Code (text):

1

// Emulates a Candleflicker-LED
I/ ported from CandeflickerLED.c
I

device = 18F4520

clock =8

/I LED connected to PBO (set this to match your hardware)
dim LEDPIN as PORTB.0

/ main flicker clock = 440*16 Hz
const FLICKER_DELAY as word = ((1000000/440)/16)

I

// 32 Bit maximum length LFSR

/1 see http://www.ece.cmu.edu/~koopman/Ifsr/index.html

//' Using inverted values so the LFSR also works with zero initialisiation
I

dim rand_z as longword

function random() as byte
rand z=rand z>>1

if (rand_z.bits(0) = 0) then
rand_z = rand_z xor $7FFFF159
endif

result = rand_z.byteO
end function

dim pwm_ctr as byte Il 4 bit-Counter
dim frame_ctr as byte // 5 bit-Counter

dim pwm_val as byte I 4 bit-Register
dim nextbright as byte // 4 bit-Register
dim rand as byte /'5 bit Signal

dim randflag as boolean // 1 bit Signal

// initialization
rand z=0
pwm_ctr =0
frame_ctr=0
pwm_val =0
nextbright = 0
rand =0
randflag = false

low(LEDPIN)

while (true)
delayus(FLICKER_DELAY)

Il PWM
pwm_ctr = pwm_ctr + 1
pwm_ctr = pwm_ctr and $0f // only 4 bit

if (pwm_ctr <= pwm_val) then

LEDPIN =1
else
LEDPIN=0
endif
/I frame

if (pwm_ctr = 0) then
frame_ctr = frame_ctr + 1
frame_ctr = frame_ctr and $1f

/I generate a new random number every 8 cycles
/I In reality this is most likely bit serial
if ((frame_ctr and $07) = 0) then
rand = random() and $1f
if ((rand and $0c) <> 0) then
randflag = true /I only update if valid
endif
endif

Il new frame
if (frame_ctr = 0) then
pwm_val = nextbright Il reload PWM

randflag = true /[force update at beginning of frame
endif
if (randflag) then

if (rand > 15) then
nextbright = 15

else
nextbright = rand
endif
randflag = false // not in original code
endif
endif

end while

