy
map from stereo data. This is a sample image from the
AVS experiments described in Section V-B, showing that the
scaled power pole is successfully detected and added to the
occupancy map. The pole was approximately 5m from the
camera in this instance.

In order to use the resulting occupancy map for planning,
we use a voxel’s probability to classify its occupancy state
S(m;) as being occupied, free or unknown. As shown in
(4), we do so by defining two thresholds, namely T,,.. above
which the voxel is classified as occupied, and T',.. below
which it is classified as free. In-between these two thresholds
it is classified as unknown. We chose values of 0.4 and 0.6
for T'tree and Ty, respectively.

lo=1

Occupied P(m;) = Toce
Unknown Tpree < P(m;) < Thee
Free P(m;) < Tfree

One limmitation with 3D occupancy maps is the amount
of memory they can require. In our implementation (which
is not particularly optimized for space), each voxel requires
96 Bytes, so to represent an environment of 40mx 10mx4m
at a resolution of 10cm requires 153.6MB. A tradeoff can be
made between the extents of the environment to represent,
and the resolution at which to represent it. Representing the
above environment at a resolution of 0.5m would reduce the
memory requirement to 1.2MB. For the power line inspection
task, a resolution of 0.5m should be sufficient to represent
obstacles such as power poles and trees. When conducting
inspections over very large areas it would not be practical to
store the entire map, so only a local area around the UAV
would be stored in memory. Areas that have previously been
visited could be saved to disk in a more compact form to
be recalled later as required. An alternative approach would
be to use a multi-resolution representation such as octrees,
which require less memory. In our experiments described in
Section V, there was sufficient onboard memory to represent
the entire environment with fixed resolution 10cm voxels, so
this approach was used.

IV. PATH PLANNING

Path planning allows a UAV to find a potential path to
a goal in an unknown environment. If the environment is
obstacle free, the planned path will simply be a straight
line from start to goal. As knowledge about obstacles in



Fig. 2. Sequence showing the creation of an occupancy map from stereo
data. Left stereo image (top left), disparity image (top right), point cloud
(bottom left), and resulting occupied voxels (bottom right).

the environment is gained, the path is modified to ensure
it remains collision-free.

We build a Probabilistic Roadmap (PRM) in the envi-
ronment and then use D* Lite to plan the initial path and
continually update the path as new obstacles are detected by
the stereo system.

A. Probabilistic Roadmap Planning

A Probabilistic Roadmap planner consists of two phases:
First the roadmap graph is built by randomly sampling points
from the environment’s free space, and connecting them to
neighboring points if a collision-free path exists between
them. The start and goal points are added to the roadmap, and
then in the query phase a path is found through the roadmap
from start to goal. Since the roadmap is a graph, traditional
graph search techniques such as A* can be used to find
the path. Building the graph can be an expensive operation,
but once built, it can be used for multiple queries which
are relatively inexpensive. If the environment changes (for
example a new obstacle is detected), the query must be re-
run to ensure the path is still collision free. Using A* in such
cases is inefficient as the entire query must be repeated. More
efficient techniques have been developed which only replan a
local section of the path. D* Lite is one of these techniques.
and the one we chose for our planning queries and updates,
as it is simpler to implement than previous techniques such
as Focussed Dynamic A* (D*) [23], while being at least as
efficient.

An initial path is planned from start to goal using D*
Lite, and then smoothing is applied to eliminate unnecessary
intermediate vertices. As the UAV traverses the path, D*
Lite is used to modify the path if necessary, as described
in Section IV-B. The output of the planning process is a
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series of waypoints that are fed sequentially to the low-level
flight controller. When the UAV comes within range of a
waypoint, the next one is issued. As mentioned earlier, we
assume the helicopter can fly point-to-point and follow these
planned paths as a holonomic vehicle would. The planner
does not consider the helicopter’s dynamics, leaving it up to
the low-level controller to calculate velocity profiles etc. in
order to reach the waypoints. In the experiments described in
Section V the controllers for the simulated UAV and the AVS
both produce straight line trajectories between waypoints.
The inspection task does not require high-speed flight, so
this type of trajectory following is possible with a helicopter.
Since we are using a regular 3D grid to represent the
environment in the form of an occupancy map, it may seem
logical to perform path planning in this grid-based repre-
sentation directly. Path planning relies heavily on searching
through the state space however, and with 3D occupancy
maps the size of the state space can severely affect the
speed of searches. By using a randomized planning technique
such as PRMs, this dimensionality problem can be reduced.
For example, a 3D grid spanning 10m along each axis with
10cm voxel resolution would have a state space of 10°. If
bidirectional diagonal transitions are allowed between voxels,
each voxel has 26 neighbors. For search purposes, this is
equivalent to a graph with 10% vertices and 26x10° edges.
In contrast, a PRM could be built for the same volume using
approximately 1000 vertices and 3500 edges, where vertices
within 1.2m apart are connected. Since the roadmap vertices
are spaced more widely than the grid voxels, the resolution
of the path that can be planned with the roadmap is not as
fine, but this compromise is far outweighed by the reduced
state space. A finer resolution roadmap can be produced if
necessary by adding more sample points while reducing the
maximum distance between them. Ultimately, the designer
must choose between resolution and complexity. Our design
choices for the experiments are described in Section V.

B. Stereo-Based Replanning

Having a regular grid-based representation for the envi-
ronment and a randomly sampled representation for path
planning does introduce an added complexity, as it is nec-
essary to translate from one representation to the other when
testing for collision-free paths and assessing if the roadmap
needs updating. Fig. 3 illustrates a simple 2D scenario of
how we overcome this problem and use the occupancy map
for updating the roadmap.

When the occupancy map is updated with a point cloud
from the stereo pair, a check is performed to see if any edge
costs in the roadmap graph need to be updated. If a voxel
m; was previously unoccupied (S(m;+—1) = free) and after
the update is occupied (S(m; ;) = occupied), all roadmap
vertices within a radius threshold 7). from the center of m;
are found and added to a changed vertex list (L, ). Arc costs



Leo={}

Leo ={V2,V3}

Fig. 3. 2D illustration of how the roadmap and path are updated when
the state of a voxel (m;) in the occupancy map changes from free (a) to
occupied (b). Vertices within range T’ of m; are found, and used by D*
Lite to update the path.

for edges from these vertices to their adjacent vertices are set
to infinity.

Likewise, voxels that were previously occupied and be-
come unoccupied after the update are added to L.,, and
the respective arc costs are set to the Euclidean distance
between the vertices. The value chosen for 7). ensures that
the resulting path does not come within this distance of any
occupied voxels. We set T, to twice the helicopter’s rotor
diameter, providing a spacial safety buffer.

The list of changed vertices L., is used in the Main()
procedure of D* Lite!. As the UAV travels along the planned
path towards the next waypoint, the vertices in L., are passed
to the UpdateVertex() procedure of D* Lite, and the new path
is computed. L., is then cleared and this is repeated until the
goal is reached or no valid path can be found to the goal.

V. EXPERIMENTAL RESULTS

We conducted a number of experiments to evaluate the
effectiveness of this synthesis of techniques for navigating
in unknown environments. Experiments were carried out
in software simulation using the Gazebo [24] simulation
environment, as well as on the CSIRO Air Vehicle Simulator
cable-array robot [25].

A. Software Simulation Results

The software simulation-based experiments were per-
formed in a virtual 3D environment 40mx10m in area and

As shown in pseudo-code for D* Lite: Second Version [3]
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6m high. The environment (shown in Fig. 4) contained 3
pole-like obstacles, a 1.5m high wall, and a large rectangular
obstacle. This environment is representative of what might
be expected for a short range power line inspection.

Fig. 4. The Gazebo virtual environment used for simulation-based experi-
ments.

Gazebo was used to generate synthetic stereo images
of the virtual world, and these images were processed by
the SVS stereo library to produce disparity images and
corresponding 3D point clouds. The simulated stereo pair
had a baseline of 90mm and simulated lenses giving a FOV
of 52(H)x40(V) degrees. Since the Gazebo camera model
uses perspective projection, the synthetic images are “perfect”
stereo images, with parallel epipolar lines on corresponding
rows in both images. The images therefore do not need to be
rectified before searching for correspondences, simplifying
the stereo calculations somewhat. We do not however use a
synthetically generated disparity image; this is generated by
correlation matching as it would be for images from the real
stereo pair. To facilitate correlation matching, obstacles in the
virtual world are mapped with textures and we illuminate the
world with a number of light sources. If features in the stereo
images have inadequate texture or are poorly illuminated,
correspondence matching will fail as it does for real scenes.
This makes testing of the stereo-based obstacle detection
more realistic.

To test our navigation techniques in the simulation environ-
ment, three different start and goal location pairs were used,
and for each pair three experimental runs were performed,
giving a total of 27 runs. The UAV was tasked to plan a
path to the goal, and then fly to the goal while avoiding
obstacles along the way. No a priori knowledge of the
environment was given, i.e., it was assumed to be obstacle-
free. A roadmap was built with 3000 vertices spaced between
0.1 and 1.3 m apart. Roadmap construction and planning
the initial path took 146.9s on a 2.4GHz Pentium D-based
PC, and replanning took on average 0.4s. Naturally, the time
taken for replanning depends on the number of vertices that
are affected, but relative to the motion of the simulated heli-
copter, the replanning happened “instantly”, and there was no



noticeable effect on the motion during all the experiments.

Fig. 5 shows an oblique view of one of the experimental
runs. The blue line shows the original (un-smoothed) path,
while the green line shows the final path. Also shown
(as purple cubes) are voxels of the occupancy map with
probabilities greater the 0.6, and wireframe outlines of the
actual obstacles. There is a cluster of occupied voxels cor-
responding to the center pole-like obstacle, showing it has
been correctly detected. Likewise, portions of the wall and
rectangular obstacles have been detected. The original path
passed through the rectangular obstacle, but the updated path
passes over the wall and around the other obstacles.

Fig. 6 shows the top view of the trajectories taken for all
27 simulation runs. Also shown are the 5 obstacles in the
environment. Trajectories drawn with dashed lines are those
that lead to collisions. Note that the plotted trajectories do in
fact deviate from the planned paths (not shown in the figure).
As with a real UAV, the simulated UAV attempts to follow the
planned straight-line trajectories between waypoints, however
this is not always possible due to its dynamics.

Since the probabilistic roadmap extended 6m high and the
tallest obstacles were 4m high, the UAV was able to plan
paths over the obstacles. This is evident in the figure where a
number of trajectories pass over the left-most wall obstacle,
which was 1.5m in height. Most trajectories went around
the power poles as these were taller (4m), and only one
trajectory passed over the rectangular obstacle. By restricting
the vertical extents of the roadmap, one could impose a height
limit on the planned paths, forcing the UAV to fly in-between
obstacles instead of over them. This could be useful in the
power line inspection application if, for example, the UAV
was subject to airspace height restrictions.

Original Path

Obstacle

Fig. 5. Oblique view showing the original, un-smoothed path which passes
through some obstacles (blue line), and the final path flown by the UAV
which circumnavigates them (green line). Also shown are occupied voxels
of the occupancy map built during the flight, and the ground truth position
of the obstacles are shown as wire-frames.

Since no a priori knowledge about obstacles was given to
the planner, most of the original planned paths passed through
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Fig. 6. Trajectories flown during the simulation-based experiments (top
view). Dashed lines represent trajectories that lead to collisions. Shown in
grey are the obstacles in the environment, and the helicopter’s rotor diameter.

obstacles. In 21 of the 27 runs the goal was eventually
reached however, indicating obstacle detection and dynamic
replanning was effective. Six runs lead to collisions, and three
of these occurred when the UAV flew alongside an obstacle
and then turned towards it while avoiding another obstacle it
had detected. The side of the obstacle had not been within
the stereo field-of-view before turning towards it, so had not
been added to the occupancy map. Since the UAV was close
to the obstacle when turning towards it, the occupancy map
was not updated in time to prevent the collision. This is an
issue we had considered before running these experiments,
and plan to address this by ensuring that when in motion,
the helicopter always has its stereo pair pointing along the
velocity vector. If a sharp turn into an unknown portion of
the environment is required, the helicopter will stop and turn
in place before proceeding.

Two collisions occurred when the path diverted downwards
to avoid a portion of the obstacle detected straight ahead. The
lower portion of the obstacle had been outside the stereo
FOV, and therefore not added to the occupancy map. When
descending, a rotorcraft UAV does not pitch nose down,
making it vulnerable to obstacles below if the cameras are
fixed. This was also an issue we had previously considered,
and the collisions seen in simulation highlighted the need to
address this. We plan to mount the real stereo pair on a pitch
mechanism, moving it to match the slope of the trajectory.
Another alternative would be to use wider FOV lenses, but
this would worsen the range resolution of the stereo system.

B. Air Vehicle Simulator Results

The AVS is a cable array robot with a workspace of
10mx5mx5m. It can move a 20kg payload through the
workspace using either position or velocity commands, and
is a valuable tool for evaluating hardware, software and
algorithms in a closed-loop manner before these are used
on a real UAV. Since the AVS workspace is limited in
size, features in the environment were scaled down for these
experiments by a factor of 5, and the velocity of the AVS
was reduced appropriately (limited to 0.1m/s).

We evaluated the stereo-based navigation technique on



the AVS before testing it on our mini-helicopter platform
(shown in Fig. 1) since the helicopter was not available for
autonomous flight at the time. We removed the helicopter’s
avionics boxes and stereo pair, and mounted them to a frame
which could be suspended by the AVS (Fig. 7). The AVS-
based experiments thus used the same flight hardware that
would be used on the real UAV. Attitude estimates were
generated using an Extended Kalman Filter with IMU data
as input, while position and velocity information was read
from the AVS winch control computer (since GPS was not
available indoors).

Although a helicopter is capable of sideways flight, we
constrain the UAV’s motion such that it always flies nose
first. We impose this constraint since the stereo pair is fixed
in the forward-facing position, and it would be unsafe to fly
towards areas that are not within the sensor FOV. The AVS is
limited to 3 degrees of freedom (translation in X, Y and Z),
so to simulate yaw motion the stereo pair was mounted to a
pan-tilt unit, and panned to match the direction of travel. This
allowed us to fly the pod “nose first” as would be possible
by yawing the real UAV.

Two scaled power poles and a rectangular object were
placed in the environment as obstacles (shown in Fig. 7)
and the AVS was tasked to plan paths between a variety of
start and goal locations such that it would traverse the length
of the workspace while detecting obstacles and dynamically
updating the planned paths. The proposed technique is not
well suited to detecting thin objects such a power lines,
so no wires were strung between the power poles in this
experiment. Clearly the UAV would need to detect power
lines when performing an inspection task, so we will address
this problem in the future with vision-based techniques
which are specifically designed to detect them. No a priori
knowledge of the environment was given, i.e., it was assumed
to be obstacle free. This allowed for more thorough testing of
the dynamic replanning as the initial path was more likely to
intersect an obstacle. For a real inspection task however, any
knowledge of the location of power poles or other obstacles
would be included in the map to ensure the initial path
circumnavigates them.

A roadmap was built using 1000 vertices spaced between
0.1 and 0.8 m apart. Running onboard the embedded 1.6GHz
Pentium M-based computer, building the roadmap and plan-
ning the initial path took on average 22.4s. When new
obstacles were detected and replanning was necessary, this
was performed in 0.15s on average.

A total of 16 navigation runs were performed, and the
resulting trajectories are shown in Fig. 8 along with the
position of the obstacles. The plotted trajectories trace the
position of the AVS cable junction, so for the side view one
must keep in mind that the pod is suspended below this point.

Of the 16 runs, 14 were successful, one lead to a collision,
and for one the pod stopped short after detecting a false
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Fig. 7. The Air Vehicle Simulator (AVS) workspace, showing the suspended
AVS pod and scaled-down power poles. The insert shows the stereo cameras
mounted to the front of the pod.

T T
a) Top View I

X (m)

Fig. 8. Trajectories for stereo-based dynamic replanning on the AVS shown
in top view (a), and side view (b). Also shown in grey are the obstacles
placed in the environment, and the size of the AVS pod.

positive obstacle in the vicinity of the goal, thus determining
there was no route to the goal. The collision was due to a
scenario similar to that described in Section V-A, where the
path lead the pod towards the side of an obstacle that had
not yet been added to the occupancy map.

Since the roadmap used for planning extended to 4m in
height, the pod was able to fly over the obstacles if necessary.
This is evident in the side view (Fig. 8b), which shows a
number of the trajectories pass over the obstacles.

Also shown in Fig. 8 is the AVS pod for scale reference.
When one considers the size of the pod relative to the space
between obstacles, this environment is very cluttered, and in
fact more challenging than the environments we expect to fly
the real UAV in. Also, the clutter in the background makes



stereo vision more challenging than in a typical outdoor
power line inspection environment. Nevertheless, the AVS
pod was able to navigate through this cluttered environment,
demonstrating the stereo-based dynamic replanning technique
has the potential for use on a real UAV.

VI. CONCLUSIONS AND FUTURE WORK

A novel combination of techniques has been presented
which could allow a rotorcraft UAV to navigate safely
through unknown environments containing obstacles while
performing tasks such as power line inspections. We combine
Probabilistic Roadmaps and D* Lite for path planning with
stereo-based occupancy mapping for dynamic replanning.
This combination permits the use of a high resolution occu-
pancy map with a lower resolution planning graph, thereby
reducing the state space of the planner and the planning
cost. Experiments in simulation and with a cable array robot
show that obstacles such as power poles can be detected and
avoided in order to reach a goal location. The rate of failure
seen in these experiments is however too high for use on a
real inspection task, and we are working on improvements
to make it more robust. The experiments highlighted the
need to keep the stereo cameras pointed along the velocity
vector to avoid collisions, and this is one improvement
we will implement in the future. We acknowledge that 3D
occupancy maps are a memory intensive representation of
the environment, and in future will investigate the use of
more efficient non-uniform representations such as octrees.
Since the stereo-based technique is unlikely to detect thin
obstacles such as power lines, we plan to combine it with
other vision-based techniques which are specifically designed
for power line detection. We will test these techniques on the
real rotorcraft UAV in the future.
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